The Benefits of Recycling Cooking Oil

Disposal of cooking oil is not an easy task. If you try to drain it, it will block your sink drains and cause you immense plumbing problems. Throwing it away is also not a good idea because it causes damage to the environment. Cooking oil cannot go to your usual recycle trash bin like other trash because the processes of recycling it are different. However, there are better ways of recycling cooking oil without harming the environment. You can have it recycled. If you are not able to do it by yourself, there are companies that offer cooking oil recycling services.

Benefits of recycling cooking oil

Recycling companies turn cooking oil into other products like stock feed, cosmetics and biofuel.  They also filter the oil for reuse. If you are not in any position to recycle your cooking oil, do not drain it down the sink or throw it in your waste bin. Wrap your cooking oil in a tight jar, make sure there are no spills and call the right people to come and collect it.

Recycling cooking oil comes with several benefits. The technology used to recycle the oil is advanced and the final products help in both businesses and homes.

Below are some of the major benefits of recycling of cooking oil:

1. Renewable energy

Recycling cooking oil turns it into renewable energy used in many manufacturing firms for processing their products. One of the most notable fuels is biodiesel, which is from used oils, grease, animal fats and vegetable oils among others. Vehicles that use diesel can use this fuel effectively and businesses that use diesel-powered machines can use the fuel without any fear of harmful emissions.

2. Cleaner environment

We all need a clean environment and it is not what we always get. Fuels are some of the major contributor to health hazards because of emissions. Petro-diesel is very toxic as compared to biodiesel. Biodiesel is eco-friendly and does not damage a vehicle’s engine. Petro-diesel on the other hand, produces chemical compounds like sulphur that are acidic. This acid can spoil the engine. Biodiesel production is green in nature and keeps everything safe.

3. Saves costs

Recycling cooking oil saves costs in many ways. At home, you can reduce your disposal costs by calling a recycling company to come for your waste oil. If you try to dispose of the oil by yourself, you may end up spending more on extra waste bins, transportation and special disposal procedures.

Companies that use recycled oil have a chance of preventing their equipment from spoiling faster than they did before the recycled oil. Maintenance costs go down and recycled oil like biodiesel is much cheaper as compared to the other kinds of imported fuels.

4. Creates jobs

Disposing of waste materials and recycling them is one way of creating jobs for the masses. Instead of using that money to import petro-diesel, the government uses the money to employ more people to recycle oil into more beneficial biodiesel.

5. Make money out of it

You can make an extra buck out of disposing your used oil. Instead of throwing your oil away, look for companies that recycle the oil and pay you for it. This will also save you on transport costs to go and dispose of your oil, because the recycling companies come to pick it up.

Wrapping it up

The most important factor about recycling is that we are working towards one goal. That goal is to maintain a greener, healthier and cleaner environment. That is our goal and recycling cooking oil is one way of doing that.

Breaking Down the Process of Biofuel Production

Biofuels are renewable and sustainable forms of energy. They can reduce greenhouse emissions by almost 30%, which means that although they do release carbon dioxide into the atmosphere, they do so in a very limited manner.

With the aim of building a green new world, and eliminating the need for fossil fuel and other traditional energy sources, people are now turning towards biofuel to meet their daily needs. Thus, we see biofuel being used for transportation in many countries. It’s also being used to generate electricity. The rural areas in many underdeveloped and developing countries will use biofuel for their cooking purposes as well. All in all, this particular fuel has diverse uses.

Biofuel is produced from biomass, which itself is treated as a clean energy source. We can produce biofuel from biomass through a series of steps. These steps can be performed even in our houses if we have the right materials. A quick overview of the whole biofuel production process is described below.

biofuel-production

1. Filtration

The purpose of the filtration process is to get rid of the unnecessary particles from the biomass. In this step, we take the waste vegetable oil and then heat it to a certain degree. Once the liquid has been heated, the waste particles will automatically separate themselves from the main mixture. Afterward, we just have to filter it with a regular filter paper.

2. Water removal

Next, we need to remove water from the residual gangue. If the water is allowed to stay in the mixture, it’ll end up delaying the overall process. By removing all the water, we can make the reaction move a lot faster. The easiest way to remove water from the mixture is by heating it steady at 212 degrees F for some time.

3. Titration

Titration is conducted on the mixture to determine the amount of chemical catalyst (like lye) that will be needed. The catalyst is a key component in any chemical reaction. It pretty much determines how fast and how much of a product we’re going to receive. Thus, this step is very important in the biofuel manufacturing process.

4. Sodium methoxide preparation

In this step, we take methanol (18-20% of the waste vegetable oil) and mix it with sodium hydroxide. This gives us sodium methoxide, which is also used as a catalyst in the reaction. It helps perform synthesis reactions on the reagents and facilitates the overall reaction process. Sodium methoxide is a key ingredient in this manufacturing process. It’s considered to be a standard substance used to accelerate the reaction, and yield better results.

5. Mixing and heating

Next, we heat the residue between 120-130 degrees F. Afterward, we mix it properly. This process aims to evenly distribute the mixture. This will help the mixture to settle down later on, and cool off, after which we can begin the extraction process. In a way, the mixing and heating stage can be seen as the final preparation before extraction.

biofuel-production

6. Setting

Once the mixing is completed, the liquid is allowed to cool and settle down, after which we can extract the final product, i.e. the biofuel.

7. Separation

After the liquid has cooled, the biofuel can be extracted from the top of the mixture. It’ll be found floating on top, like oil in water. To get the biofuel, we’ll have to remove the glycerin underneath it. This can be done by simply draining it out from the bottom, and keeping the fuel afloat. The biofuel is finally ready.

The whole process described above is for a small-scale operation. However, it can be scaled up as needed, given that you have the right tools, ingredients, and setup.

It should also be noted that chemical catalysts (such as lye) are used in the manufacturing process as well. Recently, however, scientists and researchers are looking into the use of ultrasonics as additional catalysts. According to recent observations, a combination of chemicals and ultrasonics can lead to a higher yield of fuel, and reduce the overall processing time. This also leads to better utilization of biomass.

Companies such as Coltraco (https://coltraco.com/) are now using ultrasonic systems and technology in a wide variety of fields, one of which is the renewable energy industry. And while the technology’s use in other fields has gained more traction in recent times, it shouldn’t be long before it’s used in biofuel manufacturing, as well as in other renewable energy sectors, in full swing.