How Farmers Can Benefit from Agriculture Recruiting?

Agriculture recruiting is the process of hiring personnel with agrarian qualifications. The qualification may be in the form of diplomas, degrees, and practical experience. Farming is an art that can be learned by any individual interested in venturing into the industry. However, it takes a level of expertise to navigate the various dynamics that influence whether the farming process is a success. Let’s take a look at how farmers can benefit from agricultural recruiting.

agricultural-recruiting

1. Research

Data gathered from in-depth research is one of the ways that farmers can benefit from agriculture recruiting. As a farmer, it is tempting to plant convenient crops, season, and plants that are enjoyable. However, agriculturalists base decisions on in-depth research data.

Agriculture recruiting will provide researchers who can provide you with the following information that is crucial for the success of any crop:

  • The specific crops that grow well in your particular geographical area
  • The temperatures required for specific crops to grow in a healthy state
  • The best time of the season to plant a specific crop
  • The advantages and disadvantages of planting the crop
  • Mistakes experienced by other farmers and how to avoid these
  • Labour required for the crop
  • Gadgets needed for effective planting
  • Type of irrigation required for watering the crop

Such information requires in-depth research through case study analysis, interviews with farmers, participant observation, and desk research. Expert agricultural researchers will provide such data, which will help a farmer make informed decisions regarding their crop.

2. Business Management Consulting

A farmer may be a wealth of knowledge regarding the practical execution of crop planting. They may be sure of the times to plant, the soil, and the processes it takes to yield a quality crop. If the farmer is in business, they may not have the expertise regarding business management.

The business aspect of farming requires market research, competitor analysis, market trend projection, foresight, marketing, consumer behavior, and networking. Through agricultural recruiting, a farmer is paired with an expert in such business processes. The coupling of the skills may result in farming business success.

3. Soil Testing

It is difficult to determine the type of soil that you plan to grow the crop. Agriculturalists know how to test the soil to decide various dynamics. Soil type can determine the type of crop that will raise best, the produce that will require the least labor, the kind of fertilizer that nurtures the soil type effectively, and the season that certain crops flourish. A farmer who has soil tested before beginning a planting process will have a higher success rate than one who risks planting the wrong type of produce in the soil.

4. Seed Selection

Regardless of the type of crop that a farmer decides to plant, they can choose from numerous kinds of seeds. The decision to buy a particular type of seed should depend on varying factors such as land space, soil type, and temperature. This is the kind of information that a farmer will benefit from if they venture into agriculture recruiting. You can research it yourself—however, it may be difficult to verify the knowledge freely shared in digital spaces.

pest-management

5. Expert Damage Control

Crops can succumb to factors that are sometimes out of the farmer’s control. For example, unexpected heavy rainfall, winds, or a sudden pest problem could all affect the crop’s quality. Agriculture recruiting means accessing experts of damage control in such situations. Experts will know whether crops can be salvaged from the damage and the process that is required. If the crop is damaged beyond the point where any can be nurtured to health, experts will give information regarding how to move beyond the damage. Prevention methods in some cases may also be provided for future execution.

6. Pest Management

Pest management is crucial to the success of a crop. Experts can decipher whether a crop requires a form of pest management, the kind of pest that may damage the crop, how it damages the harvest, as well as when and how to apply pest control substances. Certain chemicals may, in fact, harm the crop, or become hazardous to health if applied on the wrong type of crop. The expert advice offered to farmers is therefore essential, especially when there is the use of chemicals. Agriculturalists are also trained on how to use the chemicals, meaning farmer safety is a priority.

Conclusion

Farmers can benefit from agriculture recruiting because of expert knowledge. Farmers can benefit from in-depth research, soil testing, seed selection consultation, damage control, pest management, and farming from the business facet. It is advised that farmers consult such expertise to avoid costly mistakes and develop their farming art through expert guidance.

What You Need to Know About Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 13 percent of the total municipal solid waste generated in the country is contributed by food scraps. According to USEPA, more than 35 million tons of food waste are thrown away into landfills or incinerators each year, which is around 40 percent of all food consumed in the country.

As far as United Kingdom is concerned, households throw away around 4.5 million tons of food each year. Food wastage in Canada causes 56.6 million tonnes of CO2-equivalent emissions. These statistics are an indication of tremendous amount of food waste generated all over the world.

food_waste

Food Waste Management Strategy

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. The two most common methods for food waste recycling are:

  • Composting: A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout USA, mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

biogas-enrichment

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Food waste is one of the single largest constituent of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies in USA to strive for a sustainable food waste management system.

3 Ways to Reuse Water Using Renewable Energy

Water is essential to life, making it one of the most valuable resources on the planet. We drink it, use it to grow food and stay clean. However, water is of increasingly short supply and the Earth’s population only continues to expand. Many of the countries with the largest populations are also ones that use the most water. For instance, in the United States, the average person uses 110 gallons of water each day. Meanwhile, three-fourths of those living in Africa don’t have access to clean water.

To ensure we have enough water to survive — and share with those in need — the best approach is to conserve this resource and find sustainable ways of recycling it. Currently, conventional methods or water purification use about three percent of the world’s energy supply. This isn’t sustainable long-term and can have adverse effects on the environment.

Recently, however, major steps have been made to reduce both the collective water and carbon footprint. Now, there are multiple, sustainable ways to both save energy and reuse water using renewable energy.

1. Anaerobic Digestion

Anaerobic digestion — or AD — is the natural process in which microorganisms break down organic materials like industrial residuals, animal manure and sewage sludge. This process takes place in spaces where there is no oxygen, making it an ideal system for cleaning and reusing wastewater. This recycled water can provide nutrients for forest plantations and farmland alike.

For example, in Yucatan, Mexico, the successful implementation of AD systems has provided water to promote reforestation efforts. This system has also helped accelerate the search for a sustainable solution to water-sanitation issues in rural Latin American communities.

Additionally, anaerobic digestion also reduces adverse environmental impacts. As the system filters water, it creates two byproducts — biogas and sludge. The biogas can be used as energy to supply electricity or even fuel vehicles. And the sludge is used as fertilizers and bedding for livestock. In poor countries, like Peru, 14 percent of primary energy comes from biogas, providing heat for food preparation and electricity to homes that would not have access to it otherwise.

2. Vapor Compression Distillation

In this process, the vapor produced by evaporating water is compressed, increasing pressure and temperature. This vapor is then condensed to water for injection — highly purified water that can be used to make pharmaceutical-grade solutions.

Vapor compression distillation is incredibly sustainable because it can produce pure water on combustible fuel sources like cow dung — no chemicals, filters or electricity necessary. This makes it water accessible to even the most rural communities.

The system only needs enough energy to start the first boil and a small amount to power the compressor. This energy can be easily supplied by a solar panel, producing roughly 30 liters of water an hour using no more energy than that of a handheld hairdryer.

3. Solar Distillation

Utilizing solar energy for water treatment may be one of the most sustainable solutions to the water crisis, without sacrificing the environment or non-renewable resources. Between 80 and 90 percent of all energy collected through commercial solar panels is wasted, shed into the atmosphere as heat. However, recent advancements in technology have allowed scientists to capture this heat and use it to generate clean, recycled water.

By integrating a solar PV panel-membrane distillation device behind solar panels, researchers were able to utilize heat to drive water distillation. This panel also increases solar to electricity efficiency. This device can even be used to desalinate seawater, providing a sustainable solution to generating freshwater from saltwater.

Environmental and Economic Benefits

Finding sustainable methods of recycling water is essential to reducing energy consumption and helping the planet, and all those dependent upon it, thrive. Using methods like anaerobic digestion and environmentally-friendly distillation processes can reduce toxic emissions and provide purified, recycled water to those who need it most.

Sustainable reuse of water can also benefit the economy. The financial costs of constructing and operating desalination and purification systems are often high compared to the above solutions. Furthermore, using recycled water that is of lower quality for agricultural and reforestation purposes saves money by reducing treatment requirements.

Ultrasonic Pretreatment in Anaerobic Digestion of Sewage Sludge

Anaerobic digestion process comprises of four major steps – hydrolysis, acidogenesis, acetogenesis and methanogenesis. The biological hydrolysis is the rate limiting step and pretreatment of sludge by chemical, mechanical or thermal disintegration can improve the anaerobic digestion process. Ultrasonic disintegration is a method for breakup of microbial cells to extract intracellular material.

Ultrasound activated sludge disintegration could positively affect anaerobic digestion of sewage sludge. Due to sludge disintegration, organic compounds are transferred from the sludge solids into the aqueous phase resulting in an enhanced biodegradability. Therefore disintegration of sewage sludge is a promising method to enhance anaerobic digestion rates and lead to reduce the volume of sludge digesters.

The addition of disintegrated surplus activated sludge and/or foam to the process of sludge anaerobic digestion can lead to markedly better effects of sludge handling at wastewater treatment plants. In the case of disintegrated activated sludge and/or foam addition to the process of anaerobic digestion it is possible to achieve an even twice a higher production of biogas. Here are few examples:

STP Bad Bramstedt, Germany (4.49 MGD)

  • First fundamental study on pilot scale by Technical University of Hamburg-Harburg, 3 years, 1997 – 1999
  • reduction in digestion time from 20 to 4 days without losses in degradation efficiency
  • increase in biogas production by a factor of 4
  • reduction of digested sludge mass of 25%

STP Ahrensburg, Germany (2.64 MGD)

  • Preliminary test on pilot-scale by Technical University of Hamburg-Harburg, 6 months, 1999
  • increase in VS destruction of 20%
  • increase in biogas production of 20%

STP Bamberg, Germany (12.15 MGD)

  • Preliminary full-scale test, 4 months, 2002 2) Full-scale installation since June 2004
  • increase in VS destruction of 30%
  • increase in biogas production of 30%
  • avoided the construction of a new anaerobic digester

STP Freising, Germany (6.87 MGD)

  • Fundamental full-scale study by University of Armed Forces, Munich, 4 months, 2003
  • increase in biogas production of 15%
  • improved sludge dewatering of 10%

STP Meldorf, Germany (1.06 MGD)

  • Preliminary full-scale test, 3 months, 2004 2) Full-scale installation since December 2004
  • increase in VS destruction of 25%
  • increase in biogas production of 25%
  • no foam or filamentous organisms present in the anaerobic sludge digester

STP Ergolz 2, Switzerland (3.43 MGD)

  • Full-scale test, 3 months, 2004
  • increase in VS destruction of 15%
  • increase in biogas production of 25%

STP Beverungen, Germany (2.64 MGD)

  • Full-scale test, 3 months, 2004/2005
  • increase in VS destruction of 25%
  • increase in biogas production of 25%

To sum up, ultrasonication has a positive effect on sludge solubilisation, sludge volume, biogas production, flock size reduction and cells lyses. Ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better degradation of volatile solids and an increased production of biogas.

The use of low power ultrasound in bioreactors may present a significant improvement in cost reduction. Therefore, ultrasonic pretreatment enhances the subsequent anaerobic digestion of sewage sludge resulting in a better sludge digestion and efficient recovery of valuables.

Everything You Should Know About Electricity

Electricity, we use it every day but what is it? The dictionary defines it as a form of energy resulting from the existence of charged particles (such as electrons or protons), either statically as an accumulation of charge or dynamically as a current. This may sound confusing, but by breaking it down we can understand how it works. Electricity is used for many everyday things but breakthroughs of how to use it have resulted in many cool inventions, some of which you can explore on thehomesecuritysuperstore.

A Closer Look at Atoms

So, what is electricity? To understand how electricity works we have to break it down, starting with the charged particles. Everything is made of atoms, and these atoms are mostly empty space. Moving around in the empty space are electrons and protons. These each carry an electric charge, electrons being negative and protons being positive. These opposite charges attract each other. The atom is in balance when there are an equal number of protons and electrons. The number of protons determines what kind of element the atom is, and these numbers and elements are shown on the periodic table.

Imagine the atom as having rings around the nucleus, the center of the atom. These rings can hold a certain number of electrons which move constantly around the nucleus which holds the protons. When the rings hold electrons that are attracted to the protons the strength of this attraction can push an electron out of its orbit and even make them shift from one atom to another. This is where electricity occurs.

Traveling in Circuits

Now that we know the basics of electricity, we can look at how it works. For a basic understanding of how electricity travels through circuits and how we use electricity we will look at batteries and light bulbs. Batteries can produce electricity through a chemical substance called an electrolyte.

The battery is attached to two metals, one on either end, and produces a negative charge in one metal and a positive charge in the other metal. When the battery is then connected on either end by a conductor such as a wire the electrical charge is balanced. If you were to attach a light bulb to the wire in between the sides of the battery, the electrical current would then travel through the light bulb to get to the other side of the battery and thus powering the light.

LED-lighting-workplace

Electricity moves through electrical circuits and must have a complete path for the electrons to move through. The switch or power button on electronic devices opens and closes this path. When you turn on the light switch the circuit is closed and electrons can move freely to turn on your lights. When you turn off the switch it opens the circuit not allowing the electrons through and turning off your lights. When light bulbs burn out the small wire connecting the circuit inside the light bulb breaks and stops the flow of electrons.

Final Thoughts

Energy flows through our entire world and understanding how electricity works is just the beginning. Of course, most of the electricity in your life is not connected to a single battery as in the example above, but the understanding on a basic level is very interesting.

Electricity literally powers everything in our lives and a world without it would be very different. Understanding how these things work lets us enrich our knowledge of the world around us and provides us with practical information we can use in our everyday life. Electricity is all around us and is used in more interesting ways than just light bulbs and batteries.

Everything You Need to Know About PVC Recycling

PVC is one of the most widely used plastics worldwide. A major problem in the recycling of PVC is the high chlorine content in raw PVC and high levels of hazardous additives added to the polymer to achieve the desired material quality. As a result, PVC requires separation from other plastics before recycling. PVC products have an average lifetime of 30 years, with some reaching 50 or more years.  This means that more PVC products are reaching the end-of-life and entering the waste stream, and the amount is likely to increase significantly in the near future.

pvc-recycling

PVC Recycling Methods

Currently, PVC plastic is being recycled by either of the two ways:

  • Mechanical recycling – This involves mechanically treating the waste (e.g. grinding) to reduce it into smaller particles.  The resulting granules, called recyclate, can be melted and remolded into different products, usually the same product from which it came.
  • Feedstock recycling – Chemical processes such as pyrolysis, hydrolysis and heating are used to convert the waste into its chemical components.  The resulting products – sodium chloride, calcium chloride, hydrocarbon products and heavy metals to name a few – are used to produce new PVC, as feed for other manufacturing processes or as fuel for energy recovery.

In mechanical recycling, because no chemical reaction is involved, the recyclate retains its original composition. This poses a recycling challenge because PVC products, depending on their application, contain different additives.  For example, rigid PVC is unplasticized whereas flexible PVC is added plasticizers because this additive increases the plastic’s fluidity and thus, its flexibility. Even products used for the same application may still differ in composition if they have different manufacturers.

When different kinds of PVC waste are fed to a mechanical recycler, the resulting product’s composition is difficult to predict, which is problematic because most PVC products, even recycled ones, require a specific PVC content.  In order to produce a high-quality recylate, the feed ideally should not be mixed with other kinds of plastic and should have a uniform material composition.Material recycling is therefore more applicable for post-industrial waste than for post-consumer waste.

PVC-waste

Feedstock recycling is seen to be complementary to conventional mechanical recycling as it is able to treat mixed or unsorted PVC waste and recover valuable materials.  However, a study showed that feedstock recycling (or at least the two that was considered) incurred higher costs than landfilling, primarily due to the low value of the recovered products. This provides little incentive for recyclers to pursue PVC recycling.  This may change in the future as more stringent regulations to protect the environment are enacted.  Some countries in Europe have already banned PVCs from landfills and PlasticsEurope is targeting a “zero plastic to landfill” in Europe by 2020.

Post-industrial waste is relatively pure and comes from PVC production and installation, such as cut-offs from laying of cables or scraps from the installation of window frames.  These are easily recycled since they can be collected directly from processors or installers or even recycled by producers themselves as raw material to manufacture the same product.

Post-consumer waste contains mixed material and has been used for different applications.  These are products that have reached the end-of-life or are replaced due to damage, like pipes from underground, window frames being replaced for renovation and electric cables recovered from demolition. These would require further sorting and cleaning, adding cost to the recycling process.  The recyclate produced is usually of lower quality and consequently of decreased economic value.

Recent Developments

Europe is leading the way for a more sustainable use of PVC with programs, such as RecoVinyl and VinylPlus, where recycling is advanced as one of the ways to use resources more efficiently and to divert as much waste as possible from landfills. Recovinyl, created in 2003, is an initiative of the European PVC industry to advance the sustainable development of the PVC industry by improving production processes, minimise emissions, develop recycling technology and boost the collection and recycling of waste.

Having been successful in all of its goals, including an increase in recycling of PVC across Europe to over 240,000 tonnes a year, in 2011 the PVC industry redefined the role of Recovinyl as part of the ambitious new ten-year VinylPlus sustainable development programme. VinylPlus works in partnership with consumers, businesses, municipalities, waste management companies, recyclers and converter, as well as the European Commission and national and local governments. The goal is to certify those companies who recycle PVC waste and those accredited converting companies who purchase recyclate to manufacture new products and applications.

Even if some types of PVC recycling are not feasible or economically viable at present, it will likely be reversed in the future as governments, manufacturers, consumers and other stakeholders create programs that innovate and find ways to achieve a sustainable future for the PVC industry.

4 Attractive Beds with Storage Options

If you have a job that keeps you on the move, then you should invest in compact furniture that is portable and easy to maintain. But even if you are staying somewhere on a permanent basis, it is a pretty good idea to invest in a bed with storage. It is very true that once you have owned a storage bed, you aren’t going to go back to the normal model anymore. Here are some attractive bed designs for you:

storage-bed

1. Lined Bed Frame

Upholstered beds are all the rage right now, which is why you should look into the gorgeous models that are available in furniture stores everywhere. These beds with storage have a strong and compact bed frame. At the same time, they also offer you plenty of space to store all of your sheets, pillows and belongings.

2. Velvet Bed Frame

If you are looking for something luxurious and regal, then you should go for the upholstered bed frame that is done in high quality velvet fabric. A bed like this is a very good investment, as you will be able to use it for many years. It’s easy to assemble and has lots of storage space. Make an eco-conscious statement by using bamboo sheets to cover the bed.

3. Trundle Bed Frame

If you are someone who frequently has friends or relatives over to visit and stay the night, then you should consider investing in a trundle bed frame. This kind of bed will provide you with plenty of space. It also folds up into a compact shape when not in use, which is ideal for small apartments.

4. Bunk Bed Frame

Another space saving and multipurpose arrangement that you can use is a bunk bed frame, which is just great if you have multiple kids. Even if you have a very compact living arrangement, there are bunk beds where the top bed is a single and the lower bed is a double. It’s great for small families.

Benefits of Storage Beds

These are the bed designs that offer storage options to those who are dealing with the issue of inadequate storage space. Here are some benefits storage bed owners can enjoy.

1. Easy to Clean

One major advantage of a storage bed unit is the ease of cleaning and maintenance. There is no unwanted dust accumulation so you know that there is no extra cleaning that you have to keep doing.

2. More Storage Space

A storage bed is a really good idea if you have limited storage space. It will provide you with an inexpensive space that is actually very large. You can clean and declutter your home very well.

In today’s world, extra space is a luxury, and investing in a bed with storage from Interiorbeat allows you to take advantage of that luxury without breaking the bank. Whether or not space is limited in the bedroom, a bed with storage space proves to be both practical and stylish. With storage beds, people with allergies won’t have to worry about dust collecting inside their bedrooms.

3. Stability for Mattress

Another major advantage of a storage bed is the stability that it will give your bed and your mattress. You won’t have to worry about back pain any more as the frame will give ample support.

Another thing that many people don’t realize is that a storage bed has a very classy appearance that will lend a lot of character to your bedroom. A bed with storage can accentuate your bedroom’s overall aesthetic.

10 Ways To Be An Eco-Friendly Student

Environmental degradation has led to many devastating effects such as the depletion of the ozone layer, health problems for people living in areas where toxic fumes and chemicals are released and a change in weather patterns. Everyone can contribute to a better and healthier environment by living eco-friendly lives on a daily basis.

As a student, you can be able to change this and influence others towards getting the environment back to a better place to the extent possible. Here are some tips on how to be an eco-friendly student.

 

1. Use Little to No Paper

Reduce your use of paper as much as you can. If you want to take notes while in class, use your mobile phone, tablet or laptop to do so. Instead of buying books, download them and read from your device. Not only will you be saving trees from being cut but you will also save a lot of money.

2. Avoid Disposable Eating Utensils

Using disposable cups, plates, and spoons seems like the easiest thing to do to save time. However, this harms the environment in the long run. Choose to use utensils that you can wash and reuse over a long period of time. The money saved from buying these items can be used for eco-friendly projects you would like to participate in.

3. Drive Less and Cycle or Walk More

If your destination is not so far away, you can cycle or walk instead of driving. If the distance is too long, you can choose to travel by public transport. If many people opted to follow this and drive only when it is absolutely necessary, pollution would decrease significantly, contributing to positive effects in the environment.

4. Conserve Water

At all times, be conscious of the amount of water you use whether you are bathing, washing your hands after using the washroom, washing dishes or doing anything else that requires you to use water. To contribute to a green college, use an amount of water that you actually need when showering, brushing your teeth or when suitable.

5. Buy Reusable Bags

Buying plastic bags every time you go shopping is a waste of money and these bags take up so much space in the home. You can opt for reusable bags which you can use more than once when going out for shopping. Apart from saving money, you will save yourself from having to pile a lot of garbage from plastic bags.

6. Save Energy

This is one of the best ways on how to be eco-friendly. One way to save on energy is by reducing the degrees on your thermostat slightly. You can also power down any devices that are not in use such as your electronics. Switching off the lights when you do not need them also helps. Using energy-efficient bulbs is also helpful as they last longer and consume less energy.

7. Participate in Eco-Friendly Projects

Take advantage of every opportunity you get to participate in projects that lead to a better environment. This can be a challenge due to the amount of academic work you may have. You can always receive help with your assignment at any time.

If you are wondering who will do my essay Australia, then worry no more as there are professional writers in online writing services ready to help you anytime you need assistance. With no excuse now, you can participate in cleaning projects, tree planting and any other environmental projects.

8. Buy Reusable Water Bottles

Buying water each time you feel thirsty may not be economically and environmentally beneficial. You can opt to buy 2 or 3 reusable water bottles for carrying water at any time you are outdoor. When buying a water bottle, choose BPA free water bottles as they are more environmental-free.

9. Reduce Meat Consumption

Eating less meat can actually contribute to a better environment and slow down global warming. Harmful gases are usually released to the atmosphere during cattle rearing for meat production. Reducing the consumption of meat will mean less harmful gases being released thus slowing down global warming.

10. Use Environmentally Friendly Cleaning Products

Many cleaning products contain ingredients that are harmful to humans, animals, and the environment. One of the best sustainability tips is to use eco-friendly cleaning products as much as possible. Products such as baking soda, lemons, white vinegar, and hydrogen peroxide are all-natural cleaning products that are not toxic and are easily available.

To get the right ingredients to get rid of any type of stain, you can research on the internet to get suggestions on what you can use.

Conclusion

Whether you know anything about living an eco-friendly life or not, you can always learn and there is always something you can do to make the earth a better place. Keeping up-to-date with the condition of the earth can help you know what you need to work on.

Apart from doing all the above to be an eco-friendly student, you can also join environmental clubs and take part in any events and projects that are geared towards saving our environment. Conducting personal research on how to be more eco-friendly and sharing information with others is also a good way of being an eco-friendly student.