Logistics of a Biopower Plant

Biomass feedstock logistics encompasses all of the unit operations necessary to move biomass feedstock from the land to the energy plant and to ensure that the delivered feedstock meets the specifications of the conversion process. The packaged biomass can be transported directly from farm or from stacks next to the farm to the processing plant. Biomass may be minimally processed before being shipped to the plant, as in case of biomass supply from the stacks. Generally the biomass is trucked directly from farm to biorefinery if no processing is involved.

Another option is to transfer the biomass to a central location where the material is accumulated and subsequently dispatched to the energy conversion facility. While in depot, the biomass could be pre-processed minimally (ground) or extensively (pelletized). The depot also provides an opportunity to interface with rail transport if that is an available option. The choice of any of the options depends on the economics and cultural practices. For example in irrigated areas, there is always space on the farm (corner of the land) where quantities of biomass can be stacked.  The key components to reduce costs in harvesting, collecting and transportation of biomass can be summarized as:

  • Reduce the number of passes through the field by amalgamating collection operations.
  • Increase the bulk density of biomass
  • Work with minimal moisture content.
  • Granulation/pelletization is the best option, though the existing technology is expensive.
  • Trucking seems to be the most common mode of biomass transportation option but rail and pipeline may become attractive once the capital costs for these transport modes are reduced.

The logistics of transporting, handling and storing the bulky and variable biomass material for delivery to the biopower plant is a key part of the supply chain that is often overlooked by project developers. Whether the biomass comes from forest residues on hill country, straw residues from cereal crops grown on arable land, or the non-edible components of small scale, subsistence farming systems, the relative cost of collection will be considerable. Careful development of a system to minimize machinery use, human effort and energy inputs can have a considerable impact on the cost of the biomass as delivered to the processing plant gate.

The logistics of supplying a biomass power plant with consistent and regular volumes of biomass are complex.

Most of the agricultural biomass resources tend to have a relatively low energy density compared with fossil fuels. This often makes handling, storage and transportation more costly per unit of energy carried. Some crop residues are often not competitive because the biomass resource is dispersed over large areas leading to high collection and transport costs. The costs for long distance haulage of bulky biomass will be minimized if the biomass can be sourced from a location where it is already concentrated, such as sugar mill. It can then be converted in the nearby biomass energy plant to more transportable forms of energy carrier if not to be utilized on-site.

The logistics of supplying a biomass power plant with sufficient volumes of biomass from a number of sources at suitable quality specifications and possibly all year round, are complex. Agricultural residues can be stored on the farm until needed. Then they can be collected and delivered directly to the conversion plant on demand. At times this requires considerable logistics to ensure only a few days of supply are available on-site but that the risk of non-supply at any time is low.

Losses of dry matter, and hence of energy content, commonly occur during the harvest transport and storage process. This can either be from physical losses of the biomass material in the field during the harvest operation or dropping off a truck, or by the reduction of dry matter of biomass material which occurs in storage over time as a result of respiration processes and as the product deteriorates. Dry matter loss is normally reduced over time if the moisture content of the biomass can be lowered or oxygen can be excluded in order to constrain pathological action.

To ensure sufficient and consistent biomass supplies, all agents involved with the production, collection, storage, and transportation of biomass require compensation for their share of costs incurred. In addition, a viable biomass production and distribution system must include producer incentives, encouraging them to sell their post-harvest plant residue.

Biochemical Conversion of Biomass

Biochemical conversion of biomass involves use of bacteria, microorganisms and enzymes to breakdown biomass into gaseous or liquid fuels, such as biogas or bioethanol. The most popular biochemical technologies are anaerobic digestion (or biomethanation) and fermentation. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. Biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels.

Anaerobic Digestion

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. A combined heat and power plant system (CHP) not only generates power but also produces heat for in-house requirements to maintain desired temperature level in the digester during cold season. In Sweden, the compressed biogas is used as a transportation fuel for cars and buses. Biogas can also be upgraded and used in gas supply networks.

Working of Anaerobic Digestion Process

Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer. A high proportion of the nutrients remain in the liquor, which can be used as a liquid fertilizer.

Biofuel Production

A variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat and power (CHP).

Biomass gasification provides a means of deriving more diverse forms of energy from the thermochemical conversion of biomass than conventional combustion. The basic gasification process involves devolatization, combustion and reduction.

During devolatization, methane and other hydrocarbons are produced from the biomass by the action of heat which leaves a reactive char.

During combustion, the volatiles and char are partially burned in air or oxygen to generate heat and carbon dioxide. In the reduction phase, carbon dioxide absorbs heat and reacts with the remaining char to produce carbon monoxide (producer gas). The presence of water vapour in a gasifier results in the production of hydrogen as a secondary fuel component.

There are two main types of gasifier that can be used to carry out this conversion, fixed bed gasifiers and fluidized bed gasifiers. The conversion of biomass into a combustible gas involves a two-stage process. The first, which is called pyrolysis, takes place below 600°C, when volatile components contained within the biomass are released. These may include organic compounds, hydrogen, carbon monoxide, tars and water vapour.

Pyrolysis leaves a solid residue called char. In the second stage of the gasification process, this char is reacted with steam or burnt in a restricted quantity of air or oxygen to produce further combustible gas. Depending on the precise design of gasifier chosen, the product gas may have a heating value of 6 – 19 MJ/Nm3.

Layout of a Typical Biomass Gasification Plant

The products of gasification are a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and various hydrocarbons, which can then be used directly in gas turbines, and boilers, or used as precursors for synthesising a wide range of other chemicals.

In addition there are a number of methods that can be used to produce higher quality product gases, including indirect heating, oxygen blowing, and pressurisation. After appropriate treatment, the resulting gases can be burned directly for cooking or heat supply, or used in secondary conversion devices, such as internal combustion engines or gas turbines, for producing electricity or shaft power (where it also has the potential for CHP applications).

 

See some of our favorite inspirational quotes

How is Biomass Transported

Transporting biomass fuel to a power plant is an important aspect of any biomass energy project. Because a number of low moisture fuels can be readily collected and transported to a centralized biomass plant location or aggregated to enhance project size, this opportunity should be evaluated on a case-by-case basis.

It will be a good proposition to develop biomass energy plants at the location where the bulk of the agricultural waste stream is generated, without bearing the additional cost of transporting waste streams. Effective capture and use of thermal energy at the site for hot water, steam, and even chilled water requirements raises the energy efficiency of the project, thereby improving the value of the waste-to-energy project.

Important Factors

  • The maximum rate of biomass supply to the conversion facility.
  • The form and bulk density of biomass.
  • The hauling distance for biomass transportation to the processing plant.
  • Transportation infrastructure available between the points of biomass dispatch and processing plant

Transportation is primarily concerned with loading and unloading operation and transferring biomass from pre-processing sites to the main processing plant or biorefinery. Truck transport and for a few cases train transport may be the only modes of transport. Barge and pipeline transport and often train transport involve truck transport. Trucks interface with trains at loading and unloading facilities of a depot or processing facility. Barge and pipeline require interfacing with train and/or truck transport at major facilities either on land or at the shores.

Physical form and quality of biomass has the greatest influence on the selection of equipment for the lowest delivered cost possible. A higher bulk density will allow more mass of material to be transported per unit distance. Truck transport is generally well developed, is usually cheapest mode of transport but it becomes expensive as travel distance increases. Pipeline biomass transport is the least known technology and may prove to be the cheapest and safest mode of transport in the near future.

A biomass freight train in England

Transportation costs of low-density and high-moisture agricultural residues straw are a major constraint to their use as an energy source. As a rule of thumb, transportation distances beyond a 25–50- km radius (depending on local infrastructure) are uneconomical. For long distances, agricultural residues could be compressed as bales or briquettes in the field, rendering transport to the site of use a viable option.

Greater use of biomass and larger?scale conversion systems demand larger?scale feedstock handling and delivery infrastructure. To accommodate expansion in feedstock collection and transportation, production centres can be established where smaller quantities of biomass are consolidated, stored, and transferred to long?distance transportation systems, in much the same way that transfer stations are used in municipal waste handling. Pre?processing equipment may be used to densify biomass, increasing truck payloads and reducing transportation costs over longer haul distances.

A Primer on Agricultural Residues

The term agricultural residue is used to describe all the organic materials which are produced as by-products from harvesting and processing of agricultural crops. These residues can be further categorized into primary residues and secondary residues. Agricultural residues, which are generated in the field at the time of harvest, are defined as primary or field based residues whereas those co-produced during processing are called secondary or processing based residues.

  • Primary residues – paddy straw, sugarcane top, maize stalks, coconut empty bunches and frond, palm oil frond and bunches;
  • Secondary residues – paddy husk, bagasse, maize cob, coconut shell, coconut husk, coir dust, saw dust, palm oil shell, fiber and empty bunches, wastewater, black liquor.

Agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc. However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

Crop residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these materials can be converted into useful energy by a wide range of technologies..

Towards Sustainable Biomass Energy

biomass-balesBiomass is one of the oldest and simplest ways of getting heat and energy, and it’s starting to make a comeback due to its status as renewable resource. Some, however, aren’t so sure that using more of it would be good for our environment. So, how sustainable is biomass energy really?

What is Biomass?

Biomass is organic material from plants and animals. It naturally contains energy because plants absorb it from the sun through photosynthesis. When you burn biomass, it releases that energy. It’s also sometimes converted into a liquid or gas form before it is burned.

Biomass includes a wide variety of materials but includes:

  • Wood and wood processing waste
  • Agricultural crops
  • Garbage made up of food, yard and wood waste
  • Animal manure and human sewage

About five percent of the United States’ energy comes from biomass. Biomass fuel products such as ethanol make up about 48 percent of that five percent while wood makes up about 41 percent and municipal waste accounts for around 11 percent.

The Benefits of Biomass

Biomass is a renewable resource because the plants that store the energy released when it is burned can be regrown continuously. In theory, if you planted the same amount of vegetation that you burned, it would be carbon neutral because the plants would absorb all of the carbon released. Doing this is, however, much easier said than done.

Another potential is that it serves as a use for waste materials that have are already been created. It adds value to what otherwise would be purely waste.

Additionally, many forms of biomass are also relatively low-tech energy sources, so they may be useful, or even required for older buildings that need an electrical renovation.

Drawbacks of Biomass

A major drawback of using biomass fuel is that it is not an efficient process. In fact, burning it can release even more carbon dioxide than burning the same amount of a fossil fuel.

While you can replenish the organic matter you burn, doing so requires complex crop or forest management and the use of a large amount of land.  Also, some biomass, such as wood, takes a long time to grow back. This amounts to a delay in carbon absorption. Additionally, the harvesting of biomass will likely involve some sort of emissions.

 Is it Sustainable?

So, is biomass energy sustainable? Measuring the environmental impacts of biomass fuel use has proven to be complex due to the high number of variables, which has led to a lot of disagreement about this question.

Some assert that biomass use cannot be carbon neutral, because even if you burned and planted the same amount of organic matter, harvesting it would still result in some emissions. This could perhaps be avoided if you used renewable energy to harvest it. A continuous supply of biomass would likely require it to be transported long distances, worsening the challenge of going carbon neutral.

With careful planning, responsible land management and environmentally friendly harvesting and distribution, biomass could be close to, if not entirely, carbon neutral and sustainable. Given our reliance on fossil fuels, high energy consumption levels and the limited availability of land and other resources, this would be an immense challenge to undertake and require a complete overhaul of our energy use.

How to Improve the Biomass Industry

Biomass could emerge as a major solution to our energy and sustainability issues, but it isn’t likely to be a comprehensive solution. There are some things we can do, though, to make biomass use more sustainable when we do use it.

  • Source locally: Using biomass that comes from the local area reduces the impact of distributing it.
  • Clean distribution: If you do transport biofuel long distances, using an electric or hybrid vehicles powered largely by clean energy would be the most eco-friendly way to do it. This also applies to transporting it short distances.

Measuring the environmental impacts of biomass fuel use is complex due to high number of variables

  • Clean harvesting: Using environmentally friendly, non-emitting means of harvesting can greatly reduce the impact of using biomass. This might also involve electric vehicles.
  • Manage land sustainably: For biomass to be healthy for the ecosystem, you must manage land used to grow it with responsible farming practices.
  • Focus on waste: Waste is likely the most environmentally friendly form of biomass because it uses materials that would otherwise simply decompose and doesn’t require you to grow any new resources for your fuel or energy needs.

Is biomass energy sustainable? It has the potential to be, but doing so would be quite complex and require quite a bit of resources. Any easier way to address the problem is to look at small areas of land and portions of energy use first. First, make that sustainable and then we may be able to expand that model on to a broader scale.

Major Issues in Biomass Energy Projects

This article makes an attempt at collating some of the most prominent issues associated with biomass technologies and provides plausible solutions in order to seek further promotion of these technologies. The solutions provided below are based on author’s understanding and experience in this field.

Large Project Costs

The project costs are to a great extent comparable to these technologies which actually justify the cause. Also, people tend to ignore the fact, that most of these plants, if run at maximum capacity could generate a Plant Load Factor (PLF) of 80% and above. This figure is about 2-3 times higher than what its counterparts wind and solar energy based plants could provide. This however, comes at a cost – higher operational costs.

Lower Efficiency of Technologies

The solution to this problem, calls for innovativeness in the employment of these technologies. To give an example, one of the paper mill owners in India, had a brilliant idea to utilize his industrial waste to generate power and recover the waste heat to produce steam for his boilers. The power generated was way more than he required for captive utilization. With the rest, he melts scrap metal in an arc and generates additional revenue by selling it. Although such solutions are not possible in each case, one needs to possess the acumen to look around and innovate – the best means to improve the productivity with regards to these technologies.

Immature Technologies

One needs to look beyond what is directly visible. There is a humongous scope of employment of these technologies for decentralized power generation. With regards to scale, few companies have already begun conceptualizing ultra-mega scale power plants based on biomass resources. Power developers and critics need to take a leaf out of these experiences.

Lack of Funding Options

The most essential aspect of any biomass energy project is the resource assessment. Investors if approached with a reliable resource assessment report could help regain their interest in such projects. Moreover, the project developers also need to look into community based ownership models, which have proven to be a great success, especially in rural areas. The project developer needs to not only assess the resource availability but also its alternative utilization means. It has been observed that if a project is designed by considering only 10-12% of the actual biomass to be available for power generation, it sustains without any hurdles.

Non-Transparent Trade Markets

Most countries still lack a common platform to the buyers and sellers of biomass resources. As a result of this, their price varies from vendor to vendor even when considering the same feedstock. Entrepreneurs need to come forward and look forward to exploiting this opportunity, which could not only bridge the big missing link in the resource supply chain but also could transform into a multi-billion dollar opportunity.

High Risks / Low Paybacks

Biomass energy plants are plagued by numerous uncertainties including fuel price escalation and unreliable resource supply to name just a few. Project owners should consider other opportunities to increase their profit margins. One of these could very well include tying up with the power exchanges as is the case in India, which could offer better prices for the power that is sold at peak hour slots. The developer may also consider the option of merchant sale to agencies which are either in need of a consistent power supply and are presently relying on expensive back-up means (oil/coal) or are looking forward to purchase “green power” to cater to their Corporate Social Responsibility (CSR) initiatives.

Resource Price Escalation

A study of some of the successful biomass energy plants globally would result in the conclusion of the inevitability of having own resource base to cater to the plant requirements. This could be through captive forestry or energy plantations at waste lands or fallow lands surrounding the plant site. Although, this could escalate the initial project costs, it would prove to be a great cushion to the plants operational costs in the longer run. In cases where it is not possible to go for such an alternative, one must seek case-specific procurement models, consider help from local NGOs, civic bodies etc. and go for long-term contracts with the resource providers.

Biogas from Crop Wastes: European Perspectives

Most, if not all of Europe has a suitable climate for biogas production. The specific type of system depends on the regional climate. Regions with harsher winters may rely more on animal waste and other readily available materials compared to warmer climates, which may have access to more crop waste or organic material.

Regardless of suitability, European opinions vary on the most ethical and appropriate materials to use for biogas production. Multiple proponents argue biogas production should be limited to waste materials derived from crops and animals, while others claim crops should be grown with the intention of being used for biogas production.

Biogas Production From Crops

Europeans in favor of biogas production from crops argue the crops improve the quality of the soil. Additionally, they point to the fact that biogas is a renewable energy resource compared to fossil fuels. Crops can be rotated in fields and grown year after year as a sustainable source of fuel.

Extra crops can also improve air quality. Plants respire carbon dioxide and can help reduce harmful greenhouse gasses in the air which contribute to global climate change.

Biogas crops can also improve water quality because of plant absorption. Crops grown in otherwise open fields reduce the volume of water runoff which makes it to lakes, streams and rivers. The flow of water and harmful pollutants is impeded by the plants and eventually absorbed into the soil, where it is purified.

Urban residents can also contribute to biogas production by growing rooftop or vertical gardens in their homes. Waste from tomatoes, beans and other vegetables is an excellent source of biogas material. Residents will benefit from improved air quality and improved water quality as well by reducing runoff.

Proponents of biogas production from crops aren’t against using organic waste material for biogas production in addition to crop material. They believe crops offer another means of using more sustainable energy resources.

Biogas Production From Waste Materials Only

Opponents to growing crops for biogas argue the crops used for biogas production degrade soil quality, making it less efficient for growing crops for human consumption. They also argue the overall emissions from biogas production from crops will be higher compared to fossil fuels.

Growing crops can be a labor-intensive process. Land must be cleared, fertilized and then seeded. While crops are growing, pesticides and additional fertilizers may be used to promote crop growth and decrease losses from pests. Excess chemicals can run off of fields and degrade the water quality of streams, lakes and rivers and kill off marine life.

Once crops reach maturity, they must be harvested and processed to be used for biogas material. Biogas is less efficient compared to fossil fuels, which means it requires more material to yield the same amount of energy. Opponents argue that when the entire supply chain is evaluated, biogas from crops creates higher rates of emissions and is more harmful to the environment.

Agricultural residues, such as rice straw, are an important carbon source for anaerobic digestion

The supply chain for biogas from agricultural waste materials is more efficient compared to crop materials. Regardless of whether or not the organic waste is reused, it must be disposed of appropriately to prevent any detrimental environmental impacts. When the waste material is then used for biogas production, it creates an economical means of generating useful electricity from material which would otherwise be disposed of.

Rural farms which are further away from the electric grid can create their own sources of energy through biogas production from waste material as well. The cost of the energy will be less expensive and more eco-friendly as it doesn’t have the associated transportation costs.

Although perspectives differ on the type of materials which should be used for biogas production, both sides agree biogas offers an environmentally friendly and sustainable alternative to using fossil fuels.

Bagasse-Based Cogeneration in Pakistan: Challenges and Opportunities

Considering the fact that Pakistan is among the world’s top-10 sugarcane producers, the potential of generating electricity from bagasse is huge.  Almost all the sugar mills in Pakistan have in-house plants for cogeneration but they are inefficient in the consumption of bagasse. If instead, high pressure boilers are installed then the production capacity can be significantly improved with more efficient utilization of bagasse.

However, due to several reasons; mostly due to financing issues, the sugar mill owners were not able to set up these plants. Only recently, after financial incentives have been offered and a tariff rate agreed upon between the government and mill owners, are these projects moving ahead.

The sugar mill owners are more than willing to supply excess electricity generated form the in-house power plants to the national grid but were not able to before, because they couldn’t reach an agreement with the government over tariff. The demand for higher tariff was justified because of large investments in setting up new boilers. It would also have saved precious foreign exchange which is spent on imported oil.

By estimating the CDM potential of cogeneration (or CHP) projects based on biofuels, getting financing for these projects would be easier. Renewable energy projects can be developed through Carbon Development Mechanism or any other carbon credit scheme for additional revenue.

Since bagasse is a clean fuel which emits very little carbon emissions it can be financed through Carbon Development Mechanism. One of the reasons high cogeneration power plants are difficult to implement is because of the high amount of costs associated. The payback period for the power plants is unknown which makes the investors reluctant to invest in the high cogeneration project. CDM financing can help improve the rate of return of the project.

Bagasse power plants generate Carbon Emission Reductions in 2 ways; one by replacing electricity produced from fossil fuels.  Secondly if not used as a fuel, it would be otherwise disposed off in an unsafe manner and the methane emissions present in biomass would pollute the environment far more than CO2 does.

Currently there are around 83 sugar mills in Pakistan producing about 3.5 million metric tons of sugar per annum with total crushing capacity 597900 TCD, which can produce approximately 3000 MW during crop season Although it may seem far-fetched at the moment, if the government starts to give more attention to  sugar industry biomass rather than coal, Pakistan can fulfill its energy needs without negative repercussions or damage to the environment.

However some sugar mills are opting to use coal as a secondary fuel since the crushing period of sugarcane lasts only 4 months in Pakistan. The plants would be using coal as the main fuel during the non-crushing season. The CDM effect is reduced with the use of coal. If a high cogeneration plant is using even 80% bagasse and 20% of coal then the CERs are almost nullified. If more than 20% coal is used then the CDM potential is completely lost because the emissions are increased. However some sugar mills are not moving ahead with coal as a secondary fuel because separate tariff rates have to be obtained for electricity generation if coal is being used in the mix which is not easily obtained.

Pakistan has huge untapped potential for bagasse-based power generation

One of the incentives being offered by the State Bank of Pakistan is that if a project qualifies as a renewable project it is eligible to get loan at 6% instead of 12%. However ones drawback is that, in order to qualify as a renewable project, CDM registration of a project is not taken into account.

Although Pakistan is on the right track by setting up high cogeneration power plants, the use of coal as a secondary fuel remains debatable.  The issue that remains to be addressed is that with such huge amounts of investment on these plants, how to use these plants efficiently during non-crushing period when bagasse is not available. It seems almost counter-productive to use coal on plants which are supposed to be based on biofuels.

Conclusion

With the demand for energy in Pakistan growing, the country is finally exploring alternatives to expand its power production. Pakistan has to rely largely on fossils for their energy needs since electricity generation from biomass energy sources is considered to be an expensive option despite abundance of natural resources. However by focusing on growing its alternate energy options such as bagasse-based cogeneration, the country will not only mitigate climate change but also tap the unharnessed energy potential of sugar industry biomass.