Solid Waste Management in South Asia: Key Lessons

swm-south-asiaSolid waste management is already a significant concern for municipal governments across South Asia. It constitutes one of their largest costs and the problem is growing year on year as urban populations swell. As with all waste management experiences, we have learned lessons and can see scope for improvement.

Collection and Transportation

There are two factors which have a significant impact on the costs and viability of a waste management system as it relates to collection and transportation: first, the distance travelled between collection and disposal point; and second, the extent to which ‘wet’ kitchen waste can be kept separate from dry waste much of which can be recycled. Separating waste in this way reduces the costs of manual sorting later on, and increases the prices for recyclable materials.

In many larger towns distances become too great for door-to-door collectors to dispose waste directly at the dump site. Arrangements are made to dispose of waste at secondary storage points (large skips) provided by the municipality. However, where these are not regularly emptied, the waste is likely to be spread beyond the bins, creating a further environmental hazard.

Ideally, and if suitable land can be found, a number of smaller waste disposal sites located around a town would eliminate this problem. With significant public awareness efforts on our part, and continual daily reminders to home-owners, we were able to raise the rate of household separation to about 60%, but once these reminders became less frequent, the rate dropped rapidly back to around 25%. The problem is compounded in larger cities by the unavailability of separated secondary storage bins, so everything is mixed up again at this point anyway, despite the best efforts of householders.

If rates are to be sustained, it requires continual and on-going promotion in the long term. The cost of this has to be weighed against the financial benefit of cleaner separated waste and reduced sorting costs. Our experience in Sri Lanka shows how important a role the Local Authority can play in continuing to promote good solid waste management practices at the household level.

Home Composting

Our experience with home composting shows that complete coverage, with every household using the system, is very unlikely to be achieved. Where we have promoted it heavily and in co-operation with the Local Authority we have found the sustained use of about 65% of the bins. Even this level of coverage, however, can have an important impact on waste volumes needing to be collected and disposed of. At the same time it can provide important, organic inputs to home gardening, providing a more varied and nutritious diet for poor householders.

Waste to Compost and Energy

The variety of technologies we have demonstrated have different advantages and disadvantages. For some, maintenance is more complicated and there can be issues of clogging. For the dry-fermentation chambers, there is a need for a regular supply of fresh waste that has not already decomposed. For other systems requiring water, quite large amounts may be needed. All of these technical challenges can be overcome with good operation and maintenance practices, but need to be factored in when choosing the appropriate technology for a given location.

The major challenge for compost production has been to secure regular sales. The market for compost is seasonal, and this creates an irregular cash flow that needs to be factored in to the business model. In Bangladesh, a significant barrier has been the need for the product to be officially licensed. The requirements for product quality are exacting in order to ensure farmers are buying a product they can trust. However, the need for on-site testing facilities may be too prescriptive, creating a barrier for smaller-scale operations of this sort. Possibly a second tier of license could be created for compost from waste which would allow sales more easily but with lower levels of guarantees for farmers.

Safe Food Production and Consumption

Community people highly welcomed the concept of safe food using organic waste generated compost. In Sri Lanka, women been practicing vertical gardening which meeting the daily consumption needs became source of extra income for the family. Female organic fertilizer entrepreneurs in Bangladesh are growing seasonal vegetables and fruits with compost and harvesting more quality products. They sell these products with higher price in local and regional markets as this is still a niche market in the country. The safe food producers require financial and regulatory support from the government and relevant agencies on certification and quality control to raise and sustain market demand.

The concept of safe food using organic waste generated compost is picking up in South Asia

The concept of safe food using organic waste generated compost is picking up in South Asia

Conclusion

Solid waste management is an area that has not received the attention it deserves from policy-makers in South Asia nations. There are signs this may change, with its inclusion in the SDGs and in many INDCs which are the basis of the Paris Climate Agreement. If we are to meet the challenge, we will need new approaches to partnerships, and the adoption of different kinds of systems and technologies. This will require greater awareness and capacity building at the Local Authority level. If national climate or SDG targets are to be met, they will need to be localised through municipalities. Greater knowledge sharing at national and regional levels through municipal associations, regional bodies such as SAARC and regional local authority associations such as Citynet, will be an important part of this.

Practical Action’s key messages for regional and national policy makers, based on our experience in the region in the last 5 years, are about the need for:

  • creating new partnerships for waste collection with NGOs and the informal sector,
  • considering more decentralised approaches to processing and treatment, and
  • recognising the exciting potential for viable technologies for generating more value from waste

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Waste-to-Energy in China: Perspectives

garbage-chinaChina is the world’s largest MSW generator, producing as much as 175 million tons of waste every year. With a current population surpassing 1.37 billion and exponential trends in waste output expected to continue, it is estimated that China’s cities will need to develop an additional hundreds of landfills and waste-to-energy plants to tackle the growing waste management crisis. China’s three primary methods for municipal waste management are landfills, incineration, and composting. Nevertheless, the poor standards and conditions they operate in have made waste management facilities generally inefficient and unsustainable. For example, discharge of leachate into the soil and water bodies is a common feature of landfills in China. Although incineration is considered to be better than landfills and have grown in popularity over the years, high levels of toxic emissions have made MSW incineration plants a cause of concern for public health and environment protection.

Prevalent Issues

Salman Zafar, a renowned waste management, waste-to-energy and bioenergy expert was interviewed to discuss waste opportunities in China. As Mr. Zafar commented on the current problems with these three primary methods of waste management used by most developing countries, he said, “Landfills in developing countries, like China, are synonymous with huge waste dumps which are characterized by rotting waste, spontaneous fires, toxic emissions and presence of rag-pickers, birds, animals and insects etc.” Similarly, he commented that as cities are expanding rapidly worldwide, it is becoming increasingly difficult to find land for siting new landfills. On incineration, Zafar asserted that this type of waste management method has also become a controversial issue due to emission concerns and high technology costs, especially in developing countries. Many developers try to cut down costs by going for less efficient air pollution control systems”. Mr. Zafar’s words are evident in the concerns reflected in much of the data ­that waste management practices in China are often poorly monitored and fraudulent, for which data on emission controls and environmental protection is often elusive.

Similarly, given that management of MSW involves the collection, transportation, treatment and disposal of waste, Zafar explains why composting has also such a small number relative to landfills for countries like China. He says, “Composting is a difficult proposition for developing countries due to absence of source-segregation. Organic fraction of MSW is usually mixed with all sorts of waste including plastics, metals, healthcare wastes and industrial waste which results in poor quality of compost and a real risk of introduction of heavy metals into agricultural soils.” Given that China’s recycling sector has not yet developed to match market opportunities, even current treatment of MSW calls for the need of professionalization and institutionalization of the secondary materials industry.

While MSW availability is not an issue associated with the potential of the resource given its dispersion throughout the country and its exponential increase throughout, around 50 percent of the studies analyzed stated concerns for the high moisture content and low caloric value of waste in China, making it unattractive for WTE processes. Talking about how this issue can be dealt with, Mr. Zafar commented that a plausible option to increase the calorific value of MSW is to mix it with agricultural residues or wood wastes. Thus, the biomass resources identified in most of the studies as having the greatest potential are not only valuable individually but can also be processed together for further benefits.

Top Challenges

Among the major challenges on the other hand, were insufficient or elusive data, poor infrastructure, informal waste collection systems and the lack of laws and regulations in China for the industry. Other challenges included market risk, the lack of economic incentives and the high costs associated with biomass technologies. Nevertheless, given that the most recurring challenges cited across the data were related to infrastructure and laws and regulations, it is evident that China’s biomass policy is in extreme need of reform.

China’s unsustainable management of waste and its underutilized potential of MSW feedstock for energy and fuel production need urgent policy reform for the industry to develop. Like Mr. Zafar says, “Sustainable waste management demands an integration of waste reduction, waste reuse, waste recycling, and energy recovery from waste and landfilling. It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis”.

Future Perspectives

China’s government will play a key role in this integrated solid waste management strategy. Besides increased cooperation efforts between the national government and local governments to encourage investments in solid waste management from the private sector and foster domestic recycling practices, first, there is a clear need to establish specialized regulatory agencies (beyond the responsibilities of the State Environmental Protection Administration and the Ministry of Commerce) that can provide clearer operating standards for current WTE facilities (like sanitary landfills and incinerators) as well as improve the supervision of them.

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

Without clear legal responsibility assigned to specialized agencies, pollutant emissions and regulations related to waste volumes and operating conditions may continue to be disregarded. Similarly, better regulation in MSW management for efficient waste collection and separation is needed to incentivize recycling at the individual level by local residents in every city. Recycling after all is complementary to waste-to-energy, and like Salman Zafar explains, countries with the highest recycling rates also have the best MSW to energy systems (like Germany and Sweden). Nevertheless, without a market for reused materials, recycling will take longer to become a common practice in China. As Chinese authorities will not be able to stop the waste stream from growing but can reduce the rate of growth, the government’s role in promoting waste management for energy production and recovery is of extreme importance.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, infrastructure, public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found. The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a compost plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 550 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://epd.punjab.gov.pk/solid_waste

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.unep.org/gpwm/InformationPlatform/CountryNeedsAssessmentAnalysis/Pakistan/tabid/106536/Default.aspx

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

https://www.researchgate.net/publication/264629066_An_assessment_of_the_current_municipal_solid_wastemanagement_system_in_Lahore_Pakistan

http://www.lwmc.com.pk/about-us.php

https://www.researchgate.net/publication/264629066_An_assessment_of_the_current_municipal_solid_wastemanagement_system_in_Lahore_Pakistan

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php

http://www.unep.org/gpwm/InformationPlatform/CountryNeedsAssessmentAnalysis/Pakistan/tabid/106536/Default.aspx

http://thinkbrigade.org/asia/pakistan-waste-management/index.html

Solid Waste Management in Nigeria

waste-nigeriaSolid waste management is the most pressing environmental challenge faced by urban and rural areas of Nigeria. Nigeria, with population exceeding 170 million, is one of the largest producers of solid waste in Africa. Despite a host of policies and regulations, solid waste management in the country is assuming alarming proportions with each passing day.

Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected. Reckless disposal of MSW has led to blockage of sewers and drainage networks, and choking of water bodies. Most of the wastes is generated by households and in some cases, by local industries, artisans and traders which litters the immediate surroundings. Improper collection and disposal of municipal wastes is leading to an environmental catastrophe as the country currently lack adequate budgetary provisions for the implementation of integrated waste management programmes across the States.

According to the United Nations Habitat Watch, African city populations will more than triple over the next 40 years. African cities are already inundated with slums; a phenomenon that could triple urban populations and spell disaster, unless urgent actions are initiated. Out of the 36 states and a federal capital in the country, only a few have shown a considerable level of resolve to take proactive steps in fighting this scourge, while the rest have merely paid lip services to issues of waste management indicating a huge lack of interest to develop the waste sector.

Scenario in Lagos

Lagos State, the commercial hub of Nigeria, is the second fastest growing city in Africa and seventh in the world.  The latest reports estimate its population to be more than 21million making it the largest city in entire Africa.  With per capita waste generation of 0.5 kg per day, the city generates more than 10,000 tons of urban waste every day.

Despite being a model for other states in the country, municipal waste management is a big challenge for the Lagos State Waste Management Agency (LAWMA) to manage alone, hence the need to engage the services of private waste firms and other franchisee to reduce the burden of waste collection and disposal. One fundamental issue is the delayed collection of household solid waste.  In some cases, the wastes are not collected until after a week or two, consequently, the waste bin overflows and litters the surroundings.

Improper waste disposal and lack of reliable transport infrastructure means that collected wastes are soon dispersed to other localities. Another unwelcome practice is to overload collection trucks with 5-6 tons of waste to reduce the number of trips; this has necessitated calls by environmental activist to prevail on the relevant legislature to conform to the modern waste transportation standard.

Situation in Oyo

Away from Lagos State, Oyo is another ancient town in Nigeria with an estimated population of six million people. Here, solid waste is regulated by the Oyo State Solid Waste Management Authority (OYOWMA). Unlike Lagos State, Oyo State does not have a proper waste management scheme that cuts across the nooks and crannies of the state, apart from Ibadan, the capital city, people from other towns like Ogbomoso and Iseyin resort to waste burning. In case the waste generators feels that the amount being charged by the waste franchisee is beyond their means, they dump the waste along flood paths thus compounding the waste predicament.

Burning of municipal wastes is a common practice in Nigeria

Burning of municipal wastes is a common practice in Nigeria

Kano and Rivers State with its fair share of population also suffers similar fate in controlling and managing solid waste. Generally speaking, population increase in Nigeria has led to an unprecedented growth in its economy but with a devastating effect on the environment as more wastes are generated due to the need for housing, manufacturing industries and a boost in trade volume.

Future Perspectives

The government at the federal level as a matter of urgency needs to revive its regulatory framework that will be attractive for private sectors to invest in waste collection, recycling and reusing.  The environmental health officer’s registration council of Nigeria would do well to intensify more effort to monitor and enforce sanitation laws as well as regulate the activities of the franchisees on good sustainable practices.

Taking the advocacy further on waste management, to avoid littering the environment, some manufacturing companies (e.g. chemical and paint industry) have introduced a recall process that will reward individuals who returns empty/used plastic containers. This cash incentive has been proven over time to validate the waste to wealth program embarked upon by the manufacturing companies. It is also expected that the government will build more composting and recycling plants in addition to the ones in Ekiti and Kano State to ensure good sustainable waste management.

Waste management situation in Nigeria currently requires concerted effort to sensitize the general public on the need for proper disposal of solid waste. Also, the officials should be well trained on professionalism, service delivery and ensure that other states within the country have access to quality waste managers who are within reach and can assist on the best approach to managing their waste before collection.

Rationale for Solid Waste Management

Some countries have achieved considerable success in solid waste management. But the rest of the world is grappling to deal with its wastes. In these places, improper management of solid waste continues to impact public health of entire communities and cities; pollute local water, air and land resources; contribute to climate change and ocean plastic pollution; hinder climate change adaptation; and accelerate depletion of forests and mines.

Compared to solid waste management, we can consider that the world has achieved significant success in providing other basic necessities like food, drinking water, energy and economic opportunities. Managing solid wastes properly can help improve the above services further. Composting organic waste can help nurture crops and result in a better agricultural yield. Reducing landfilling and building sanitary landfills will reduce ground and surface water pollution which can help provide cleaner drinking water. Energy recovery from non-recyclable wastes can satiate significant portion of a city’s energy requirement.

Inclusive waste management where informal waste recyclers are involved can provide an enormous economic opportunity to the marginalized urban poor. Additionally, a good solid waste management plan with cost recovery mechanisms can free tax payers money for other issues. In the case of India, sustainable solid waste management in 2011 would have provided

  • 9.6 million tons of compost that could have resulted in a better agricultural yield
  • energy equivalent to 58 million barrels of oil from non-recyclable wastes
  • 6.7 million tons of secondary raw materials to industries in the form of recyclable materials and livelihood to the urban poor

Solid waste management until now has only been a social responsibility of the corporate world or one of the services to be provided by the municipality and a non-priority for national governments. However, in Mumbai, the improperly managed wastes generate 22,000 tons of toxic pollutants like particulate matter, carbon monoxide, nitrous and sulfur oxides in addition to 10,000 grams of carcinogenic dioxins and furans every year. These numbers are only for the city of Mumbai. This is the case in cities all across the developing world. There are numerous examples where groundwater is polluted by heavy metals and organic contaminants due to solid waste landfills.

Solid waste management expenditure of above $ 1 billion per year competes with education, poverty, security and other sustainable initiatives in New York City. Fossil fuels for above 500,000 truck trips covering hundreds of miles are required to transport NYC’s waste to landfills outside the city and state. Similarly, New Delhi spends more than half of its entire municipal budget on solid waste management, while it is desperate for investments and maintenance of roads, buildings, and other infrastructure.

Solid waste management is not just a corporate social responsibility or a non-priority service anymore. Improper waste management is a public health and environmental crisis, economic loss, operational inefficiency and political and public awareness failure. Integrated solid waste management can be a nation building exercise for healthier and wealthier communities. Therefore, it needs global attention to arrive at solutions which span across such a wide range of issues.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Importance of Waste-to-Energy

Waste-to-energy has been evolving over the years and there are many new developments in this technology, moving in mainly one direction – to be able to applied to smaller size waste streams. Not only is it a strategy that has real importance for the current public policy, it is a strategy that will definitely present itself to additional areas.

More than 50% of waste that is burnt in waste-to-energy facilities is already part of the short carbon cycle. In which case, it has an organic derivative and it doesn’t add to climate change, to begin with. The long form carbon that is burned, things like plastics that have come out of the ground in the form of oil do add to climate change. But, they have already been used once. They have already been extracted once and what we are doing is taking the energy out of them after that physical use, capturing some of that (energy), thereby offsetting more carbon from natural gas or oil or coal. So, the net effect is a reduction in carbon emissions.

Waste-to-energy and recycling are complementary depending on the results of analyses of the First and Second Laws of Thermodynamics, which are absolutely valid. One can decide in specific situations whether waste-to-energy or whether some type of recycling technology would be more appropriate. It is not an either/or option.

In Austria, it was possible to have an absolute ban on landfilling wastes exceeding 5% organic carbon. This is written in law since 1996. There were some exceptions for some period of time, but landfills of organic wastes are just banned, not just in Austria but also in other cultures similar to Austria – like Switzerland and Germany.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Solid Waste Management – India’s Burning Issue

For the first time in the history of India, the year 2012 saw several public protests against improper solid waste management all across India – from the northernmost state Jammu and Kashmir to the southernmost Tamil Nadu. A fight for the right to clean environment and environmental justice led the people to large scale demonstrations, including an indefinite hunger strike and blocking roads leading to local waste handling facilities. Improper waste management has also caused a Dengue Fever outbreak and threatens other epidemics. In recent years, waste management has been the only other unifying factor leading to public demonstrations all across India, after corruption and fuel prices. Public agitation resulted in some judicial action and the government’s remedial response, but the waste management problems are still unsolved and might lead to a crisis if this continues for too long without any long term planning and policy reforms.

Hunger Strike in Kerala

The President of Vilappilsala Village Panchayat went on a hunger strike recently, against her counterpart, the Mayor of Thiruvananthapuram. Thiruvananthapuram is the state capital of Kerala, and Vilappilsala is a village 22 km away. Since July 2000, about 80% of the waste generated in Thiruvananthapuram is being transported to a waste composting plant and a dumpsite in Vilappilsala village. Since the same month, respiratory illnesses reported in Vilappil Primary Health Center increased by 10 times from an average of 450 to 5,000 cases per month. People who used to regularly swim in the village’s aquifer started contracting infections; swarms of flies have ever since been pervasive; and a stigma of filth affected households throughout the community. This was a source of frustration as locals who, as Indians, prize the opportunity to feed and host guests, found them unwilling to even drink a glass of water in their homes. Currently, there is not a single household which has not experienced respiratory illnesses due to the waste processing plant and the adjoining dumpsite.

On the other hand, Thiruvananthapuram’s residents had to sneak out at night with plastic bags full of trash to dispose them behind bushes, on streets or in water bodies, and had to openly burn heaps of trash every morning for months. This was because the waste generated was not being collected by the City as it could not force open the composting plant and dumpsite against large scale protests by Vilappilsala’s residents. This is why in August – 2012, about 2,500 police personnel had to accompany trucks to the waste treatment plant as they were being blocked by local residents lying down on the road, and by some, including the village’s President, by going on an indefinite hunger strike.

Municipal Commissioner Replaced in Karnataka

In response to a similar situation in Bengaluru, the state capital of Karnataka, where the streets were rotting with piles of garbage for months, the municipal commissioner of the city was replaced to specifically address the waste management situation. Against the will of local residents, a landfill which was closed following the orders issued by the state’s pollution control board in response to public agitation had to be reopened soon after its closure as the city could not find a new landfill site.

Mavallipura landfill in Bangalore

Population density and the scale of increasing urban sprawl in India make finding new landfill sites around cities nearly impossible due to the sheer lack of space for Locally Unwanted Land Uses (LULUs) like waste management.

Dengue Outbreak in West Bengal

Even if partially because of improper waste management, Kolkata, state capital of West Bengal and the third biggest city in India experienced a Dengue Fever outbreak with 550 confirmed cases and 60 deaths. This outbreak coincides with a 600% increase in dengue cases in India and 71% increase in malarial cases in Mumbai in the last five years. Accumulation of rain water in non biodegradable waste littered around a city act as a major breeding environment for mosquitoes, thus increasing the density of mosquito population and making the transmission of mosquito related diseases like dengue, yellow fever and malaria easier.

Rabies in Srinagar

Rabies due to stray dog bites already kills more than 20,000 people in India every year. Improper waste management has caused a 1:13 stray dog to human ratio in Srinagar (compared to 1 per 31 people in Mumbai and 1 per 100 in Chennai), where 54,000 people were bitten by stray dogs in a span of 3.5 years. Municipal waste on streets and at the dumpsite is an important source of food for stray dogs. The ultimate solution to controlling stray dogs is proper waste management. The public has been protesting about this stray dog menace for months now with no waste management solutions in sight, but only partial short term measures like dog sterilization.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Solid Wastes in the Middle East

The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also increasing the generation rate of all  sorts of waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

Saudi Arabia produced 13 million tons of garbage in 2009. With an approximate population of about 28 million, the kingdom produces approximately 1.3 kilograms of waste per person every day.  According to a recent study conducted by Abu Dhabi Center for Waste Management, the amount of waste in UAE totaled 4.892 million tons, with a daily average of 6935 tons in the city of Abu Dhabi, 4118 tons in Al Ain and 2349 tons in the western region. Countries like Kuwait, Bahrain and Qatar have astonishingly high per capita waste generation rate, primarily because of high standard of living and lack of awareness about sustainable waste management practices.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

Waste-to-Energy Prospects

Municipal solid waste in the Middle East is mainly comprised of organics, paper, glass, plastics, metals, wood etc. Municipal solid waste can be converted into energy by conventional technologies (such as incineration, mass-burn and landfill gas capture) or by modern conversion systems (such as anaerobic digestion, gasification and pyrolysis).

At the landfill sites, the gas produced by the natural decomposition of MSW is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. In addition, the organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Anaerobic digestion is the most preferred option to extract energy from sewage, which leads to production of biogas and organic fertilizer. The sewage sludge that remains can be incinerated or gasified/pyrolyzed to produce more energy. In addition, sewage-to-energy processes also facilitate water recycling.

Thus, municipal solid waste can also be efficiently converted into energy and fuels by advanced thermal technologies. Infact, energy recovery from MSW is rapidly gaining worldwide recognition as the 4th R in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

Addressing India’s Waste Management Problems

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management. Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance. Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager. Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Are Cities Hands-tied or is Change Possible?

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail. In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites.  Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon. However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products. While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org