About Emily Folk

Emily Folk is freelance writer and blogger on topics of renewable energy, environment and conservation. Follow her on Twitter @EmilySFolk

Biomethane from Food Waste: A Window of Opportunity

For most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

food-waste-behavior

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

5 Benefits of Biodegradable Packaging for Businesses

Consumers want companies to reflect their values. They’re far more likely to purchase from a business with an identity, whether it manifests in charitable efforts or eco-friendly practices. As a greater number of people show interest in green living, biodegradable packaging presents an opportunity for growth.

That said, the virtues of biodegradable packaging extend beyond an improved public image. While business owners enjoy the superficial advantages of this transition, they often find it’s only a fraction of what the shift entails. Through switching to biodegradable plastics, they see considerable changes elsewhere.

bioplastics

In this article, we’ll detail five of those changes, exploring the subject to lend business owners a better understanding of biodegradable packaging within their operation. As we touch on the benefits, it’ll become clear that eco-friendly materials aren’t only better for the environment, but better for a company’s bottom line.

1. Free of Toxins & Allergens

Biodegradable packaging options are still somewhat limited, but most of the available materials are non-toxic and allergy-free. This is an essential consideration to consumers who care about the products they’re purchasing and the composition of their packaging. If either is potentially harmful, it hurts a business.

As often as businesses must send packages, forms, and other important information through the mail, packaging with the planet in mind and protecting your items is key. For example, your may need to send you important documents through the mail. Getting your mail in safe, low-waste packaging can protect your health from harmful chemicals, aid the planet, and provide their clients with all they need to know.

An informed consumer will almost invariably choose products packaged with bioplastic over traditional alternatives, aware of the implications of their purchase. Considering the negative health effects of phthalates — a common chemical in plastic packaging — business owners should be aware of the implications as well.

2. Require Fewer Resources

Biodegradable packaging has the potential to reduce water usage, solid waste, electricity and emissions. This is beneficial for the environment, of course, but it also lowers expenses associated with the packaging process. Over time, the accumulated savings prove well worth the cost of the transition.

If a company were to replace their standard packaging materials with bioplastic, they would enjoy weight savings on par with regular plastic. Research shows plastic packaging enables weight savings of over 78 percent compared to alternative materials, a notable statistic for business owners looking to convert.

3. Lower Production Costs

Most biodegradable materials follow the three basic R’s of sustainability.

  1. A business can reduce them, using fewer resources to create thinner and tougher materials which do the same job.
  2. A business can reuse them, taking advantage of materials with special coating which improves their durability.
  3. A business can recycle them, diverting refuse from landfills as they minimize the costs of new materials.

A business owner who invests in biodegradable packaging can cut costs by a significant margin, using fewer resources, reusing their inventory and purchasing inexpensive recycled materials. In doing so, they’ll see reduced packaging expenses over time, and more freely allocate their money elsewhere.

biodegradeable-packaging

Reusing packaging is proving to be not only environmentally friendly, but an excellent marketing advantage. From Pinterest to Instagram, users are finding a way to re-purpose packaging. Business owners who are vocal in encouraging their customers to prioritize environmentally friendly choices can earn more goodwill and local business as a result. ToolTally is a good example of a blog that focuses on helping DIYers reuse products, and is growing an organic following as a result.

4. Reduced Footprint

A business owner has financial goals they have to meet, but they have environmental goals as well. Every professional in an upper-management position has a responsibility to ensure their company meets high standards of environmental compliance, and biodegradable packaging can help — outside a legal context.

To reinforce an earlier point, 70 percent of consumers between the ages of 15 and 20 want to buy goods from companies committed to sustainability, and biodegradable plastics affect the appeal of businesses which would otherwise see less attention. To reduce emissions and increase interest, change is necessary.

5. Convenient Disposal

Recyclable, compostable and biodegradable packaging simplifies disposal for the consumer. It affords them more options in discarding these materials, and companies should always seek to make their products convenient, from start to finish. Biodegradable materials exemplify this mindset.

For example, consumers who prefer to compost their refuse won’t have to make exceptions for packaging. They can add biodegradable packaging to their compost in much the same way they would with any other compost-friendly material, contributing to the product’s value beyond its primary utility.

Looking Toward the Future

When reviewing the benefits listed above, business owners should feel confident in their decision to adopt biodegradable packaging. More than superficial benefits, they’ll enjoy reduced costs and carbon emissions while increasing consumer convenience and reducing plastic pollution. The advantages are clear.

Looking toward the future, it’s safe to speculate more companies will transition toward eco-friendly practices. With this in mind, taking action now is the best option, and though biodegradable packaging is a small step, it’s an important one.

Infographic created by Chicago Tag & Label, a custom label printing company

The Impact of Machine Learning on Renewable Energy

Machine learning, as well as its endgame, artificial intelligence, is proving its value in a wide variety of industries. Renewable energy is yet another sector that can benefit from machine learning’s smart data analysis, pattern recognition and other abilities. Here’s a look at why the two are a perfect match.

Predicting and Fine-Tuning Energy Production

One of the biggest misconceptions about solar power is that it’s only realistic in parts of the world known for year-round heat and intense sunshine. According to Google, around 80% of rooftops they’ve analyzed through their Sunroof mapping system “are technically viable for solar.” They define “viable” as having “enough unshaded area for solar panels.”

Even with this widespread viability, it’s useful to be able to predict and model the energy yield of a renewable energy project before work begins. This is where machine learning enters the equation.

Based on the season and time of day, machine learning can produce realistic and useful predictions for when a residence or building will be able to generate power and when it will have to draw power from the grid. This may prove even more useful over time as a budgeting tool as accuracy improves further. IBM says their forecasting system, powered by deep learning, can predict solar and wind yield up to 30 days in advance.

Machine learning also helps in the creation of solar installations with physical tracking systems, which intelligently follow the sun and angle the solar panels in order to maximize the amount of power they generate throughout the day.

Balancing the Smart Energy Grid

Predicting production is the first step in realizing other advantages of machine learning in clean energy. Next comes the construction of smart grids. A smart grid is a power delivery network that:

  • Is fully automated and requires little human intervention over time
  • Monitors the energy generation of every node and the flow of power to each client
  • Provides two-way energy and data mobility between energy producers and clients

A smart grid isn’t a “nice to have” — it’s necessary. The “traditional” approach to building energy grids doesn’t take into account the diversification of modern energy generation sources, including geothermal, wind, solar and hydroelectric. Tomorrow’s electric grid will feature thousands and millions of individual energy-generating nodes like solar-equipped homes and buildings. It will also, at least for a while, contain coal and natural gas power plants and homes powered by heating oil.

Machine learning provides an “intelligence” to sit at the heart of this diversified energy grid to balance supply and demand. In a smart grid, each energy producer and client is a node in the network, and each one produces a wealth of data that can help the entire system work together more harmoniously.

Together with energy yield predictions, machine learning can determine:

  • Where energy is needed most and where it is not
  • Where supply is booming and where it’s likely to fall short
  • Where blackouts are happening and where they are likely
  • When to supplement supplies by activating additional energy-generating infrastructure

Putting machine learning in the mix can also yield insights and actionable takeaways based on a client’s energy usage. Advanced metering tools help pinpoint which processes or appliances are drawing more power than they should. This helps energy clients make equipment upgrades and other changes to improve their own energy efficiency and further balance demand across the grid.

Automating Commercial and Residential Systems

The ability to re-balance the energy grid and respond more quickly to blackouts cannot be undersold. But machine learning is an ideal companion to renewable energy on the individual level as well. Machine learning is the underlying technology behind smart thermostats and automated climate control and lighting systems.

Achieving a sustainable future means we have to electrify everything and cut the fossil fuels cord once and for all. Electrifying everything means we need to make renewable energy products more accessible. More accessible renewable energy products means we need to make commercial and residential locations more energy-efficient than ever.

Machine learning gives us thermostats, lighting, and other products that learn from user preferences and patterns and fine-tune their own operation automatically. Smart home and automation products like these might seem like gimmicks at first, but they’re actually an incredibly important part of our renewable future. They help ensure we’re not burning through our generated power, renewable or otherwise, when we don’t need to be.

Bottom Line

To summarize all this, machine learning offers a way to analyze and draw actionable conclusions from energy sector data. It brings other gifts, too. Inspections powered by machine learning are substantially more accurate than inspections performed by hand, which is critical for timely maintenance and avoiding downtime at power-generating facilities.

Machine learning also helps us predict and identify factors that could result in blackouts and respond more quickly (and with pinpoint accuracy) to storm damage.

Given that the demand for energy is only expected to rise across the globe in the coming years, now is an ideal time to use every tool at our disposal to make our energy grids more resilient, productive and cost-effective. Machine learning provides the means to do it.

3 Ways to Reuse Water Using Renewable Energy

Water is essential to life, making it one of the most valuable resources on the planet. We drink it, use it to grow food and stay clean. However, water is of increasingly short supply and the Earth’s population only continues to expand. Many of the countries with the largest populations are also ones that use the most water. For instance, in the United States, the average person uses 110 gallons of water each day. Meanwhile, three-fourths of those living in Africa don’t have access to clean water.

To ensure we have enough water to survive — and share with those in need — the best approach is to conserve this resource and find sustainable ways of recycling it. Currently, conventional methods or water purification use about three percent of the world’s energy supply. This isn’t sustainable long-term and can have adverse effects on the environment.

Recently, however, major steps have been made to reduce both the collective water and carbon footprint. Now, there are multiple, sustainable ways to both save energy and reuse water using renewable energy.

1. Anaerobic Digestion

Anaerobic digestion — or AD — is the natural process in which microorganisms break down organic materials like industrial residuals, animal manure and sewage sludge. This process takes place in spaces where there is no oxygen, making it an ideal system for cleaning and reusing wastewater. This recycled water can provide nutrients for forest plantations and farmland alike.

For example, in Yucatan, Mexico, the successful implementation of AD systems has provided water to promote reforestation efforts. This system has also helped accelerate the search for a sustainable solution to water-sanitation issues in rural Latin American communities.

Additionally, anaerobic digestion also reduces adverse environmental impacts. As the system filters water, it creates two byproducts — biogas and sludge. The biogas can be used as energy to supply electricity or even fuel vehicles. And the sludge is used as fertilizers and bedding for livestock. In poor countries, like Peru, 14 percent of primary energy comes from biogas, providing heat for food preparation and electricity to homes that would not have access to it otherwise.

2. Vapor Compression Distillation

In this process, the vapor produced by evaporating water is compressed, increasing pressure and temperature. This vapor is then condensed to water for injection — highly purified water that can be used to make pharmaceutical-grade solutions.

Vapor compression distillation is incredibly sustainable because it can produce pure water on combustible fuel sources like cow dung — no chemicals, filters or electricity necessary. This makes it water accessible to even the most rural communities.

The system only needs enough energy to start the first boil and a small amount to power the compressor. This energy can be easily supplied by a solar panel, producing roughly 30 liters of water an hour using no more energy than that of a handheld hairdryer.

3. Solar Distillation

Utilizing solar energy for water treatment may be one of the most sustainable solutions to the water crisis, without sacrificing the environment or non-renewable resources. Between 80 and 90 percent of all energy collected through commercial solar panels is wasted, shed into the atmosphere as heat. However, recent advancements in technology have allowed scientists to capture this heat and use it to generate clean, recycled water.

By integrating a solar PV panel-membrane distillation device behind solar panels, researchers were able to utilize heat to drive water distillation. This panel also increases solar to electricity efficiency. This device can even be used to desalinate seawater, providing a sustainable solution to generating freshwater from saltwater.

Environmental and Economic Benefits

Finding sustainable methods of recycling water is essential to reducing energy consumption and helping the planet, and all those dependent upon it, thrive. Using methods like anaerobic digestion and environmentally-friendly distillation processes can reduce toxic emissions and provide purified, recycled water to those who need it most.

Sustainable reuse of water can also benefit the economy. The financial costs of constructing and operating desalination and purification systems are often high compared to the above solutions. Furthermore, using recycled water that is of lower quality for agricultural and reforestation purposes saves money by reducing treatment requirements.

Why Should Your Company Commit to Renewable Power?

Roughly one-third of U.S. greenhouse gas emissions come from burning fossil fuels to create electricity, according to Climate Collaborative. Using non-renewable gas, oil and coal adds to a rapidly growing carbon footprint, increases global warming and spells disaster for our fragile planet’s future. Companies and large corporations have the ability to make a positive environmental change by committing to transition to renewable energy in the coming months and years. Not only will this benefit our planet, but it also promises success for companies who choose to commit to it.

Reduce energy costs by producing your own energy

Utility bills are a huge expense for businesses, many of which are at the mercy of utility companies that could raise their rates at any moment. Renewable energy is an attractive alternative to electricity and the bills that come with it. Wind installations are one option, but solar panels are even better as they are more predictable, efficient and affordable.

In fact, the cost of renewable energy is dropping at an incredibly rapid rate. The total cost of developing wind power has dropped 55% in the last five years while solar energy has dropped a shocking 74%. These low prices stem from massive global investment and rapid technological advancement. And major corporations that are already using clean energy are only looking to buy more in the coming months.

renewables-investment-trends

Boosting public relations

An increasing number of companies are committing to renewable power to boost public image. Smart businesses know that, in today’s world, renewable power is a source of competitive advantage. Social pressure to reduce emissions continues to rise as consumers look for ways to be involved in saving the planet. This green movement has driven a demand for green products. And companies that can sustainably create these products are winners in the public eye.

Renewable power is also reliable and predictable

Unlike coal or oil, we’ll never run out of wind or sun. This makes the cost and savings of wind and solar power quite stable. Solar panels installed on top of business structures will produce a consistent amount of energy year after year as long as they are properly maintained. This strong reliability makes budgeting easier and ensures a less volatile bottom line.

Reducing carbon emissions

Every one killowatt-hour of energy produced keeps 300 pounds of carbon out of the atmosphere. So, replacing non-renewable energy with renewable resources naturally decreases global warming emissions. And that’s good news for everyone on earth because if we’re left with more carbon than oxygen, it’s going to be a little difficult to breathe.

How Can You Commit to Renewable Power?

The first step in committing to renewable power is shifting your perspective. Take time to personally research these benefits of renewable power. Once you decide sustainable energy is worth implementing, on both an individual and global scale, you can begin to look for ways to create your own strategy.

The best way to brainstorm and execute strategy is to develop a team with specific goals in mind. This team should include members from different departments such as legal, financial, environmental, sustainability and operations. Once there is a team in place, you can begin to integrate energy into the company’s vision and operations.

The team should begin by assessing current energy impacts and how they might change them. Analyzing impact and comparing your own to competitors’ will reveal performance opportunities and gaps. The team can then develop a plan of action. Aggressive targets should reflect the degree and pace of emission reductions necessary to mitigate climate change.

Once goals are outlined, the team must create incentives for employees and consumers alike to make energy an actionable priority. From there, they can measure and manage energy usage as the company transitions from non-renewable to renewable energy sources.

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup using rural small town business idea can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas for Rural Areas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas for rural areas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Sustainable Innovations in Train Stations

The growing urgency around climate change and energy consumption has prompted a significant response from the rail industry over the past decade. It has responded with major initiatives around the globe. For example, in Germany, national rail company Deutsche Bahn has replaced tens of thousands of incandescent lights with LEDs. In the United Kingdom, rail managers have upgraded existing lines, like the HS1, to run entirely on renewable energy.

Another major change is that train stations themselves are becoming more eco-friendly and energy-efficient. These are some of the most significant changes transit authorities have made to reduce the environmental impact of train stations and cut down on emissions caused by rail travel and freight.

Green Innovations at a New Bay Area Rapid Transit Station

In 2017, Bay Area Rapid Transit (BART) officially opened a new station in Fremont, in California’s East Bay. The new Warm Springs/South Fremont Station was billed as BART’s most sustainable station yet, built with several eco-friendly features “baked in” to the station design.

Among other features, the new Fremont station includes solar panels on the station’s roof, charging stations for electric vehicles and biological water filtration systems called “bioswales.”

Bioswales are stormwater runoff management systems made out of native grasses, pebbles, shrubs, swan hill oak trees and similar landscaping elements. These systems pull in and filter rainwater that would typically run off roofs and paved surfaces, carrying pollutants with them to local waterways.

green-train-station

At the new station, rainwater is captured in an underground surge basin after being filtered through the bioswale system. The water there can then be used in the station itself or slowly released in a way that won’t overwhelm local drainage areas.

The station isn’t the only BART initiative that aims to improve the eco-friendliness of Bay Area transit. In 2013, the system announced that it would use more than 1,300 tons of recycled waste tires to reduce vibration on an extension project near Fremont.

The project, which used shredded tires in place of gravel, is one recent example of how used car parts can be recycled and put to use.

Hong Kong Rail Station Features Garden Roof

Other, more recent projects have also used landscaping and natural design elements to improve sustainability.

For example, the new Hong Kong West Kowloon railway station, which opened in September 2018, features a curved “green roof” dotted with more than 700 trees.

Built to function as both a public space and transit hub, the station is also remarkably sustainable. The green roofscape, in addition to being aesthetically pleasing, also captures and filters rainwater, much like the Fremont station in California.

Deutsche Bahn’s “Green Station” Initiative

Germany has been a world leader in the adoption of green tech and transportation practices. One of the best examples of this has been the “Green Station” initiative led by Deutsche Bahn, the private railway company owned by the German federal government.

The project made headlines in the mid-2010s when the company produced the world’s first zero-carbon train station in Kerpen-Horrem, in western Germany.

This was an early example of how modern stations are compatible with eco-friendly design decisions. For example, the station in Kerpen-Horrem has an energy-efficient lighting system that uses a combination of LEDs, natural light and light-reflecting architecture to provide consistent illumination to the station with minimal energy consumption.

deutsche-bahn-energy-efficiencyEntlang eines Solarparks in Baiersdorf – ein Zug der Baureihe ET 442 unterwegs als S-Bahn

Since then, Deutsche Bahn has continued to make major strides in sustainable railway management and design, powering 33 of the company’s stations with entirely renewable energy and aiming for a companywide target of 100% carbon neutrality by 2050.

Reinventing Train Stations to Improve Sustainability

These new train stations show how transit providers are rethinking design to improve sustainability. Innovations like solar power arrays, electric charging stations and biofilters can all make a structure significantly more sustainable — and they’re becoming more common in station design.

Will Solar Roadways Ever Be Possible?

In the United States, the primary mode of transport is cars — and when you have many people driving, you need a lot of road. In total, there are around four million miles of paved road in the United States. According to one estimate, that’s more than 13,000 square miles of paved land.

These roads have a big impact on their local environment before, during and after construction. First, there’s a carbon cost to laying asphalt. After construction, when it rains, the impervious surface of the road can carry polluted rainwater directly to storm drains — where the water will run off into the environment.

There’s also evidence that expanding roads encourages people to drive more often, increasing emissions over time.

Without a major shift in the U.S., these roads are likely to stick around well into the future. As a result, environmentalists and engineers want to find ways to take advantage of all that open space and offset some of the environmental cost of roads.

solar-highway

Solar roadways — roads outfitted with special solar panels — have arisen as one possible solution to reduce the environmental impact of roads. If you outfit all these roads with solar energy, you can use that paved land to generate energy. At first glance, it looks like a good idea — but would it work in practice?

Why People Are Interested in Solar Roadways

While solar roadway technology has been theoretically possible for a while, interest in the idea has grown significantly over the past decade. This new interest is likely due in part to the growing availability of new solar technology like home solar systems and batteries.

Changes in road materials may have also made the idea seem more practical. In recent years, rising asphalt prices have many cities turning to concrete for their roads. Concrete is somewhat tougher and more durable than asphalt, meaning concrete roads may be a better candidate for projects like solar roadways, where damage to the road could loosen or destroy embedded solar panels.

Growing knowledge about the environmental impact of travel by car may have also inspired recent interest in solar road projects. After all, if we can find a way to make roads eco-friendly, we won’t need to worry as much about their potential long-term effects on the climate and the environment.

The Challenges to Overcome

No one has attempted a large-scale solar roadway yet — but the first few experimental applications of the technology have not yielded encouraging results.

The Wattway solar road project, built in the Normandy region of France in 2016, lined a full kilometer (0.62 miles) of road with 2,800 photovoltaic solar panels. The project engineers designed panels coated with a special resin containing silicone. The company behind Wattway said the resin was strong enough to protect the panels from the weight of an eighteen-wheeler.

While sound in theory, the project was a disaster in practice. The resin was able to mostly protect the panels from traffic at first, but the sound created by cars passing over the panels was so loud that the village had to limit local speed limits to just over 40 miles per hour.

Three years after installation, there are solar panels peeling off the road and the protective resin is splintered and shattered in many places.

In terms of energy production, the project was also a bust. While solar panels are decent energy sources in well-lit regions of the world, Normandy only sees around 44 days of full sunlight every year. The region’s strong weather, in addition to potentially damaging the panels, further limited the power the panels could collect.

wattway-solar-road-project

On one hand, the Wattway project may seem like a failure of planning. The choice of region, road and materials were all suboptimal. The combination of these mistakes could easily have been enough to sink the project.

However, the Wattway project also shows the serious challenges that engineers will overcome to make solar roadways and other “solar surfaces” workable. To start with, designers will need to use panel materials that are strong, resilient to traffic without generating too much noise and easy to maintain. Project planners will also have to select the right region for the roadway and find a road with the right angle towards the sun for maximum energy production.

What Will Future Solar Technology Look Like?

Growing demand for clean sources of energy will prompt engineers and designers to continue searching for new applications for solar panels. Solar roadways, however, seem likely to remain theoretical in the near future. The challenges of road-ready solar panels and the limited amount of suitable area will probably mean that solar engineers will look elsewhere before turning to projects like a solar panel highway.

Things to Know About Backup Batteries for Renewable Energy

Renewable energy is a force that can help combat climate change. However, without the right proactive steps, there can be pitfalls. For instance, solar power is becoming more widely available but can use some improvements. Solar backup batteries are a critical solution when renewable energy fails.

solar-battery-storage

The Need for Renewability

Renewability is one of the keys to stopping and reversing the climate crisis. It’s time to phase out fossil fuels and harmful environmental practices and focus on sustainable energy sources. There are various deadlines when people must act, and stopping climate change becomes more pressing every day.

However, while renewable energy is a solution, these sources may need a backup system. Often, resources like solar and wind energy are durable and hold up through harsh weather and high demands. When they fail, though, it can leave millions without power. A full renewable system requires constant clean energy.

During the 2020 California wildfires, residents reported their photovoltaic (PV) panels were no longer working, and they were losing power. The ash from the fires was covering the panels, and the smog in the sky was disrupting the transfer of sunlight. During instances like these, a backup plan is necessary.

Battery power is the solution. If solar fails, then the backup system can kick in and keep residents’ homes, schools and companies running.

Integrating Backup Batteries

A backup battery system will most prominently help solar energy setups. While PV panels are versatile, they can nevertheless use assistance. Microgrids will especially benefit from solar backup batteries. The ultimate goal is to keep emissions low at all times — but people will still need power. If a solar system fails, like those in California during the wildfires, then it’s not operating on a fully renewable level.

Experts can integrate batteries into the electrical setup with the proper enclosing tools to prevent surges and stalling. They’ll connect to the lights, HVAC system and other necessities of the building. For schools, internet access may be required to contact parents during blackouts. Businesses may need to keep computers running to prevent data loss.

solar-microgrid

Each system will depend on the supply demands of the location. A smaller home may not need a large network. However, if a solar microgrid powers a university, then the backup battery system will need to account for that demand. Experts must consider the power level of the PV panels, too. That is what will bring solar backup batteries to the next level.

Battery systems can generate power when renewables can’t. It maintains a sustainable impact while still providing people with electricity at all times.

Why It Matters

Renewable energy is groundbreaking. It shows the way forward with no carbon emissions, lower pollution and benefits for public health as well as the environment. While there can be power outages and mishaps with fossil fuels, renewable energy can draw more people in with foolproof generation.

Batteries don’t produce any emissions, so the renewability continues — as does the consistent supply of power. Outages and surges can become less common and not as much of a setback if they do happen.

The partnership of batteries and renewable energy opens up the future. From here, experts will want to work on scalability. Microgrids are a prime area for integrating backup batteries with renewable energy. On larger scales, though, the possibilities could be endless.

Better system setups mean bigger solar and wind farms could also use battery power. While these operations have less chance of failure due to the amount of energy going into them, batteries could still facilitate optimal energy flows and provide backup assistance.

In Development

With energy companies expanding their renewable energy services and integration, every step must receive a backup. Batteries are long-lasting and durable. Adding them to renewable energy setups will create a more foolproof dynamic — one that’s sustainable and always providing power.

How to Reduce Your Digital Carbon Footprint?

Roughly 2.5 billion people around the globe use the internet. Experts predict the energy used to power the internet — as well as the number of greenhouse gases produced — will soon exceed air travel. Your digital carbon footprint is comprised of a number of activities, not just checking email.

Digital activities that have an impact on the environment include:

  • Streaming music
  • Watching Netflix
  • Posting on Twitter
  • Buying an e-book
  • Reading online news

Today’s eco-conscious consumers and businesses are looking for ways to reduce their digital carbon footprints and implement sustainable practices.

1. Reach Out to Tech Companies

Tech companies like YouTube can reduce their digital carbon footprint by changing how their design. In 2016, people streamed about 1 billion hours of YouTube videos each day, producing 10 million metric tons of carbon dioxide equivalent (CO2e) — the same as the City of Glasgow.

For users who only listen to YouTube for the audio, the option to turn off the video could save 100 to 500 Kilotons of CO2e each year — comparable to the carbon footprint of 30,000 homes in the U.K. For consumers, it’s imperative to reach out to your favorite brands and request eco-conscious features.

2. Unsubscribe from Unwanted Emails

In 2018, more than 281 billion emails were sent and received each day, a number that’s expected to grow to more than 347 billion by 2022. Like anyone else, you probably have multiple brands who send you unwanted emails. To reduce your carbon footprint, make use of the unsubscribe button.

Look through your inbox for any unwanted emails you’ve yet to delete. You should also go through your promotions and spam folder. The unsubscribe button is typically at the very bottom of the email. Some brands attempt to hide it by making the text a similar color as the background.

3. Optimize Your Charging Routine

How many digital devices do you charge? There’s the laptop, cellphone, tablet and smartwatch. To reduce your carbon footprint, optimize your charging routine. Once a device is fully charged, unplug the power supply. Not only can you reduce your energy consumption, but you’ll also improve the lifetime of your battery.

Reduce your reliance on fossil fuels by investing in a solar charger. There are many solar charging stations available that range in capability and price. You can find a quality set-up under $50 for a smartphone, tablet and watch. If you want to power heavy-duty devices like laptops and film equipment, you’ll want to research options $75 and above.

4. Hang Onto Your Old Device

In the U.S., 44% of smartphone users said they replace or upgrade their phone as often as their provider allows, typically every two years. Many of these working devices end up cluttering landfills, while others are broken down into usable materials. Consumers and businesses alike can reduce their digital footprint by holding onto devices longer.

If you have a cracked screen, look into DIY tools online, or visit a local shop. The cost is remarkably affordable compared to the latest phone model. If your device is running slow, delete unused or unwanted apps, photos, videos, files and more. Most smartphones have a built-in storage cleaner that can free up space.

5. Download Instead of Stream

Video streaming makes up a large chunk of internet traffic. Data centers that host streaming sites like Netflix, YouTube and Facebook consume around 1% of the world’s electricity each year, a number that’s expected to grow. More demand for this type of technology means more consumed energy.

To minimize carbon output, data centers need to be fed by renewable energy sources, such as solar, hydroelectric or nuclear power. As a consumer, you can reduce the amount of time you spend streaming videos and music each day. Try to download content ahead of time, which puts less strain on networks. If you do stream video, connect to Wi-Fi instead of 4G to consume less energy.

Most of the resources we rely on are finite. It’s crucial to make sustainable choices and reduce your carbon footprint. Reach out to your favorite tech companies and request eco-friendly alternatives. Pare down your inbox and delete any offers for a phone upgrade. You can also invest in a solar charger and reduce your streaming time.

For most of us, it’s impossible to cut out internet use entirely. However, it’s still possible to make eco-friendly decisions.