Torrified PKS: An Attractive Biomass Commodity in West Africa

Even though palm kernel shell has many similarities with wood pellets, it is not easy to reduce its size which makes it difficult for its optimum cofiring with coal in power plants and industries. Few years ago, Indonesia had exported PKS to Poland for cofiring purposes but because PKS was difficult to make powder (low grindability) it made cofiring performance poor, so the use of PKS for cofiring is currently discontinued.

palm-kernel-shells

 

To improve the quality of PKS, especially for the use of cofiring, PKS must be processed with torrefaction (mild pyrolysis). With the torrefaction process, it becomes easier to make powder from PKS, so that the desired particle size for cofiring is easier to obtain. Another advantage of the torrefaction process is that the caloric value of PKS will also increase by about 20%, Torrified biomass is hygroscopic which means ease in indoor as well as outdoor storage.

During the torrefaction process, PKS is heated at a temperature of around 230 to 300 °C in the absence of oxygen. With continuous pyrolysis technology, torrified PKS production can be carried out at large capacities. The need for biomass fuel for electricity generation is also large, usually requiring 10 thousand tons for each shipment. PKS torrified producers must be able to reach this capacity. The production of 10 thousand tons of PKS that are burned can be done per month or several months, for example, to reach 10 thousand tons it takes 2 months because the factory capacity is 5000 tons per month.

PKS-torrefaction

In general, the advantages of the PKS torrefaction process are as follows:

  • It increases the O/C ratio of the biomass, which improves its thermal process
  • It reduces power requirements for size reduction, and improves handling.
  • It offers cleaner-burning fuel with little acid in the smoke.
  • Torrefied PKS absorbs less moisture when stored.
  • One can produce superior-quality PKS pellets with higher volumetric energy density.

Pelletizing of torrefied PKS can be an option to increase the energy density in volume basis. The pelletizing process resolves some typical problems of biomass fuels: transport and storing costs are minimized, handling is improved, and the volumetric calorific value is increased. Pelletization may not increase the energy density on a mass basis, but it can increase the energy content of the fuel on a volume basis.

Africa, especially West Africa, which has many palm oil plantations and also the location where the palm oil trees originate, can supply torrified PKS to Europe to meet its rapidly-increasing biomass fuel demand.

In Africa, palm kernel shell is generally produced from PKO mills. CPO production is generally carried out on a small scale and only processes the fiber portion of the palm oil fruit. This palm oil mesocarp fibre is processed to produce CPO, while the nut that consist kernels and shells are processed elsewhere to produce the main product of PKO (palm kernel oil). PKO mills are usually quite large by collecting nuts from these small scale CPO producers. PKS is produced from this PKO mills.

nut-cracker-machine-palm-mill

The nut cracker machine separates kernel and shell

The distance between Africa and Europe is also closer than Europe to Malaysia and Indonesia. Currently, even though Europe has produced wood pellets for their renewable energy program to mitigate climate change and the environment, the numbers are still insufficient and they are importing wood pellets from the United States and Canada in large quantities. European wood pellet imports are estimated to reach more than 1.5 million tons per year. Torrified PKS from West Africa can help in meeting the biomass fuel demands for power plants across Europe.

For more information about PKS trading opportunities and our technical consulting services, please email on salman@bioenergyconsult.com or eko.sb.setyawan@gmail.com

Torrefaction of Biomass: Things You Should Know

To improve the quality of biomass, especially for cofiring purposes, biomass waste can be processed with torrefaction (also known as mild pyrolysis). With the torrefaction process, it becomes easier to make powder (high grindability) so that the desired particle size for cofiring of biomass is easier to obtain. Another advantage of the torrefaction process is that the caloric value of biomass increases by about 20%. Torrified biomass is essentially hydropobic which means ease in storage including outdoor storage. This condition also makes it easier to handle and use, in addition to reduction in transportation costs.

torrefaction-of-biomass

What is Torrefaction?

Torrefaction, which is currently being considered for effective biomass utilization, is also a form of pyrolysis. In this process (named for the French word for roasting), the biomass is heated to 230 to 300 °C without contact with oxygen. For comparison, pyrolysis of biomass is typically carried out in a relatively low temperature range of 300 to 650 °C compared to 800 to 1000 °C for gasification. Torrefaction is a relatively new process that heats the biomass in the absence of air to improve its usefulness as a fuel.

Torrefaction, a process different from carbonization, is a mild pyrolysis process carried out in a temperature range of 230 to 300 °C in the absence of oxygen. During this process the biomass dries and partially devolatilizes, decreasing its mass while largely preserving its energy content. The torrefaction process removes H2O and CO2 from the biomass. As a result, both the O/C and the H/C ratios of the biomass decrease.

steps-in-biomass-torrefaction

Benefits of Biomass Torrefaction

Torrefaction of biomass improves its energy density, reduces its oxygen-to-carbon (O/C) ratio, and reduces its hygroscopic nature. Torrefaction also increases the relative carbon content of the biomass. The properties of a torrefied biomass depends on torrefaction temperature, time, and on the type of biomass feed.

Torrefaction also modifies the structure of the biomass, making it more friable or brittle. This is caused by the depolymerization of hemicellulose. As a result, the process of size reduction becomes easier, lowering its energy consumption and the cost of handling. This makes it easier to cofire biomass in a pulverized coal-fired boiler or gasify it in an entrained-flow reactor.

Another special feature of torrefaction is that it reduces the hygroscopic property of biomass; therefore, when torrefied biomass is stored, it absorbs less moisture than that absorbed by fresh biomass. For example, while raw bagasse absorbed 186% moisture when immersed in water for two hours, it absorbed only 7.6% moisture under this condition after torrefying the bagasse for 60 minutes at 250 °C (Pimchua et al., 2009). The reduced hygroscopic (or enhanced hydrophobic) nature of torrefied biomass mitigates one of the major shortcomings for energy use of biomass.

In biomass, hemicellulose is like the cement in reinforced concrete, and cellulose is like the steel rods. The strands of microfibrils (cellulose) are supported by the hemicellulose. Decomposition of hemicellulose during torrefaction is like the melting away of the cement from the reinforced concrete. Thus, the size reduction of biomass consumes less energy after torrefaction. During torrefaction the weight loss of biomass comes primarily from the decomposition of its hemicellulose constituents. Hemicellulose decomposes mostly within the temperature range 150 to 280 °C, which is the temperature window of torrefaction.

torrified-biomass

As we can see from figure above, the hemicellulose component undergoes the greatest amount of degradation within the 200 to 300 °C temperature window. Thus, hemicellulose decomposition is the primary mechanism of torrefaction. At lower temperatures (< 160 °C), as biomass dries it releases H2O and CO2. Water and carbon dioxide, which make no contribution to the energy in the product gas, constitute a dominant portion of the weight loss during torrefaction.

Above 180 °C, the reaction becomes exothermic, releasing gas with small heating values. The initial stage (< 250 °C) involves hemicellulose depolymerization, leading to an altered and rearranged polysugar structures. At higher temperatures (250–300 °C) these form chars, CO, CO2, and H2O. The hygroscopic property of biomass is partly lost in torrefaction because of the destruction of OH groups through dehydration, which prevents the formation of hydrogen bonds.

Biomass Market in Japan: Perspectives

Biomass is being increasingly used in power plants in Japan as a source of fuel, particularly after the tragic accident at Fukushima nuclear power plant in 2011. Palm kernel shell (PKS) has emerged as a favorite choice of biomass-based power plants in the country. Most of these biomass power plants use PKS as their energy source, and only a few operate with wood pellets. Interestingly, most of the biomass power plants in Japan have been built after 2015.

Biomass-Power-Plant-Japan

Palm Kernel Shells

Palm Kernel Shell is generating very good traction as a renewable energy resource and biomass commodity in Japan. This is because PKS is the cheapest biomass fuel and is available in large quantities across Southeast Asia. PKS, a biomass waste generated by palm oil mills, can be found in plentiful quantities in Indonesia, Malaysia and Thailand.

PKS must meet the specifications before being exported to Japan. Some key specifications for PKS exports are: moisture content, calorific value and impurities or contaminants (foreign materials). All three variables must meet a certain level to achieve export quality. Japanese markets or their consumers generally require contaminants from 0.5 to 2%, while European consumers of PKS need 2% – 3%.

Japan usually buys with a volume of 10,000 tonnes per shipment, so PKS suppliers must prepare a sufficient stockpile of the PKS. The location of PKS stockpile that is closest to the seaport is the ideal condition to facilitate transportation of shipment.

PKS has emerged as an attractive biomass commodity in Japan

PKS has emerged as an attractive biomass commodity in Japan

Wood Pellets

Wood pellets are mostly produced in from wood waste such as sawdust, wood shaving, plywood waste, forestry residues, and related materials while using tools like track saws, table saws, circular saws, miter saws, etc. The development potential for quantity enlargement is also possible with energy plantations. Technically the properties of wood pellets are not much different from the PKS.

Wood pellet price is more expensive than PKS. Wood pellet production process is more complex than PKS, so wood pellet is categorized as finished product. The quality of wood pellet is generally viewed from its density, calorific value and ash content. Indonesia wood pellet export is not as big as PKS, it is also because of the limited producers of wood pellet itself.

Japan buys wood pellets from Indonesia mostly for testing on their biomass power plants. Shipping or export by container is still common in wood pellet sector because the volume is still small. Currently, the world’s leading producer of wood pellets come from North America and Scandinavia. Even for Indonesia itself wood pellet is a new thing, so its production capacity is also not big.

Future Perspectives

For a short-term solution, exporting PKS is a profitable business. Wood pellets with raw materials from energy plantations by planting the legume types such as calliandra are medium-term solutions to meet biomass fuel needs in Japan. Torrefaction followed by densification can be a long-term orientation. Torrified pellet is superior to wood pellet because it can save transportation and facilitate handling, are hydrophobic and has higher calorific value.

Trends in Utilization of Palm Kernel Shells

The palm kernel shells used to be initially dumped in the open thereby impacting the environment negatively without any economic benefit. However, over time, palm oil mills in Southeast Asia and elsewhere realized their brilliant properties as a fuel and that they can easily replace coal as an industrial fuel for generating heat and steam.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

Major Applications

Nowadays, the primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are extensively sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

Palm kernel shells have a high dry matter content (>80% dry matter). Therefore the shells are generally considered a good fuel for the boilers as it generates low ash amounts and the low K and Cl content will lead to less ash agglomeration. These properties are also ideal for production of biomass for export.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Although the literature on using oil palm shells (and fibres) is not as extensive as EFB, common research directions of using shells, besides energy, are to use it as raw material for light-weight concrete, fillers, activated carbon, and other materials. However, none of the applications are currently done on a large-scale. Since shells are dry and suitable for thermal conversion, technologies that further improve the combustion characteristics and increase the energy density, such as torrefaction, could be relevant for oil palm shells.

Torrefaction is a pretreatment process which serves to improve the properties of biomass in relation to the thermochemical conversion technologies for more efficient energy generation. High lignin content for shells affects torrefaction characteristics positively (as the material is not easily degraded compared to EFB and fibres).

Furthermore, palm oil shells are studied as feedstock for fast pyrolysis. To what extent shells are a source of fermentable sugars is still not known, however the high lignin content in palm kernel shells indicates that shells are less suitable as raw material for fermentation.

Future Outlook

The leading palm oil producers in the world should consider limiting the export of palm kernel shells (PKS) to ensure supplies of the biomass material for renewable energy projects, in order to decrease dependency on fossil fuels. For example, many developers in Indonesia have expressed an interest in building palm kernel shell-fired power plants.

However, they have their concerns over supplies, as many producers prefer to sell their shells overseas currently. Many existing plants are facing problems on account of inconsistent fuel quality and increasing competition from overseas PKS buyers. PKS market is well-established in provinces like Sumatra and export volumes to Europe and North Asia as a primary fuel for biomass power plants is steadily increasing.

The creation of a biomass supply chain in palm oil producing countries may be instrumental in discouraging palm mills to sell their PKS stocks to brokers for export to foreign countries. Establishment of a biomass exchange in leading countries, like Indonesia, Malaysia and Nigeria, will also be a deciding factor in tapping the unharnessed potential of palm kernel shells as biomass resource.