Waste Management Challenges in Middle East

garbage-middle-eastMiddle East is one of the most prolific waste generating regions worldwide with per capita waste production in several countries averaging more than 2 kg per day . High standards of living, ineffective legislation, infrastructural roadblocks, indifferent public attitude and lack of environmental awareness are the major factors responsible for growing waste management problem in the Middle East. Lavish lifestyles are contributing to more generation of waste which when coupled with lack of waste collection and disposal facilities have transformed ‘trash’ into a liability.

Major Hurdles

The general perception towards waste is that of indifference and apathy. Waste is treated as ‘waste’ rather than as a ‘resource’. There is an urgent need to increase public awareness about environmental issues, waste management practices and sustainable living. Public participation in community-level waste management initiatives is lackluster mainly due to low level of environmental awareness and public education. Unfortunately none of the countries in the region have an effective source-segregation mechanism.

Waste management in Middle East is bogged down by deficiencies in waste management legislation and poor planning. Many countries lack legislative framework and regulations to deal with wastes. Insufficient funds, absence of strategic waste management plans, lack of coordination among stakeholders, shortage of skilled manpower and deficiencies in technical and operational decision-making are some of the hurdles experienced in implementing an integrated waste management strategy in the region. In many countries waste management is the sole prerogative of state-owned companies and municipalities which discourage participation of private companies and entrepreneurs.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Due to lack of garbage collection and disposal facilities, dumping of waste in open spaces, deserts and water bodies is a common sight across the region. Another critical issue is lack of awareness and public apathy towards waste reduction, source segregation and waste management.

A sustainable waste management system demands high degree of public participation, effective laws, sufficient funds and modern waste management practices/technologies. The region can hope to improve waste management scenario by implementing source-segregation, encouraging private sector participation, deploying recycling and waste-to-energy systems, and devising a strong legislative and institutional framework.

The Way Forward

In recent year, several countries, like Qatar, UAE and Oman, have established ambitious solid waste management projects but their efficacy is yet to be ascertained. On the whole, Middle East countries are slowly, but steadily, gearing up to meet the challenge posed by waste management by investing heavily in such projects, sourcing new technologies and raising public awareness. However the pace of progress is not matched by the increasing amount of waste generated across the region. Sustainable waste management is a big challenge for policy-makers, urban planners and other stake-holders, and immediate steps are needed to tackle mountains of wastes accumulating in cities throughout the Middle East.

Waste-to-Energy in India: An Interview with Salman Zafar

waste-mountainIndia’s waste-to-energy sector, which kicked off in 1987, is still searching for a successful role model, even after tens of millions of dollars of investment. In recent years, many ambitious waste-to-energy projects have been established or are being planned in different parts of the country, and it is hoped that things will brighten up in the coming years. Salman Zafar, CEO of BioEnergy Consult, talks to Power Today magazine on India’s tryst with waste-to-energy and highlights major challenges and obstacles in making waste-to-energy a success story in India.

Power Today: What are the challenges that the Waste to Energy sector faces in the current scenario where there is a rejuvenated interest in clean energy? Do you think the buzz around solar and wind power has relegated the Waste to Energy sector to the back benches?

Salman Zafar: India’s experience with waste-to-energy has been lackluster until now. The progress of waste-to-energy sector in India is hampered by multiples issues including

  1. poor quality of municipal waste,
  2. high capital and O&M costs of waste-to-energy systems,
  3. lack of indigenous technology,
  4. lack of successful projects and failure of several ambitious projects,
  5. lack of coordination between municipalities, state and central governments,
  6. heavy reliance on government subsidies,
  7. difficulties in obtaining long-term Power Purchase Agreements (PPAs) with state electricity boards (SEBs)
  8. lukewarm response of banks and financial institutions and (9) weak supply chain.

Waste-to-energy is different from solar (or wind) as it essentially aims to reduce the colossal amount of solid wastes accumulating in cities and towns all over India. In addition to managing wastes, waste-to-energy has the added advantage of producing power which can be used to meet rapidly increasing energy requirements of urban India. In my opinion, waste-to-energy sector has attracted renewed interest in the last couple of years due to Swachch Bharat Mission, though government’s heavy focus on solar power has impacted the development of waste-to-energy as well as biomass energy sectors.

Power Today: India has a Waste to Energy potential of 17,000 MW, of which only around 1,365 MW has been realised so far. How much growth do you expect in the sector?

Salman Zafar: As per Energy Statistics 2015 (refer to http://mospi.nic.in/Mospi_New/upload/Energy_stats_2015_26mar15.pdf), waste-to-energy potential in India is estimated to be 2,556 MW, of which approximately 150 MW (around 6%) has been harnessed till March 2016.

The progress of waste-to-energy sector in India is dependent on resolution of MSW supply chain issues, better understanding of waste management practices, lowering of technology costs and flexible financial model. For the next two years, I am anticipating an increase of around 75-100 MW of installed capacity across India.

Power Today: On the technological front, what kinds of advancements are happening in the sector?

Salman Zafar: Nowadays, advanced thermal technologies like MBT, thermal depolymerisation, gasification, pyrolysis and plasma gasification are hogging limelight, mainly due to better energy efficiency, high conversion rates and less emissions. Incineration is still the most popular waste-to-energy technology, though there are serious emission concerns in developing countries as many project developers try to cut down costs by going for less efficient air pollution control system.

Power Today: What according to you, is the general sentiment towards setting up of Waste to Energy plants? Do you get enough cooperation from municipal bodies, since setting up of plants involves land acquisition and capital expenditure?

Salman Zafar: Waste-to-energy projects, be it in India or any other developing country, is plagued by NIMBY (not-in-my-backyard) effect. The general attitude towards waste-to-energy is that of indifference resulting in lukewarm public participation and community engagement in such projects.

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Government should setup dedicated waste-to-energy research centres to develop lost-cost and low-tech waste to energy solutions

Lack of cooperation from municipalities is a major factor in sluggish growth of waste-to-energy sector in India. It has been observed that sometimes municipal officials connive with local politicians and ‘garbage mafia’ to create hurdles in waste collection and waste transport. Supply of poor quality feedstock to waste-to-energy plants by municipal bodies has led to failure of several high-profile projects, such as 6 MW MSW-to-biogas project in Lucknow, which was shut down within a year of commissioning due to waste quality issues.

Power Today: Do you think that government policies are in tandem when it comes to enabling this segment? What policies need to be changed, evolved or adopted to boost this sector?

Salman Zafar: A successful waste management strategy demands an integrated approach where recycling and waste-to-energy are given due importance in government policies. Government should strive to setup a dedicated waste-to-energy research centre to develop a lost-cost and low-tech solution to harness clean energy from millions of tons of waste generated in India.

The government is planning many waste-to-energy projects in different cities in the coming years which may help in easing the waste situation to a certain extent. However, government policies should be inclined towards inclusive waste management, whereby the informal recycling community is not robbed of its livelihood due to waste-to-energy projects.

Government should also try to create favourable policies for establishment of decentralized waste-to-energy plants as big projects are a logistical nightmare and more prone to failure than small-to-medium scale venture.

Note: This interview was originally published in June 2016 edition of Power Today magazine. The unabridged version is available at this link

Waste-to-Energy in China: Perspectives

garbage-chinaChina is the world’s largest MSW generator, producing as much as 175 million tons of waste every year. With a current population surpassing 1.37 billion and exponential trends in waste output expected to continue, it is estimated that China’s cities will need to develop an additional hundreds of landfills and waste-to-energy plants to tackle the growing waste management crisis. China’s three primary methods for municipal waste management are landfills, incineration, and composting. Nevertheless, the poor standards and conditions they operate in have made waste management facilities generally inefficient and unsustainable. For example, discharge of leachate into the soil and water bodies is a common feature of landfills in China. Although incineration is considered to be better than landfills and have grown in popularity over the years, high levels of toxic emissions have made MSW incineration plants a cause of concern for public health and environment protection.

Prevalent Issues

Salman Zafar, a renowned waste management, waste-to-energy and bioenergy expert was interviewed to discuss waste opportunities in China. As Mr. Zafar commented on the current problems with these three primary methods of waste management used by most developing countries, he said, “Landfills in developing countries, like China, are synonymous with huge waste dumps which are characterized by rotting waste, spontaneous fires, toxic emissions and presence of rag-pickers, birds, animals and insects etc.” Similarly, he commented that as cities are expanding rapidly worldwide, it is becoming increasingly difficult to find land for siting new landfills. On incineration, Zafar asserted that this type of waste management method has also become a controversial issue due to emission concerns and high technology costs, especially in developing countries. Many developers try to cut down costs by going for less efficient air pollution control systems”. Mr. Zafar’s words are evident in the concerns reflected in much of the data ­that waste management practices in China are often poorly monitored and fraudulent, for which data on emission controls and environmental protection is often elusive.

Similarly, given that management of MSW involves the collection, transportation, treatment and disposal of waste, Zafar explains why composting has also such a small number relative to landfills for countries like China. He says, “Composting is a difficult proposition for developing countries due to absence of source-segregation. Organic fraction of MSW is usually mixed with all sorts of waste including plastics, metals, healthcare wastes and industrial waste which results in poor quality of compost and a real risk of introduction of heavy metals into agricultural soils.” Given that China’s recycling sector has not yet developed to match market opportunities, even current treatment of MSW calls for the need of professionalization and institutionalization of the secondary materials industry.

While MSW availability is not an issue associated with the potential of the resource given its dispersion throughout the country and its exponential increase throughout, around 50 percent of the studies analyzed stated concerns for the high moisture content and low caloric value of waste in China, making it unattractive for WTE processes. Talking about how this issue can be dealt with, Mr. Zafar commented that a plausible option to increase the calorific value of MSW is to mix it with agricultural residues or wood wastes. Thus, the biomass resources identified in most of the studies as having the greatest potential are not only valuable individually but can also be processed together for further benefits.

Top Challenges

Among the major challenges on the other hand, were insufficient or elusive data, poor infrastructure, informal waste collection systems and the lack of laws and regulations in China for the industry. Other challenges included market risk, the lack of economic incentives and the high costs associated with biomass technologies. Nevertheless, given that the most recurring challenges cited across the data were related to infrastructure and laws and regulations, it is evident that China’s biomass policy is in extreme need of reform.

China’s unsustainable management of waste and its underutilized potential of MSW feedstock for energy and fuel production need urgent policy reform for the industry to develop. Like Mr. Zafar says, “Sustainable waste management demands an integration of waste reduction, waste reuse, waste recycling, and energy recovery from waste and landfilling. It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis”.

Future Perspectives

China’s government will play a key role in this integrated solid waste management strategy. Besides increased cooperation efforts between the national government and local governments to encourage investments in solid waste management from the private sector and foster domestic recycling practices, first, there is a clear need to establish specialized regulatory agencies (beyond the responsibilities of the State Environmental Protection Administration and the Ministry of Commerce) that can provide clearer operating standards for current WTE facilities (like sanitary landfills and incinerators) as well as improve the supervision of them.

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

It is essential that China implements an integrated solid waste management strategy to tackle the growing waste crisis

Without clear legal responsibility assigned to specialized agencies, pollutant emissions and regulations related to waste volumes and operating conditions may continue to be disregarded. Similarly, better regulation in MSW management for efficient waste collection and separation is needed to incentivize recycling at the individual level by local residents in every city. Recycling after all is complementary to waste-to-energy, and like Salman Zafar explains, countries with the highest recycling rates also have the best MSW to energy systems (like Germany and Sweden). Nevertheless, without a market for reused materials, recycling will take longer to become a common practice in China. As Chinese authorities will not be able to stop the waste stream from growing but can reduce the rate of growth, the government’s role in promoting waste management for energy production and recovery is of extreme importance.

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, infrastructure, public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found. The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a compost plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 550 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://epd.punjab.gov.pk/solid_waste

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.unep.org/gpwm/InformationPlatform/CountryNeedsAssessmentAnalysis/Pakistan/tabid/106536/Default.aspx

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

https://www.researchgate.net/publication/264629066_An_assessment_of_the_current_municipal_solid_wastemanagement_system_in_Lahore_Pakistan

http://www.lwmc.com.pk/about-us.php

https://www.researchgate.net/publication/264629066_An_assessment_of_the_current_municipal_solid_wastemanagement_system_in_Lahore_Pakistan

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php

http://www.unep.org/gpwm/InformationPlatform/CountryNeedsAssessmentAnalysis/Pakistan/tabid/106536/Default.aspx

http://thinkbrigade.org/asia/pakistan-waste-management/index.html

Peeping into the Future of Waste

Waste management is an important tool for curbing climate change and for keeping our environment clean and healthy. Methane generated from biodegradable wastes is a powerful greenhouse gas, and when it’s not captured and used as a fuel it contributes to rapid warming of the atmosphere. Estimates suggest that biodegradable waste in dump sites and uncapped landfill sites are contributing far more methane to the atmosphere than previously thought. What’s more, urban food waste is predicted to increase by 44% from 2005 to 2025, and with no proper management in place, will significantly add to global greenhouse gas emissions.

Worryingly, 38 of the world’s 50 largest dumps are close to the sea, contributing to marine and coastal pollution. The accumulation of plastics in the marine food chain is causing global concern. While we don’t yet know how to clean the oceans, stemming the flow of waste into marine environments would be a step in the right direction.

Wasted health

40% of the world’s waste ends up in open dumps. These aren’t even what you’d call “landfill”. They don’t have any impervious lining to prevent noxious leachate from entering the surrounding environment, nor are they capped to prevent the spread of disease. In fact, in India, the Philippines and Indonesia, the health risk from open dumping of waste is greater than the risk of malaria[i].

3.5 billion people in the world lack access to proper waste management. That figure is expected to grow to 5 billion by 2050. Respiratory diseases, gastrointestinal diseases and occupational health risks add to the misery experienced by the 50,000+ people living from open dumps.

Waste is any material that is no longer wanted for its original purpose. The owner doesn’t have a need for it, and so discards it. Even valuable items can and do end up as waste purely because someone has thrown them away. The recent (and rather brilliant) BBC programme Hugh’s War on Waste shone the spotlight on attitudes towards disposable fashion. A look through the bins of a typical street uncovered a startling amount of clothing that had been thrown away, despite it still being in perfectly good condition. This highlights a simple fact: there is plenty of value in waste.

  • Estimates suggest there are 40 million people globally who are making their living from waste – half of these are working informally.
  • During the last recession in the UK, the waste management sector was one of the only industries to keep growing, resulting in it being termed the “Green Star of the Economy”.
  • Showing people how to turn a waste stream into something valuable isn’t rocket science. There are lots of examples of informal, community-based, grassroots recycling and upcycling projects that generate wealth for the poorest in society.
  • Internet is allowing simple waste processing techniques to be replicated all over the world, and helping make that information accessible is one of the most fulfilling aspects of my career.

Business skills

“Give a man a fish and he can eat for a day. Show a man how to fish and he can eat for the rest of his life.” Teaching people how to make valuable products from waste is important. But just as important, is passing on the business skills to be able to identify a market, factor in costs, check out the competition, market their products and run a successful business.

Development work in the waste arena needs to address both sides of the coin, and in doing so will enable people to start up their own businesses, in their own communities, and generate wealth organically. That’s far more valuable than delivering aid in a ready-made package (which incidentally rarely works – there’s a great TED Talk on this topic by Ernesto Sirolli, called “Want to help someone? Shut up and listen”).

Why closing dumps isn’t a silver bullet

The proliferation of megacities, particularly in developing countries, is causing a health crisis. Decent waste management is an indicator of good governance – that is, if a council or government can collect taxes and provide a waste management service, then it most likely isn’t (very) corrupt. However, in many places where corruption or other forms of bad or weak governance prevail, top-down solutions are notoriously difficult to implement.

Often, when the world’s attention turns to an open dump, the government responds by closing it and the journalists go home. This is what happened with Smokey Mountain dumpsite in the Philippines (and many others around the world). All that happens is another open dump emerges nearby, and the scavengers move to the new site.

The problem is that if there is no alternative solution in place, people will discard of their waste in the only ways available – dumping it or burning it; and the poor will follow the waste.

Replacing an open dump with a government-controlled waste management system isn’t a silver bullet either. The losers, again, are the hundreds, and sometimes thousands of men, women and children who live from scavenging from the dump. It may seem horrific to many of us, but the truth is that if you take that opportunity to earn a paltry living away from the poorest in society, they will starve. Solutions need to be inclusive.

Power to the people

To close dump sites, you need to have a workable alternative solution in place. You need to have regular waste collection taking place, and you need somewhere to take it. Building materials recovery facilities alongside existing open dumps is one idea. Informal waste pickers who are currently working in dangerous conditions on the dumpsite can gain employment (or better still, form a cooperative) sorting recyclable materials and reducing the amount of real “waste” that needs to be disposed of.

For example, Wecyclers in Lagos, Nigeria employs people to cycle around collecting recyclable materials from households. In return for their source-separated waste, the householder receives a small reward.

In Bangalore, IGotGarbage has harnessed the power of phone apps to enable people who were previously waste pickers to be called directly to a house to collect the waste materials. Solutions like this work because they continue to provide livelihoods for people, while taking waste off the streets.

The need for appropriate technology

There will always be something left though: the stuff that really has little value other than the energy embodied in it. In industrialised countries, energy-from-waste incinerators have become popular. Seen as a clean alternative to landfill, these facilities burn the waste, release the energy, and convert it into heat, electricity and ash. Some of that ash (from the air pollution control system) still needs to be disposed of in specially-prepared hazardous waste landfill sites. The remainder, being fairly benign, can be used to make concrete building blocks.

However, incinerators are fairly technology-heavy, rendering them unsuitable for many developing country contexts.

A problem that we’ve witnessed is that waste management companies from industrialised nations try to wholesale their technology in developing countries. The technology is usually unaffordable, and even if the capital can be raised to procure a facility, as soon as something breaks down the whole solution can fall apart.

There is a need for information about simple waste processing technologies to become more open-sourced. Smart future-thinking businesses could capitalise on selling blueprints rather than entire prefabricated facilities. Most of the time it’s far cheaper to fabricate something locally, and also means that when something breaks it can be fixed.

The continuing need for landfill

The fact is that in most cases, a standard, lined landfill site with landfill gas capture is still the most appropriate answer for non-recyclable waste. Add to that a well-organised, low-cost waste collection service with source separation of recyclable materials and biodegradable waste, and you have a relatively affordable solution that is better for the climate, better for health, better for the local economy, and contributes to a more sustainable future.

Landfill may seem very unfashionable to those of us who work in the recycling sector, but nevertheless it will remain a necessity both in developed and developing countries for the foreseeable future.

Joining forces and stepping stones

The success of the Sustainable Development Goals and potential Climate Change Agreement depend on developed and developing countries working together. Miguel Arias Cañete, the EU climate commissioner, said the Climate Coalition alliance showed that developed and developing countries could work together with a common interest. “These negotiations are not about them and us. They are about all of us, developed and developing countries, finding common ground and solutions together. We urge other countries to join us. Together we can do it.”

Necessity is the mother of invention, and we are facing a waste crisis of unprecedented proportion. The potential for waste management in reducing GHG emissions has never been more pertinent. Waste and development practitioners, academics and entrepreneurs around the world are working together more and more to help bring about the change we want to see, which will benefit the billions of people suffering from poor waste management, and the rest of us who share a warming planet – and share the burden of climate change and poverty.

By sharing knowledge through platforms such as beWasteWise and ISWA, and through initiatives like WasteAidWASTE and Wiego, we can start making a dent in this very large problem.

No silver bullets, but lots of small stepping stones in the right direction.

Note: The original and unabridged version of the article can be found at this link. Please visit http://zlcomms.co.uk/ for more information about the author.

Green SMEs: Catalyst for Green Economy

Green SMEsWith ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world. SMEs, startups and ecopreneurs are playing a vital role in the transition to a low-carbon economy by developing new green business models for different industrial sectors. Infact, young and small firms are emerging as main drivers of radical eco-innovation in the industrial and services sectors.

What are Green SMEs

Green SMEs adopt green processes and/or those producing green goods using green production inputs. A judicious exploitation of techno-commercial opportunities and redevelopment of business models, often neglected by established companies, have been the major hallmarks of green SMEs. For example, SMEs operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. The path to green economy is achieved by making use of production, technology and management practices of green SMEs.

Categories of Green Industries

Environmental Protection Resource Management
Protection of ambient air Water management
Protection of climate Management of forest resources
Wastewater management Management of flora and fauna
Waste management Energy management
Noise and vibration abatement Management of minerals
Protection of biodiversity and landscape Eco-construction
Protection against radiation Natural resource management activities
Protection of soil, groundwater and surface water Eco-tourism
Environmental Monitoring and Instrumentation Organic agriculture
Research and Development Research and Development

Key Drivers

The key motivations for a green entrepreneur are to exploit the market opportunity and to promote environmental sustainability. A green business help in the implementation of innovative solutions, competes with established markets and creates new market niches. Green entrepreneurs are a role model for one and all as they combine environmental performance with market targets and profit outcomes, thus contributing to the expansion of green markets.

Some of the popular areas in which small green businesses have been historically successful are renewable energy production (solar, wind and biomass), smart metering, building retrofitting, hybrid cars and waste recycling.  As far as established green industries (such as waste management and wastewater treatment) are concerned, large companies tend to dominate, however SMEs and start-ups can make a mark if they can introduce innovative processes and systems. Eco-friendly transformation of existing practices is another attractive pathway for SMEs to participate in the green economy.

The Way Forward

Policy interventions for supporting green SMEs, especially in developing nations, are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation. In recent decades, entrepreneurship in developing world has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.

Waste to Energy Conversion Routes

Teesside-WTE-plantWaste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy pathways – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the other hand, biochemical technologies are more suitable for wet wastes which are rich in organic matter.

Thermochemical Conversion

The three principal methods of thermochemical conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. The most common technique for producing both heat and electrical energy from wastes is direct combustion. Combined heat and power (CHP) or cogeneration systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

WTE_Pathways

Combustion technology is the controlled combustion of waste with the recovery of heat to produce steam which in turn produces power through steam turbines. Pyrolysis and gasification represent refined thermal treatment methods as alternatives to incineration and are characterized by the transformation of the waste into product gas as energy carrier for later combustion in, for example, a boiler or a gas engine. Plasma gasification, which takes place at extremely high temperature, is also hogging limelight nowadays.

Biochemical Conversion

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat.

In addition, a variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

Physico-chemical Conversion

The physico-chemical technology involves various processes to improve physical and chemical properties of solid waste. The combustible fraction of the waste is converted into high-energy fuel pellets which may be used in steam generation. The waste is first dried to bring down the high moisture levels. Sand, grit, and other incombustible matter are then mechanically separated before the waste is compacted and converted into pellets or RDF. Fuel pellets have several distinct advantages over coal and wood because it is cleaner, free from incombustibles, has lower ash and moisture contents, is of uniform size, cost-effective, and eco-friendly.

Recycling and Waste-to-Energy Prospects in Saudi Arabia

recycling-Saudi-ArabiaThe Kingdom of Saudi Arabia produces around 15 million tons of municipal solid waste (MSW) each year with average daily rate of 1.4 kg per person. With the current growing population (3.4% yearly rate), urbanization (1.5% yearly rate) and economic development (3.5% yearly GDP rate), the generation rate of MSW will become double (30 million tons per year) by 2033. The major ingredients of Saudi Arabian garbage are food waste (40-51 %), paper (12-28 %), cardboard (7 %), plastics (5-17 %), glass (3-5 %), wood (2-8 %), textile (2-6 %), metals (2-8 %) etc. depending on the population density and urban activities of that area.

In Saudi Arabia, MSW is collected and sent to landfills or dumpsites after partial segregation and recycling. The major portion of collected waste is ends up in landfills untreated. The landfill requirement is very high, about 28 million m3 per year. The problems of leachate, waste sludge, and methane and odor emissions are occurring in the landfills and its surrounding areas due to mostly non-sanitary or un-engineered landfills. However, in many cities the plans of new sanitary landfills are in place, or even they are being built by municipalities with capturing facilities of methane and leachate.

Recycling Prospects in Saudi Arabia

The recycling of metals and cardboard is the main waste recycling practice in Saudi Arabia, which covers 10-15% of the total waste. This recycling practice is mostly carried out by informal sector. The waste pickers or waste scavengers take the recyclables from the waste bins and containers throughout the cities. The waste recycling rate often becomes high (upto 30% of total waste) by waste scavengers in some areas of same cities. The recycling is further carried out at some landfill sites, which covers upto 40% of total waste by the involvement of formal and informal sectors.

The recycled products are glass bottles, aluminum cans, steel cans, plastic bottles, paper, cardboard, waste tire, etc. depending on the area, available facilities and involved stakeholders. It is estimated that 45 thousand TJ of energy can be saved by recycling only glass and metals from MSW stream. This estimation is based on the energy conservation concept, which means xyz amount of energy would be used to produce the same amount of recyclable material.

Waste-to-Energy Potential in Saudi Arabia

The possibilities of converting municipal wastes to renewable energy are plentiful. The choice of conversion technology depends on the type and quantity of waste (waste characterization), capital and operational cost, labor skill requirements, end-uses of products, geographical location and infrastructure. Several waste to energy technologies such as pyrolysis, anaerobic digestion (AD), trans-esterification, fermentation, gasification, incineration, etc. have been developed. WTE provides the cost-effective and eco-friendly solutions to both energy demand and MSW disposal problems.

As per conservative estimates, electricity potential of 3 TWh per year can be generated, if all of the KSA food waste is utilized in biogas plants. Similarly, 1 and 1.6 TWh per year electricity can be generated if all the plastics and other mixed waste (i.e. paper, cardboard, wood, textile, leather, etc.) of KSA are processed in the pyrolysis, and refuse derived fuel (RDF) technologies respectively.

Conclusion

Waste management issues in Saudi Arabia are not only related to water, but also to land, air and the marine resources. The sustainable integrated solid waste management (SWM) is still at the infancy level. There have been many studies in identifying the waste related environmental issues in KSA. The current SWM activities of KSA require a sustainable and integrated approach with implementation of waste segregation at source, waste recycling, WTE and value-added product (VAP) recovery. By 2032, Saudi government is aiming to generate about half of its energy requirements (about 72 GW) from renewable sources such as solar, nuclear, wind, geothermal and waste-to-energy systems.

Waste Minimisation – Role of Public, Private and Community Sector

waste-minisationWhen it comes to waste minimisation and moving material up the waste hierarchy you will find partisan advocates for the roles of the public, private and community sectors. Each will tell you the reasons why their sector’s approach is the best. The private sector will extol their virtues as the only ones capable of efficiently and effectively doing the job.  They rightly note that they are the providers on the front lines who actually recover the vast majority of material, that the private sector approach drives innovation and efficiency, and that if waste minimisation is to be sustainable this must include economic sustainability.

The community sector on the other hand will make a strong case to say that their model, because it commonly encompasses social, environmental, and economic outcomes, is able to leverage value from recovered materials to dig deeper into the waste stream, to optimise recovered material quality, and to maximise employment and local economic benefit. Before recycling and composting were economically viable prospects, community sector organisations led the way, developing many of the techniques now widely used. They remain the leaders in marginal areas such as furniture reuse, running projects that deliver environmental outcomes while providing wider community benefits such as rehabilitation and training for marginalised groups.

Finally, in the public sector corner, advocates will point out that the profit-driven private sector will only ever recover those materials that are able to generate positive revenues, and so cannot maximise waste minimisation, while social outcomes are strictly a secondary consideration. The community sector, on the other hand, while encompassing non-monetary values and capable of effective action on a local scale, is not set up to deliver these benefits on a larger scale and can sometimes struggle to deliver consistent, professional levels of service.  The public sector can point to government’s role in legislating to promote consistent environmental and social outcomes, while councils are major providers and commissioners of recycling services and instrumental in shaping public perceptions around waste issues. The public sector often leads in directing activity towards non-monetary but otherwise valuable outcomes, and provides the framework and funding for equity of service levels.

So who is right? Each sector has good arguments in its favour, and each has its weaknesses. Does one approach carry the day?  Should we just mix and match according to our personal taste or based on what is convenient?

Perhaps we are asking the wrong question. Maybe the issue is not “which approach is better?” but instead “how might the different models help us get to where we ultimately want to go?”

Smells Like Waste Minimisation

So where do we want to go?  What is the waste minimisation end game?

If we think about things from a zero waste perspective, the ideal is that we should move from linear processes of extraction, processing, consumption and disposal, to cyclical processes that mimic nature and that re-integrate materials into economic and natural systems.  This is the nirvana – where nothing is ‘thrown away’ because everything has a further beneficial use.  In other words what we have is not waste but resources.  Or to put it another way – everything has value.

Assuming that we continue to operate in an essentially capitalist system, value has to be translated into economic terms.  Imagine if every single thing that we now discard was worth enough money to motivate its recovery.  We would throw nothing away: why would we if there was money to be made from it?

So in a zero waste nirvana the private sector and the community sector would take care of recovery almost automatically.  There might evolve a community and private sector mix, with each occupying different niches depending on desired local outcomes. There would be no need for the public sector to intervene to promote waste minimisation.  All it would need to do would be to set some ground rules and monitor the industry to ensure a level playing field and appropriate health and safety.

Sectoral Healing

Returning to reality, we are a long way from that zero waste nirvana.  As things stand, a bunch of materials do have economic value, and are widely recycled. Another layer of materials have marginal value, and the remainder have no value in practical terms (or even a negative value in the case of hazardous wastes).

The suggested shift in perspective is most obvious in terms of how we think about the role of the public sector. To bring us closer to our goal, the public sector needs to intervene in the market to support those materials of marginal value so that they join the group that has genuine value.  Kerbside collection of certain materials, such as glass and lower value plastics, is an example of an activity that is in effect subsidised by public money. These subsidies enable the private sector to achieve environmental outcomes that we deem sufficiently worthwhile to fund.

However, the public sector should not just be plugging a gap in the market (as it largely does now), but be working towards largely doing itself out of a job. If we are to progress towards a cyclical economy, the role of the public sector should not be to subsidise marginal materials in perpetuity, but to progressively move them from marginal to genuinely economic, so that they no longer require support.  At the same time new materials would be progressively targeted and brought through so that the range and quantity requiring disposal constantly shrinks.  This suggests a vital role for the public sector that encompasses research, funding for development of new technologies and processes, and setting appropriate policy and price structures (such as through taxes, levies, or product stewardship programmes).

Similarly, the community sector, because it is able to ‘dig deeper’ into the waste stream, has a unique and ongoing role to play in terms of being able to more effectively address those materials of marginal value as they begin to move up the hierarchy.  The community sector’s unique value is its ability to work at the frontiers.

Meanwhile, the private sector’s resources and creativity will be needed to enable efficient systems to be developed to manage collection, processing and recycling of materials that reach the threshold of economic viability – and to create new, more sustainable products that fit more readily into a waste minimising world.

In the end, then, perhaps the answer is to stop seeing the three models as being in competition. Instead, we should consciously be utilising the unique characteristics of each so that we can evolve our practices towards a future that is more functional and capable of delivering the cyclical economy that must eventuate if we are to sustain ourselves on this planet.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Waste Management in Olive Oil Industry

olive-oil-wastesThe olive oil industry offers valuable opportunities to farmers in terms of seasonal employment as well as significant employment to the off-farm milling and processing industry.  While this industry has significant economic benefits in regards to profit and jobs; the downside is it leads to severe environmental harm and degradation. In 2012, an estimated 2,903,676 tons of olive oil was produced worldwide, the largest olive oil producers being Spain, Italy, and Greece followed by Turkey and Tunisia and to a lesser extent Portugal, Morocco and Algeria. Within the European Union’s olive sector alone, there are roughly 2.5 million producers, who make up roughly one-third of all EU farmers.

Types of Wastes

Currently, there are two processes that are used for the extraction of olive oil, the three-phase and the two-phase. Both systems generate large amounts of byproducts.  The two byproducts  produced by the three-phase system are a solid residue known as olive press cake (OPC) and large amounts of aqueous liquid known as olive-mill wastewater (OMW).  The three-phase process usually yields 20% olive oil, 30% OPC waste, and 50% OMW.  This equates to 80% more waste being produced than actual product.

Regardless of system used, the effluents produced from olive oil production exhibit highly phytotoxic and antimicrobial properties, mainly due to phenols.  Phenols are a poisonous caustic crystalline compound.  These effluents unless disposed of properly can result in serious environmental damage.  There is no general policy for waste management in the olive oil producing nations around the world.  This results in inconsistent monitoring and non-uniform application of guidelines across these regions.

State of Affairs

Around 30 million m3 of olive mill wastewater is produced annually in the Mediterranean area.  This wastewater cannot be sent to ordinary wastewater treatment systems, thus, safe disposal of this waste is of serious environmental concern.  Moreover, due to its complex compounds, olive processing waste (OPW) is not easily biodegradable and needs to be detoxified before it can properly be used in agricultural and other industrial processes.

This poses a serious problem when the sophisticated treatment and detoxification solutions needed are too expensive for developing countries in North Africa, such as Morocco, Algeria and Tunisia, where it is common for OMW to be dumped into rivers and lakes or used for farming irrigation.  This results in the contamination of ground water and eutrophication of lakes, rivers and canals.  Eutrophication results in reductions in aquatic plants, fish and other animal populations as it promotes excessive growth of algae. As the algae die and decompose, high levels of organic matter and the decomposing organisms deplete the water of oxygen, causing aquatic populations to plummet.

Another common tactic for disposal of olive mill wastewater is to collect and retain it in large evaporation basins or ponds.  It is then dried to a semi-solid fraction. In less developed countries where olive processing wastes is disposed of, this waste, as well as olive processing cake and SOR waste is commonly unloaded and spread across the surrounding lands where it sits building up throughout the olive oil production season.  Over time these toxic compounds accumulate in the soil, saturating it, and are often transported by rain water to other nearby areas, causing serious hazardous runoff. Because these effluents are generally untreated it leads to land degradation, soil contamination as well as contamination of groundwater and of the water table itself.

Even a small quantity of olive wastewater in contact with groundwater has the potential to cause significant pollution to drinking water sources. The problem is more serious where chlorine is used to disinfect drinking water. Chlorine in contact with phenol reacts to form chlorophenol which is even more dangerous to human health than phenol alone.

Remedial Measures

The problems associated with olive processing wastes have been extensively studied for the past 50 years.  Unfortunately, research has continued to fall short on discovering a technologically feasible, economically viable, and socially acceptable solution to OPW.  The most common solutions to date have been strategies of detoxification, production system modification, and recycling and recovery of valuable components.  Because the latter results in reductions in the pollution and transformation of OPW into valuable products, it has gained popularity over the past decade. Weed control is a common example of reusing OPW; due to its plant inhibiting characteristics OPW once properly treated can be used as an alternative to chemical weed control.

Research has also been done on using the semisolid waste generated from olive oil production to absorb oil from hazardous oil spills.  Finally, in terms of health, studies are suggesting that due to OPW containing high amounts of phenolic compounds, which have high in antioxidant rates, OPW may be an affordable source of natural antioxidants. Still, none of these techniques on an individual basis solve the problem of disposal of OMW to a complete and exhaustive extent.

At the present state of olive mill wastewater treatment technology, industry has shown little interest in supporting any traditional process (physical, chemical, thermal or biological) on a wide scale.This is because of the high investment and operational costs, the short duration of the production period (3-5 months) and the small size of the olive mills.

Conclusion

Overall, the problems associated with olive processing wastes are further exemplified by lack of common policy among the olive oil producing regions, funding and infrastructure for proper treatment and disposal, and a general lack of education on the environmental and health effects caused by olive processing wastes.   While some progress has been made with regards to methods of treatment and detoxification of OPW there is still significant scope for further research.  Given the severity of environmental impact of olive processing wastes, it is imperative on policy-makers and industry leaders to undertake more concrete initiatives to develop a sustainable framework to tackle the problem of olive oil waste disposal.