Global Trends in the Biomass Sector

There has been a flurry of activity in the biomass energy sector in recent year, with many new projects and initiatives being given the green light across the globe. This movement has been on both a regional and local level; thanks to the increased efficiency of biomass energy generators and a slight lowering in implementation costs, more businesses and even some homeowners are converting waste-to-energy systems or by installing biomass energy units.

biomass-power-trends

Latest from the United Kingdom

Our first notable example of this comes from Cornwall in the UK. As of this week, a small hotel has entirely replaced its previous oil-based heating system with biomass boilers. Fuelled from wood wastes brought in from a neighboring forest, the BudockVean hotel has so far been successful in keeping the entire establishment warm on two small boilers despite it being the height of British winter – and when warmer weather arrives, plans to install solar panels on the building’s roof is to follow.

Similar projects have been undertaken across small businesses in Britain, including the south-coast city of Plymouth that has just been announced to house a 10MW biomass power plant (alongside a 20MW plant already in construction). These developments arein part thanks to the UK government’s Renewable Heat Incentive which was launched back in 2011. The scheme only provides funding to non-domestic properties currently, but a domestic scheme is in the works this year to help homeowners also move away from fossil fuels.

Initiatives (and Setbacks) in the US

Back across the pond, and the state of New York is also launching a similar scheme. The short-term plan is to increase public education on low-emission heating and persuade a number of large business to make the switch; in the longer term, $800m will be used to install advanced biomass systems in large, state-owned buildings.

A further $40m will be used as part of a competition to help create a series of standalone energy grids in small towns and rural areas, which is a scheme that could hopefully see adopted beyond New York if all goes well.


Unfortunately, the move away from fossil fuels hasn’t been totally plain sailing across the US. Georgia suffered a blow this week as plans to convert a 155MW coal plant to biomass have been abandoned, citing large overheads and low projected returns. The company behind the project have met similar difficulties at other sites, but as of this week are moving ahead with further plans to convert over 2000MW of oil and coal energy generation in the coming years.

Elsewhere in the US, a company has conducted a similar study as to whether biomass plant building will be feasible in both Florida and Louisiana. Surveying has only just been completed, but if things go better than the recent developments in Georgia, the plants will go a long way to converting biomass to fertilizer for widespread use in agriculture in both states.

Far East Leading the Way

One country that is performing particularly well in biomass energy investment market is Japan. Biomass is being increasingly used in power plants in Japan as a source of fuel, particularly after the tragic accident at Fukushima nuclear power plant in 2011.  Palm kernel shell (PKS) has emerged as a favorite choice of biomass-based power plants in the country. Most of these biomass power plants use PKS as their energy source, and only a few operate with wood pellets. Interestingly, most of the biomass power plants in Japan have been built after 2015..

On the contrary, the US and Europe saw a fairly big fall in financing during this period; it should be noted, however, that this relates to the green energy investment market as a whole as opposed to biomass-specific funding. The increase seen in Japan has been attributed to an uptake in solar paneling, and if we look specifically to things such as the global demand for biomass pellets, we see that the most recent figures paint the overall market in a much more favorable light for the rest of the world.

Brighter Times Ahead

All in all, it’s an exciting time for the biomass industry despite the set backs which are being experienced in some regions.  On the whole, legislators and businesses are working remarkably well together in order to pave the way forward – being a fairly new market (from a commercially viable sense at least), it has taken a little while to get the ball rolling, but expect to see it blossom quickly now that the idea of biomass is starting to take hold.

How the Biofuel Industry is Growing in the US

Biofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

drop-in-biofuels

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from used cooking oil, animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.

Where Are All the Electric Vans?

The USA is way behind Europe when it comes to electric vehicles, with sales in Europe exceeding 1 million in 2018, while US figures stood at just 750,000. This is despite the giants of Silicon Valley, including Google, Amazon and Tesla, all making strides to offer electric vehicles to the mass market. The area where the contrast is most clear is in regards to vans. While Europe has many on offer, electric vans are almost non-existent on American roads. Where does this leave commercial enterprises looking to cut their carbon emissions?

Europe Leading the Way

Although hardly the norm, it isn’t uncommon to see fully electric commercial vehicles on European streets. German based DHL are selling over 5000 StreetScooters a year, allowing companies to offer battery powered deliveries. Meanwhile, the UK’s best selling plug in van is the Nissan e-NV200. This attractive commercial vehicle is on sale throughout Europe, selling more than 4000 a year. Unfortunately, it is not available in the US.

If you are a businessman looking to cut fossil fuel usage, while driving a commercial vehicle, then you may be better off moving to Europe. Greenhouse gases in the continent fell 22% between 1990 and 2016. The USA is struggling to keep up with the switch to renewable energy sources.

Is Tesla the Only Game in Town?

Don’t worry – it isn’t all bad news for the USA. With companies like Tesla offering their own electric pickup and semi vehicles, there could be a shift in sale trends soon. However, neither of these vehicles are yet to hit the mass market. Other electric truck or van options are few and far between. The likes of Google are focusing their efforts on creating self-drive vehicles rather than venturing into commercial electric automobiles that are wheelchair accessible as well.. 

Other Ways to Cut Carbon Emissions

Keep searching for the perfect electric van for your company. If Europe has them, then you can find one in America. In the meantime, however, consider other ways to cut your carbon footprint. For the running of any electronics, invest in solar power. This has really taken off in the USA and is one of the cheapest options available. You should also try to source products locally and remove plastic packaging from your goods.

EVs really can’t arrive soon enough, but commercial vans and trucks are yet to become mainstream. The USA needs to take a leaf out of Europe’s book and invest in electric vans. In the meantime, consider switching to solar power and taking other steps to reduce your company’s carbon emissions.

Everything You Should Know About MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.

MSW-to-Energy

Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn incineration systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common MSW gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Also Read: The Role of an Electrician in a Waste-to-Energy Plant

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

A Blackout, Big Oil, and Wind Energy

The annual wind turbine capacity additions in the United States totaled 14.2 gigawatts, surpassing the previous record of 13.2 GW added in 2012. The whole world is seeing similar growth.  The wind industry isn’t without controversy. Critics blame it for the scope of a blackout in Australia. On the other hand, international oil companies have begun to build off-shore wind farms.

Critics’ case against wind energy

According to its critics, wind power is unreliable. The wind doesn’t blow all the time. It doesn’t blow on any predictable pattern. Wind turbines require some minimum wind speed for them to work at all. And if the wind is too strong, they can’t operate safely and must shut down.

wind-farm-Lake-Turkana-Kenya

Wind can cross one or the other of these thresholds multiple times a day. They operate at full capacity for only a few hours a year. So the theoretical capacity of a wind farm greatly exceeds its actual output.

The times turbines can generate electricity do not coincide with rising and falling demand for electricity. This variability creates problems for stabilizing the grid. Critics further claim that the wind industry can’t operate without massive government subsidies.

Wind power and South Australia blackout of 2016?

South Australia depends on wind energy for about 40% of its electricity. It suffered seven tornadoes on September 28, 2016. Two of them, with winds almost as fast as Hurricane Katrina, destroyed twenty towers that held three different transmission lines. Nine wind farms shut down.  Within minutes, the entire state suffered a massive blackout.

What contributed the most to the blackout? South Australia’s high dependence on wind power? The weather? Or something else?

Renewable energy skeptics quickly claimed the blackout justified their position. The wind farms simply failed to provide enough electricity in the emergency. Wind and solar energy, they say, are inherently unreliable. South Australia’s heavy reliance demonstrates an irresponsible policy based on ideology more than technological reality.

Certainly, the weather would have caused a disturbance in electrical service no matter what source of electricity. People near the downed transmission lines could not have avoided loss of power. But prompt action by grid operators makes it possible to bypass problem areas and limit the extent of the outage.

On closer examination, however, the correct answer to the multiple-choice question above is C: something else.

Wind turbines have “low voltage ride through” settings to keep operating for brief periods when voltage dips below the threshold at which they can operate correctly. If low-voltage conditions occur too frequently, the wind turbines have a protection mechanism that turns them off.

  • Ten wind farms experienced between three and six low-voltage events within two minutes. But the turbines were operating on factory settings. No one performed any testing to determine good settings under local conditions.
  • The agency that regulates the Australian electricity market knew nothing about the protection feature. It blamed the wind farms, but surely someone on staff should have been familiar with the default operation of the turbines. After all, the agency approved purchase and installation of the turbines. It had all the documentation.
  • Two gas generating plants that should have supplied backup power failed to come online.

The weather caused a problem that became a crisis not because of technical limitations of renewable energy, but because of too many different organizations’ incompetence.

If the wind is too strong, wind turbines can’t operate safely and must shut down.

One homeowner in South Australia didn’t suffer from the outage. He didn’t even know about the blackout till he saw it on the news. He had to test the accuracy of the news reports by opening his oven and noting that the light didn’t come on.

It turns out he had installed solar panels just a few weeks earlier. And since power outages in his part of South Australia occur almost every month, he decided to install a Tesla Powerwall as well.

He can’t use it to power his entire house, but it takes care of the lights and the television. It stores enough electricity for 10 hours of off-grid power.

Big oil and wind power

International oil companies have not joined the chorus of wind-industry skeptics. Several of them, including Royal Dutch Shell, have begun to invest heavily in off-shore wind farms. Especially in the North Sea. Oil production there has steadily declined for about 15 years.

Exploring for new oil fields has become too risky and expensive. These oil companies have decided that investing in wind energy helps their cash flow and makes it more predictable.

Oil companies have more expertise in working on offshore platforms than do companies that specialize in wind energy. Instead of building a foundation for turbines on the ocean floor, at least one oil company has begun to explore how to mount them on floating platforms.

Traditional wind energy firms have been operating turbines in the North Sea for years, but the oil companies have begun to outbid them. Their off-shore expertise has helped them drive down their costs.

So far, American oil companies have shown less interest in wind farms. If they decide they’re in the oil business, they will eventually lose market share to renewable energy companies. If they decide they’re in the energy business, they’ll have to start investing in renewable energy. And if any decide to invest heavily in solar power besides or instead of wind, they will still be following the lead of Total, a French oil company.

For that matter, the coal business is dying. Perhaps some of them will have enough sense to invest in renewables to improve their cash flow.

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

algae_biofuels

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa, Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.

The Business Case For Water Conservation

The majority of properties globally waste water, and commercial properties are no different. According to EPA statistics, a single toilet can leak a gallon of water every two minutes; an unattended hose, 20 gallons every two minutes. This is a huge amount of water when you multiply that by the hundreds of thousands of businesses in every country around the world. For businesses, there is a moral and ethical imperative to save water – everyone needs to get involved in tackling climate change. However, there’s a business case to be made, too, starting with your bottom line.

Business Case For Water Conservation

Maximizing profits, minimizing waste

The impact of decreasing water levels and the rise of droughts is already having a serious impact on businesses. According to ABC, rising costs are inevitable, and that includes in traditionally water-rich areas such as Illinois, USA. Water can be lost through faulty plumbing, but also through business groundwork and premises. Too many non-water-retaining surfaces, such as asphalt, concrete and imitation lawns, can lead to water runoff, giving no benefit to the business and creating losses.

There is a clear business case for trying to trap this water. Studies have shown that huge savings can be made by installing infrastructure and policies that seek to retain water. Going in at the base level is a great place to start in generating real long-term savings.

Long-term impacts

Fighting water loss will also help to combat climate change, an area in which there is already untold damage being done to businesses. According to CNBC, the accumulated damage caused by climate change will cost businesses $2 trillion by the end of the century – every single year. This is a 7.1% loss in revenue in the USA alone. Businesses in less well protected areas of the world, especially around the equator, can stand to lose even more in the short term.

A proper climate change action policy is essential in getting involved in the fight against this, and that includes retaining as much water as possible – in the USA, and further afield, drought is already a major problem.

A sustainable generation

When it comes to business reputation, savvy owners know that it’s the opinion of their customers that really matters. The customer’s need trump everything else, and there’s a lot of evidence to back up just how much the customer really cares about the impact on the environment of the business they are purchasing from.

How is RO Water Harmful to Health

According to Forbes, 58% of consumers – all consumers, not just the typically more progressively-minded youth – will now pay more for products that come from companies with considerable green credentials. This is a massive opportunity for businesses to get ahead of competition and cement a long-term name in the industry.

As you can see, water saving policies aren’t only common sense – they’re a real action to take in the fight against climate change, and improving company profits. A business stands to benefit to a large degree from embracing pro-green policies.

What You Need to Know About Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 13 percent of the total municipal solid waste generated in the country is contributed by food scraps. According to USEPA, more than 35 million tons of food waste are thrown away into landfills or incinerators each year, which is around 40 percent of all food consumed in the country.

As far as United Kingdom is concerned, households throw away around 4.5 million tons of food each year. Food wastage in Canada causes 56.6 million tonnes of CO2-equivalent emissions. These statistics are an indication of tremendous amount of food waste generated all over the world.

food_waste

Food Waste Management Strategy

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. The two most common methods for food waste recycling are:

  • Composting: A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout USA, mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

biogas-enrichment

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Food waste is one of the single largest constituent of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies in USA to strive for a sustainable food waste management system.

Biobutanol as a Biofuel

The major techno-commercial limitations of existing biofuels has catalyzed the development of advanced biofuels such as cellulosic ethanol, biobutanol and mixed alcohols. Biobutanol is generating good deal of interest as a potential green alternative to petroleum fuels. It is increasingly being considered as a superior automobile fuel in comparison to bioethanol as its energy content is higher. The problem of demixing that is encountered with ethanol-petrol blends is considerably less serious with biobutanol-petrol blends.

Besides, it reduces the harmful emissions substantially. It is less corrosive and can be blended in any concentration with petrol (gasoline). Several research studies suggest that butanol can be blended into either petrol or diesel to as much as 45 percent without engine modifications or severe performance degradation.

Production of Biobutanol

Biobutanol is produced by microbial fermentation, similar to bioethanol, and can be made from the same range of sugar, starch or cellulosic feedstocks. The most commonly used microorganisms are strains of Clostridium acetobutylicum and Clostridium beijerinckii. In addition to butanol, these organisms also produce acetone and ethanol, so the process is often referred to as the “ABE fermentation”.

The main concern with Clostridium acetobutylicum is that it easily gets poisoned at concentrations above 2% of biobutanol in the fermenting mixture. This hinders the production of biobutanol in economically viable quantities.

In recent years, there has been renewed interest in biobutanol due to increasing petroleum prices and search for clean energy resources. Researchers have made significant advances in designing new microorganisms capable of surviving in high butanol concentrations. The new genetically modified micro-organisms have the capacity to degrade even the cellulosic feedstocks.

Latest Trends

Biobutanol production is currently more expensive than bioethanol which has hampered its commercialization. However, biobutanol has several advantages over ethanol and is currently the focus of extensive research and development. There is now increasing interest in use of biobutanol as a transport fuel. As a fuel, it can be transported in existing infrastructure and does not require flex-fuel vehicle pipes and hoses.

Fleet testing of biobutanol has begun in the United States and the European Union. A number of companies are now investigating novel alternatives to traditional ABE fermentation, which would enable biobutanol to be produced on an industrial scale.

The Role of Biomass Energy in Net-Zero Buildings

The concept of biomass energy is still in its infancy in most parts of the world, but nevertheless, it does have an important role to play in terms of sustainability in general and net-zero buildings in particular. Once processed, biomass is a renewable source of energy that has amazing potential. But there is a lot of work to be done to exploit even a fraction of the possibilities that would play a significant role in providing our homes and commercial buildings with renewable energy.

According to the U.S. Energy Information Administration (EIA), only about 5% of the total primary energy usage in the U.S. comes from biomass fuels. So there really is a way to go.

The Concept of Biomass Energy

Generally regarded as any carbon-based material including plants, food waste, industrial waste, reclaimed woody materials, algae, and even human and animal waste, biomass is processed to produce effective organic fuels.

The main sources of biomass include wood mills and furniture factories, landfill sites, horticultural centers, wastewater treatment plants, and areas where invasive and alien tree and grass species grow.

Whether converted into biogas or liquid biofuels, or burned as is, the biomass releases its chemical energy in the form of heat. Of course, it depends on what kind of material the biomass is. For instance, solid types including wood and suitable garbage can be burned without any need for processing. This makes up more than half the biomass fuels used in the U.S. Other types can be converted into biodiesel and ethanol.

Generally:

  • Biogas forms naturally in landfills when yard waste, food scraps, paper and so on decompose. It is composed mainly of carbon dioxide
  • Biogas can also be produced by processing animal manure and human sewage in digesters.
  • Biodiesel is produced from animal fats and vegetable oils including soybeans and palm oil.
  • Ethanol is made from various crops including sugar cane and corn that are fermented.

How Biomass Fuels Are Used

Ethanol has been used in vehicles for decades and ethanol-gasoline blends are now quite common. In fact, some racing drivers opt for high ethanol blends because they lower costs and improve quality. While the percentage of ethanol is substantially lower, it is now found in most gasoline sold in the U.S. Biodiesel can also be used in vehicles and it is also used as heating oil.

But in terms of their role in net-zero buildings:

  • Biomass waste is burned to heat buildings and to generate electricity.
  • In addition to being converted to liquid biofuels, various waste materials including some crops like sugar cane and corn can also be burned as fuel.
  • Garbage, in the form of yard, food, and wood waste, can be converted to biogas in landfills and anaerobic digesters. It can also be burned to generate electricity.
  • Human sewage and animal manure can be converted to biogas and burned as heating fuel.

Biomass as a Viable Clean Energy Source for Net-Zero Energy Buildings

Don’t rely on what I say, let’s look at some research, specifically, a study published just last year (2018) that deals with the development of net-zero energy buildings in Florida. It looked at the capacity of biomass, geothermal, hydrokinetic, hydropower, marine, solar, and wind power (in alphabetical order) to deliver renewable energy resources. More specifically, the study evaluated Florida’s potential to utilize various renewable energy resources.

Generating electricity from wind isn’t feasible in Florida because the average wind speeds are slow. The topography and hydrology requirements are inadequate and both hydrokinetic and marine energy resources are limited. But both solar and biomass offer “abundant resources” in Florida. Unlike most other renewable resources, the infrastructure and equipment required are minimal and suitable for use within building areas, and they are both compatible with the needs of net-zero energy.

The concept of net-zero buildings has, of course, been established by the World Green Building Council (GBC), which has set timelines of 2030 and 2050 respectively for new and all buildings to achieve net-zero carbon goals. Simplistically, what this means is that buildings, including our homes, will need to become carbon neutral, using only as much renewable energy as they can produce on site.

But nothing is simplistic when it comes to net-zero energy buildings (ZEB) ). Rather, different categories offer different boundaries in terms of how renewable energy strategies are utilized. These show that net-zero energy buildings are not all the same:

  • ZEB A buildings utilize strategies within the building footprint
  • ZEB B within the site of the property
  • ZEB C within the site but from off-site resources
  • ZEB D generate renewable energy off-site

While solar works for ZEB A and both solar and wind work for ZEB B buildings, biomass and biofuels are suitable for ZEB C and D buildings, particularly in Florida.

Even though this particular study is Florida-specific, it indicates the probability that the role of biomass energy will ultimately be limited, but that it can certainly help buildings reach a net-zero status.

There will be different requirements and benefits in different areas, but certainly professionals offering engineering solutions in Chicago, New York, London (Canada and the UK), and all the other large cities in the world will be in a position to advise whether it is feasible to use biomass rather than other forms of eco-friendly energy for specific buildings.

Biomass might offer a more powerful solution than many people imagine.