Biomass Energy in Nigeria: An Overview

biomass-sustainabilityOil and gas accounts for over 70% of energy consumed in Nigeria, according to the World Bank. Considering this dependency on fossil oil and possibility of it running out in the future, there should be an urgent intervention to look into other ways to generate energy in Nigeria. The world is moving away gradually from fossil oil and aligning towards sustainable energy resources to substitute conventional fuel, Nigeria should not be exempted from this movement. Biomass, a popular form of renewable energy, is considered as a credible and green alternative source of energy which many developed and developing countries have been maximizing to its potential.

Power generation and supply have been inadequate in Nigeria. This inadequacy of power limits human, commercial and industrial productivity and economic growth . What is the use of infrastructure without constant electricity? Even God created light first. Sustainable and constant supply of power should be one of the priority of government in nation development. Investing in biomass will cause an increase in the amount of power generated in Nigeria. Infact, biomass energy has the potential to resolve the energy crisis in the country in the not so distant future.

What is Biomass

The word biomass refers to organic matter (mainly plants) which acts as a source of sustainable and renewable energy. It is a renewable energy source because the plants can be replaced as oppose to the conventional fossil fuel which is not renewable. Biomass energy is a transferred energy from the sun; plants derives energy from the sun through photosynthesis which is further transferred through the food chain to animals’ bodies and their waste.

Biomass has the potential to provide an affordable and sustainable source of energy, while at the same time help in curbing the green house effect. In India the total biomass generation capacity is 8,700 MW according to U.S. of Commerce’s International Trade Administration, whereas the generating capacity in U.S. is 20,156  MW with 178 biomass power plants, according to Biomass Magazine.

Power Sector in Nigeria

Unfortunately, the total installed electricity capacity generated in Nigeria is 12,522MW, well below the current demand of 98,000MW . The actual output is about 3,800MW, resulting in a demand shortfall of 94,500MW throughout the country. As a result of this wide gap between demand and output, only 45% of Nigeria’s population has access to electricity. Renewable energy contributed 19% of total electricity generated in Nigeria out of which biomass contribution is infinitesimal.

Electricity generation for Nigeria’s grid is largely dominated by two sources; non-renewable thermal (natural gas and coal) and renewable (hydro). Nigeria depends on non-renewable energy despite its vast potential in renewable sources such as solar, wind, biomass and hydro. The total potential of these renewables is estimated at over 68,000MW, which is more than five times the current power output.

Biomass Resources in Nigeria

Biomass can come in different forms like wood and wood waste, agriculture produce and waste, solid waste.

Wood

Electricity can be generated with wood and wood product/waste(like sawdust) in modern day through cogeneration, gasification or pyrolysis.

Agriculture Residues

In Nigeria, agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc.

However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

Municipal Solid Waste

Back then in secondary school, I learnt that gas could be tapped from septic tank which could further be used for cooking.  Any organic waste (like animal waste, human waste) when decomposed by anaerobic microorganisms releases biogas which can be tapped and stored for either cooking or to generate electricity.

Biomass can be used to provide heat and electricity as well as biofuel and biogas for transport. There are enough biomass capacity to meet our demand for electricity and other purposes. From climatic point of view, there is a warm climate in Nigeria which is a good breeding ground for bacteria to grow and decompose the wastes. There are plant and animal growth all year round which in turn create waste and consequently produce biomass.

In November 2016, The Ebonyi State Government  took over  the United Nations Industrial Development Organization (UNIDO) demonstration biomass gasifier power plant located at the UNIDO Mini -industrial cluster in Ekwashi Ngbo in Ohaukwu Local Government Area of the State. The power plant is to generate 5.5 Megawatt energy using rice husk and other available waste materials available. More of these type of power plants and commitment are needed to utilize the potential of biomass fully.

Why Biomass Energy?

Since biomass makes use of waste to supply energy, it helps in waste management. It also has the potential to supply more energy (10 times) than the one produced from sun and wind. Biomass will lead to increase in revenue generation and conserves our foreign exchange. Increase in energy generation will yield more productivity for industries and the rate at which they are shutting down due to the fact that they spend more on power will be reduced to minimal.

Many local factories/companies will spring up and foreign investors will be eager to invest in Nigeria with little concern about power. Establishment of biopower plants will surely create more jobs and indirectly reduce the number of people living in poverty which is increasing everyday at an alarming rate.

Africa’s most populous country needs more than 10 times its current electricity output to guarantee supply for its 198 million people – nearly half of whom have no access at all, according to power minister Babatunde Fashola. Biomass energy potential in Nigeria is promising –  with heavy investment, stake holder cooperation and development of indigenous technologies. The deployment of large-scale biomass energy systems will not only significantly increase Nigeria’s electricity capacity but also ease power shortages in the country.

Is Green Car Fuel A Reality?

drop-in-biofuelsVehicles remain a huge global pollutant, pumping out 28.85Tg of CO2 in Maharashtra alone, according to a study by the Indian Institute for Science in Bangalore. However, vehicles cannot be discarded, as they form the lifeblood of the country’s towns and cities. Between electric vehicles and hybrids, work is being done to help rectify the situation by making use of green car fuel and technological advancements.

Emissions continue to be a huge issue, and there are two main options for helping to rectify that. The first is electric, which is seeing widespread adoption; and the second, biomass fuel, for more traditional vehicles. Between the two, excellent progress is being made, but there’s much more to be done.

How electric is helping

Electric cars are favoured heavily by the national authorities. A recent Times of India report outlined how the government is aiming for an all-electric vehicle fleet by 2030 and is pushing this through with up to US$16m of electric vehicle grants this year. Green vehicles are obviously a great choice, improving in-city noise and air pollution whilst providing better vehicular safety to boot; a study by the USA’s MIT suggested that electric vehicles are all-around safer than combustion.

However, where EVs fall down to some extent is through the energy they use. As they are charged from the electricity grid, this means that the electricity is largely derived from fossil fuels – official statistics show that India is 44% powered by coal. Ultimately, however, this does mean that emissions are reduced. Fuel is only burned at one source, and oil refining isn’t done at all, which is another source of pollutants. However, as time goes on and the government’s energy policy changes, EVs will continue to be a great option.

The role of biofuels

Biofuels are seeing a huge growth in use – BP has reported that globally, ethanol production grew 3% in 2017. Biofuel is commonly a more favoured option by the big energy companies given the infrastructure often available already to them. While biofuel has been slow on the uptake in India, despite the massive potential available for production, there are now signs this is turning around with the construction of two US$790m biofuel facilities.

Biofuels are increasingly being used to power vehicles around the world

The big benefit of biofuel is that it will have a positive impact on combustion and electric vehicles. The Indian government has stated they intend to use biofuel alongside coal production, with as much as 10% of energy being created using biofuel. Therefore, despite not being emission-free, biofuel will provide a genuine green energy option to both types of eco-friendly vehicle.

Green car fuel is not entirely clean. The energy has to come from somewhere, and in India, this is usually from coal, gas, and oil. However, the increase in biofuel means that this energy will inevitably get cleaner, making green car fuel absolutely a reality.

Role of Biomass Energy in Rural Development

biomass-balesBiomass energy systems not only offer significant possibilities for clean energy production and agricultural waste management but also foster sustainable development in rural areas. The increased utilization of biomass wastes will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

Biomass energy has the potential to modernize the agricultural economy and catalyze rural development. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small, medium and large-scale biomass-based power plants can play a major role in rural development.

Sustainable harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

Planting of energy crops on abandoned agricultural lands will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Rural areas are the preferred hunting ground for the development of biomass sector worldwide. By making use of various biological and thermal processes (anaerobic digestion, combustion, gasification, pyrolysis), agricultural wastes can be converted into biofuels, heat or electricity, and thus catalyzing sustainable development of rural areas economically, socially and environmentally.

Biomass energy can reduce 'fuel poverty' in remote and isolated communities

Biomass energy can reduce ‘fuel poverty’ in remote and isolated communities

A large amount of energy is utilized in the cultivation and processing of crops like sugarcane, wheat and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs.

There are many areas in India where people still lack access to electricity and thus face enormous hardship in day-to-day lives. Biomass energy promises to reduce ‘fuel poverty’ commonly prevalent among remote and isolated communities.  Obviously, when a remote area is able to access reliable and cheap energy, it will lead to economic development and youth empowerment.

Resource Base for Second-Generation Biofuels

second-generation-biofuelsSecond-generation biofuels, also known as advanced biofuels, primarily includes cellulosic ethanol. The feedstock resource base for the production of second-generation biofuel are non-edible lignocellulosic biomass resources (such as leaves, stem and husk) which do not compete with food resources. The resource base for second-generation biofuels production is broadly divided into three categories – agricultural residues, forestry wastes and energy crops.

Agricultural Residues

Agricultural (or crop) residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy.

Sugarcane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these lignocellulosic materials can be converted into biofuels by a wide range of technologies.

Forestry Biomass

Forest harvesting is a major source of biomass energy. Harvesting in forests may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for production of cellulosic ethanol.

Biomass harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Energy Crops

Energy crops are non-food crops which provide an additional potential source of feedstock for the production of second-generation biofuels. Corn and soybeans are considered as the first-generation energy crops as these crops can be also used as the food crops. Second-generation energy crops are grouped into grassy (herbaceous or forage) and woody (tree) energy crops.

Grassy energy crops or perennial forage crops mainly include switchgrass and miscanthus. Switchgrass is the most commonly used feedstock because it requires relatively low water and nutrients, and has positive environmental impact and adaptability to low-quality land. Miscanthus is a grass mainly found in Asia and is a popular feedstock for second-generation biofuel production in Europe.

Woody energy crops mainly consists of fast-growing tree species like poplar, willow, and eucalyptus. The most important attributes of these class species are the low level of input required when compared with annual crops. In short, dedicated energy crops as feedstock are less demanding in terms of input, helpful in reducing soil erosion and useful in improving soil properties.

Importance of Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Renewable energy supplies around one-fifth of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Some of the recent predictions suggest that biomass energy is likely to make up one third of the total world energy mix by 2050. Infact, biofuel provides around 3% of the world’s fuel for transport.

Biomass energy resources are readily available in rural and urban areas of all countries. Biomass-based industries can foster rural development, provide employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions.

Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

Advantages of Biomass Energy

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil.

Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably.

Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermochemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

Consistent and reliable supply of biomass is crucial for any biomass project

When compared with wind and solar energy, biomass power plants are able to provide crucial, reliable baseload generation. Biomass plants provide fuel diversity, which protects communities from volatile fossil fuels. Since biomass energy uses domestically-produced fuels, biomass power greatly reduces our dependence on foreign energy sources and increases national energy security.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production.

The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.

Biofuels from Lignocellulosic Biomass

Lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide containing large reservoirs of energy that provide real potential for conversion into biofuels. Lignocellulosic biomass consists of a variety of materials with distinctive physical and chemical characteristics. It is the non-starch based fibrous part of plant material.

First-generation biofuels (produced primarily from food crops such as grains, sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product substitution, climate change mitigation, and economic growth. Their sustainable production is under scanner, as is the possibility of creating undue competition for land and water used for food and fibre production.

The cumulative impacts of these concerns have increased the interest in developing biofuels produced from non-food biomass. Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and purpose-grown energy crops such as vegetative grasses and short rotation forests. These second-generation biofuels could avoid many of the concerns facing first-generation biofuels and potentially offer greater cost reduction potential in the longer term.

The largest potential feedstock for ethanol is lignocellulosic biomass, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantlylignocellulosic feedstocks do not interfere with food security. Moreover, bioethanol is very important for both rural and urban areas in terms of energy security reason, environmental concern, employment opportunities, agricultural development, foreign exchange saving, socioeconomic issues etc.

Lignocellulosic biomass consists mainly of lignin and the polysaccharides cellulose and hemicellulose. Compared with the production of ethanol from first-generation feedstocks, the use of lignocellulosic biomass is more complicated because the polysaccharides are more stable and the pentose sugars are not readily fermentable by Saccharomyces cerevisiae. In order to convert lignocellulosic biomass to biofuels the polysaccharides must first be hydrolysed, or broken down, into simple sugars using either acid or enzymes. Several biotechnology-based approaches are being used to overcome such problems, including the development of strains of Saccharomyces cerevisiae that can ferment pentose sugars, the use of alternative yeast species that naturally ferment pentose sugars, and the engineering of enzymes that are able to break down cellulose and hemicellulose into simple sugars.

Lignocellulosic processing pilot plants have been established in the EU, in Denmark, Spain and Sweden. The world’s largest demonstration facility of lignocellulose ethanol (from wheat, barley straw and corn stover), with a capacity of 2.5 Ml, was first established by Iogen Corporation in Ottawa, Canada. Many other processing facilities are now in operation or planning throughout the world.

Economically, lignocellulosic biomass has an advantage over other agriculturally important biofuels feedstocks such as corn starch, soybeans, and sugar cane, because it can be produced quickly and at significantly lower cost than food crops. Lignocellulosic biomass is an important component of the major food crops; it is the non-edible portion of the plant, which is currently underutilized, but could be used for biofuel production. In short, lignocellulosic biomass holds the key to supplying society’s basic needs for sustainable production of liquid transportation fuels without impacting the nation’s food supply.

Ethanol Production via Biochemical Route

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass. Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc). The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

The pretreated biomass is subjected to enzymatic hydrolysis using cellulase enzymes to convert the cellulose to fermentable sugars. Cellulase refers to a class of enzymes produced chiefly by fungi and bacteria which catalyzes the hydrolysis of cellulose by attacking the glycosidic linkages. Cellulase is mixture of mainly three different functional protein groups: exo-glucanase (Exo-G), endo-glucanase(Endo-G) and ?-glucosidase (?-G). The functional proteins work synergistically in hydrolyzing the cellulose into the glucose. These sugars are further fermented using microorganism and are converted to ethanol. The microorganisms are selected based on their efficiency for ethanol productivity and higher product and inhibitors tolerance. Yeast Saccharomyces cerevisiae is used commercially to produce the ethanol from starch and sucrose.

Escherichia coli strain has also been developed recently for ethanol production by the first successful application of metabolic engineering. E. coli can consume variety of sugars and does not require the complex growth media but has very narrow operable range of pH. E. coli has higher optimal temperature than other known strains of bacteria.

Lower GHG emissions and empowerment of rural economy are major benefits associated with bioethanol

The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Enzyme cost is the prime concern in full scale commercialization. The trend in enzyme cost is encouraging because of enormous research focus in this area and the cost is expected to go downward in future, which will make bioethanol an attractive option considering the benefits derived its lower greenhouse gas emissions and the empowerment of rural economy.

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa (www.CCAP.ac.uk), Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

Algae Cultures at the Scottish Association for Marine Science

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.

What is Algaculture

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels, using land that is not suitable for agriculture. Algae holds enormous potential to provide a non-food, high-yield, non-arable land use source of biodiesel, ethanol and hydrogen fuels. Microalgae are the fastest growing photosynthesizing organism capable of completing an entire growing cycle every few days. Up to 50% of algae’s weight is comprised of oil, compared with, for example, oil palm which yields just about 20% of its weight in oil.

Algaculture (farming of algae) can be a route to making vegetable oils, biodiesel, bioethanol and other biofuels. Microalgae are one-celled, photosynthetic microorganisms that are abundant in fresh water, brackish water, and marine environments everywhere on earth. The potential for commercial algae production is expected to come from growth in translucent tubes or containers called photo bioreactors or open ocean algae bloom harvesting. The other advantages of algal systems include:

  • carbon capture from smokestacks to increase algae growth rates
  • processing of algae biomass through gasification to create syngas
  • growing carbohydrate rich algae strains for cellulosic ethanol
  • using waste streams from municipalities as water sources

Algae have certain qualities that make the organism an attractive option for biodiesel production. Unlike corn-based biodiesel which competes with food crops for land resources, algae-based production methods, such as algae ponds or photobioreactors, would “complement, rather than compete” with other biomass-based fuels. Unlike corn or other biodiesel crops, algae do not require significant inputs of carbon intensive fertilizers.  Some algae species can even grow in waters that contain a large amount of salt, which means that algae-based fuel production need not place a large burden on freshwater supplies.

Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable. Companies such as Sapphire Energy and Bio Solar Cellsare using genetic engineering to make algae fuel production more efficient. According to Klein Lankhorst of Bio Solar Cells, genetic engineering could vastly improve algae fuel efficiency as algae can be modified to only build short carbon chains instead of long chains of carbohydrates.

Sapphire Energy also uses chemically induced mutations to produce algae suitable for use as a crop. Some commercial interests into large-scale algal-cultivation systems are looking to tie in to existing infrastructures, such as cement factories, coal power plants, or sewage treatment facilities. This approach changes wastes into resources to provide the raw materials, CO2 and nutrients, for the system.

Could Biomass Be The Answer To South Africa’s Energy Problem?

South Africa is experiencing a mammoth energy crisis with its debt-laden national power utility, Eskom, being unable to meet the electricity needs of the nation. After extensive periods of load shedding in 2018 and again earlier this year, it is becoming increasingly important to find an alternative source of energy. According to Marko Nokkala, senior sales manager at VTT Technical Research Centre of Finland, South Africa is in the perfect position to utilize biomass as an alternative source of energy.

Things to Consider

Should South Africa choose to delve deeper into biomass energy production, there are a few things that need to be considered. At present, a lot of biomass (such as fruit and vegetables) is utilized as food. It will, therefore, be necessary to identify alternative biomass sources that are not typically used as food, so that a food shortage is never created in the process.

biomass-sustainability

One alternative would be to use municipal solid waste from landfills and dumpsites as well as the wood waste from the very large and lucrative forestry industry in the country. It is also essential to keep in mind that an enormous amount of biomass will be needed to replace even a portion of the 90 million tons of coal that Eskom utilizes every year at its various power stations.

Potential Biomass Conversion Routes

There are a number of processing technologies that South Africans can utilize to turn their biomass into a sustainable energy source. Biochemical conversion involving technology such as anaerobic digestion and fermentation makes use of enzymes, microorganisms, and bacteria to breakdown the biomass into a variety of liquid or vaporous fuels.

WTE_Pathways

Fermentation is especially suitable when the biomass waste boasts a high sugar or water content, as is the case with a variety of agricultural wastes. By placing some focus on microbial fermentation process development, a system can effectively be created that will allow for large-scale biofuel production. Other technologies to consider include thermal methods like co-firing, pyrolysis, and gasification.

Future of biomass energy in South Africa

Despite the various obstacles that may slow down the introduction of large-scale biomass energy production in the country, it still promises to be a viable solution to the pressing energy concern. Biomass energy production does not require any of the major infrastructures that Eskom is currently relying on.

Although the initial setup will require a substantial amount of electricity, running a biomass conversion plant will cost significantly less than a coal-powered power plant in the long run. With the unemployment rate hovering around 27.1% in South Africa at present, any jobs created through the implementation of biomass energy conversion will be of great benefit to the nation.

Conclusion

Without speedy intervention, South Africa may very soon be left in the dark. Although there are already a number of wind farms in operation in the country, the addition of biomass conversion facilities will undoubtedly be of great benefit to Africa’s southernmost country.