Prospects of Algae Biofuels in Middle East

Algae biofuels have the potential to become a renewable, cost-effective alternative for fossil fuels with reduced impact on the environment. Algae hold tremendous potential to provide a non-food, high-yield, non-arable land use source of renewable fuels like biodiesel, bioethanol, hydrogen etc. Microalgae are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only CO2, water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters.

algae-middle-east

Algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Microalgae are the fastest growing photosynthesizing organism capable of completing an entire growing cycle every few days. Up to 50% of algae’s weight is comprised of oil, compared with, for example, oil palm which yields just about 20% of its weight in oil. Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D efforts are underway worldwide, especially in North America and Europe, with a high number of start-up companies developing different options for commercializing algae farming.

Prospects of Algae Biofuels in the Middle East

The demand for fossil fuels is growing continuously all around the world and the Middle East is not an exception. The domestic consumption of energy in the Middle East is increasing at an astonishing rate, e.g. Saudi Arabia’s consumption of oil and gas rose by about 5.9 percent over the past five years while electricity demand is witnessing annual growth rate of 8 percent. Although Middle Eastern countries are world’s leading producers of fossil fuels, several cleantech initiatives have been launched in last few years which shows the commitment of regional countries in exploiting renewable sources of energy.

Algae biofuels is an attractive proposition for Middle East countries to offset the environmental impact of the oil and gas industry. The region is highly suitable for mass production of algae because of the following reasons:

  • Presence of large tracts of non-arable lands and extensive coastline.
  • Presence of numerous oil refineries and power plants (as points of CO2 capture) and desalination plants (for salt reuse).
  • Extremely favorable climatic conditions (highest annual solar irradiance).
  • Presence of a large number of sewage and wastewater treatment plants.
  • Existence of highly lipid productive microalgae species in coastal waters.

These factors makes it imperative on Middle East nations to develop a robust Research, Development and Market Deployment plan for a comprehensive microalgal biomass-based biorefinery approach for bio-product synthesis. An integrated and gradual appreciation of technical, economic, social and environmental issues should be considered for a successful implementation of the microalgae-based oleo-feedstock (MBOFs) industry in the region.

Bioenergy Resources in MENA Countries

The Middle East and North Africa (MENA) region offers almost 45 percent of the world’s total energy potential from all renewable sources that can generate more than three times the world’s total power demand. Apart from solar and wind, MENA also has abundant bioenergy energy resources which have remained unexplored to a great extent.

biomass_resources

Around the MENA region, pollution of the air and water from municipal, industrial and agricultural operations continues to grow.  The technological advancements in the biomass energy and waste-to-energy industry, coupled with the tremendous regional potential, promises to usher in a new era of energy as well as environmental security for the region.

The major biomass producing countries in MENA are Saudi Arabia, Egypt, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region, especially in Egypt, Yemen and Jordan. Since most of the region is arid or semi-arid, the major bioenergy resources are municipal solid wastes, agricultural residues and organic industrial wastes.

Municipal solid wastes represent the best source of biomass in Middle East countries. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

Food waste is the third-largest component of generated waste by weight which mostly ends up rotting in landfill and releasing greenhouse gases into the atmosphere. The mushrooming of hotels, restaurants, fast-food joints and cafeterias in the region has resulted in the generation of huge quantities of food wastes.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region. Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia.

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

Charcoal Briquette Production in the Middle East: Perspectives

There is a huge demand for charcoal briquettes in the Middle East, especially in Saudi Arabia, Egypt and UAE. However the production of charcoal in the Middle East is in nascent stages despite the availability of biomass resources, especially date palm biomass. The key reason for increasing demand of charcoal briquettes is the large consumption of meat in the region which uses charcoal briquettes as fuel for barbecue, outdoor grills and related activities.

The raw materials for charcoal briquette production are widely available across the Middle East in the form of date palm biomass, crop wastes and woody biomass. With a population of date palm trees of 84 million or 70% of the world’s population, the potential biomass waste from date palm trees is estimated at 730,000 tons / year (approximately 200,000 tons from Saudi Arabia and 300,000 tons from Egypt). Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits.

The fronds and trunks of date palm trees are potential raw materials for charcoal because of the potential to produce high calorific value and low ash content charcoal. Leaf waste will produce a low calorific value due to high ash content. In addition, woody biomass waste such as cotton stalks that are widely available in Egypt can also be a raw material for making charcoal. The contribution of the agricultural sector in Egypt is quite high at 13.4%.

Charcoal is compacted into briquettes for ease in handling, packaging, transportation and use. Briquettes can be made in different shapes such as oval, hexagonal, cube, cylinder or octagonal. An adhesive (called binder) is needed for the manufacture of the briquette. Two common binders are saw dust and corn starch.

Date palm biomass is an excellent resource for charcoal production in Middle East

Continuous pyrolysis is the best technology for charcoal production. Continuous pyrolysis has the ability to handle large biomass volumes, the process is fast and smoke production is negligible. When using conventional pyrolysis technology  (or batch carbonization), the process is lengthy, processing capacity is small and there are concerns related to harmful smoke emissions.

Apart from charcoal, continuous pyrolysis also gives bio oil, wood vinegar and syngas. Syngas can be converted into electricity by using a gas engine or converted into a wide variety of biofuels through different processes. Bio oil can be used as boiler fuel and marine fuel. Wood vinegar can be used as biopesticide and liquid organic fertilizer. Low water content in date palm waste fronds and trunks make it very suitable for thermochemical conversion technologies, especially pyrolysis and gasification.

 

Charcoal can also be used for the production of activated charcoal/carbon. Activated carbon is used by a lot of industries for purification processes. In addition, a number of industries that are using petcoke as fuel can switch to charcoal due to its better combustion properties and eco-friendly nature.

For more information on how to set up charcoal production plant based on date palm biomass or other crop residues in the Middle East, please email salman@bioenergyconsult.com or eko.sb.setyawan@gmail.com

Overview of Biomass Pyrolysis Process

Biomass pyrolysis is the thermal decomposition of biomass occurring in the absence of oxygen. It is the fundamental chemical reaction that is the precursor of both the combustion and gasification processes and occurs naturally in the first two seconds. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

The biomass pyrolysis process consists of both simultaneous and successive reactions when organic material is heated in a non-reactive atmosphere. Thermal decomposition of organic components in biomass starts at 350 °C–550 °C and goes up to 700 °C–800 °C in the absence of air/oxygen. The long chains of carbon, hydrogen and oxygen compounds in biomass break down into smaller molecules in the form of gases, condensable vapours (tars and oils) and solid charcoal under pyrolysis conditions. Rate and extent of decomposition of each of these components depends on the process parameters of the reactor temperature, biomass heating rate, pressure, reactor configuration, feedstock etc

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Slow and Fast Pyrolysis

Pyrolysis processes can be categorized as slow or fast. Slow pyrolysis takes several hours to complete and results in biochar as the main product. On the other hand, fast pyrolysis yields 60% bio-oil and takes seconds for complete pyrolysis. In addition, it gives 20% biochar and 20% syngas.  Fast pyrolysis is currently the most widely used pyrolysis system.

The essential features of a fast pyrolysis process are:

  • Very high heating and heat transfer rates, which require a finely ground feed.
  • Carefully controlled reaction temperature of around 500oC in the vapour phase
  •  Residence time of pyrolysis vapours in the reactor less than 1 sec
  • Quenching (rapid cooling) of the pyrolysis vapours to give the bio-oil product.

Advantages of Biomass Pyrolysis

Pyrolysis can be performed at relatively small scale and at remote locations which enhance energy density of the biomass resource and reduce transport and handling costs.  Heat transfer is a critical area in pyrolysis as the pyrolysis process is endothermic and sufficient heat transfer surface has to be provided to meet process heat needs. Biomass pyrolysis offers a flexible and attractive way of converting organic matter into energy products which can be successfully used for the production of heat, power and chemicals.

A wide range of biomass feedstock can be used in pyrolysis processes. The pyrolysis process is very dependent on the moisture content of the feedstock, which should be around 10%. At higher moisture contents, high levels of water are produced and at lower levels there is a risk that the process only produces dust instead of oil. High-moisture waste streams, such as sludge and meat processing wastes, require drying before subjecting to pyrolysis.

Furthermore, the bio-char produced can be used on the farm as an excellent soil amender as it is highly absorbent and therefore increases the soil’s ability to retain water, nutrients and agricultural chemicals, preventing water contamination and soil erosion. Soil application of bio-char may enhance both soil quality and be an effective means of sequestering large amounts of carbon, thereby helping to mitigate global climate change through carbon sequestration.  Use of bio-char as a soil amendment will offset many of the problems associated with removing crop residues from the land.

Biomass pyrolysis has been garnering much attention due to its high efficiency and good environmental performance characteristics. It also provides an opportunity for the processing of agricultural residues, wood wastes and municipal solid waste into clean energy. In addition, biochar sequestration could make a big difference in the fossil fuel emissions worldwide and act as a major player in the global carbon market with its robust, clean and simple production technology.

Agricultural Wastes in the Philippines

The Philippines is mainly an agricultural country with a land area of 30 million hectares, 47 percent of which is agricultural. The total area devoted to agricultural crops is 13 million hectares distributed among food grains, food crops and non-food crops. Among the crops grown, rice, coconut and sugarcane are major contributors to biomass energy resources.

The most common agricultural wastes in the Philippines are rice husk, rice straw, coconut husk, coconut shell and bagasse. The country has good potential for biomass power plants as one-third of the country’s agricultural land produces rice, and consequently large volumes of rice straw and hulls are generated.

Rice is the staple food in the Philippines. The Filipinos are among the world’s biggest rice consumers. The average Filipino consumes about 100 kilograms per year of rice.  Though rice is produced throughout the country, the Central Luzon and Cagayan Valley are the major rice growing regions. With more than 1.2 million hectares of rain-fed rice-producing areas, the country produced around 19 million tons of rice in 2019.

The estimated production of rice hull in the Philippines is more than 2 million tons per annum which is equivalent to approximately 5 million BOE (barrels of oil equivalent) in terms of energy. Rice straw is another important biomass resource with potential availability exceeding 5 million tons per year across the country.

rice-biomass-philippines

With the passing of Biofuels Act of 2006, the sugar industry in the Philippines which is the major source of ethanol and domestic sugar will become a major thriving industry. Around 380,000 hectares of land is devoted to sugarcane cultivation. It is estimated that 1.17 million tonnes of sugarcane trash is recoverable as a biomass resource in the Philippines.

In addition, 6.4 million tonnes of surplus bagasse is available from sugar mills. There are 29 operating sugar mills in the country with an average capacity of 6,900 tonnes of cane per day. Majority is located in Negros Island which provides about 46% of the country’s annual sugar production.

The Philippines has the largest number of coconut trees in the world as it produces most of the world market for coconut oil and copra meal. The major coconut wastes include coconut shell, coconut husks and coconut coir dust. Coconut shell is the most widely utilized but the reported utilization rate is very low.  Approximately 500 million coconut trees in the Philippines produce tremendous amounts of biomass as husk (4.1 million tonnes), shell (1.8 million tonnes), and frond (4.5 million tonnes annually).

Maize is a major crop in the Philippines that generates large amounts of agricultural residues. It is estimated that 4 million tonnes of grain maize and 0.96 million tonnes of maize cobs produced yearly in the Philippines. Maize cob burning is the main energy application of the crop, and is widely practiced by small farmers to supplement fuelwood for cooking.

If you want to know about sustainable rice farming practices, check this link.

Types of Biogas Storage Systems

Selection of an appropriate biogas storage system makes a significant contribution to the efficiency and safety of a biogas plant. There are two basic reasons for storing biogas: storage for later on-site usage and storage before and/or after transportation to off-site distribution points or systems. A biogas storage system also compensates fluctuations in the production and consumption of biogas as well as temperature-related changes in volume.

There are two broad categories of biogas storage systems: Internal Biogas Storage Tanks are integrated into the anaerobic digester while External Biogas Holders are separated from the digester forming autonomous components of a biogas plant.

The simplest and least expensive storage systems for on-site applications and intermediate storage of biogas are low-pressure systems. The energy, safety, and scrubbing requirements of medium- and high-pressure storage systems make them costly and high-maintenance options for non-commercial use. Such extra costs can be best justified for biomethane or bio-CNG, which has a higher heat content and is therefore a more valuable fuel than biogas.

Low-Pressure Biogas Storage

Floating biogas holders on the digester form a low-pressure storage option for biogas systems. These systems typically operate at pressures below 2 psi. Floating gas holders can be made of steel, fiberglass, or a flexible fabric. A separate tank may be used with a floating gas holder for the storage of the digestate and also storage of the raw biogas. A major advantage of a digester with an integral gas storage component is the reduced capital cost of the system.

The least expensive and most trouble-free gas holder is the flexible inflatable fabric top, as it does not react with the H2S in the biogas and is integral to the digester. These types of covers are often used with plug-flow and complete-mix digesters.

Flexible membrane materials commonly used for these gas holders include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density polyethylene (LLDPE), and chlorosulfonated polyethylene covered polyester. Thicknesses for cover materials typically vary from 0.5 to 2.5 millimeters.

Medium-Pressure Biogas Storage

Biogas can also be stored at medium pressure between 2 and 200 psi. To prevent corrosion of the tank components and to ensure safe operation, the biogas must first be cleaned by removing H2S. Next, the cleaned biogas must be slightly compressed prior to storage in tanks.

High-Pressure Biogas Storage

The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the CO2 and sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing. Biogas that has been upgraded to biomethane by removing the H2S, moisture, and CO2 can be used as a vehicular fuel.

Biomethane is less corrosive than biogas, apart from being more valuable as a fuel. Since production of such fuel typically exceeds immediate on-site demand, the biomethane must be stored for future use, usually either as compressed biomethane (CBM) or liquefied biomethane (LBM).

Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves.

The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.

Cogeneration of Bagasse

Cogeneration of bagasse is one of the most attractive and successful biomass energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

bagasse_cogeneration

According to World Alliance for Decentralized Energy (WADE) report on Bagasse Cogeneration, bagasse-based cogeneration could deliver up to 25% of current power demand requirements in the world’s main cane producing countries. The overall potential share in the world’s major developing country producers exceeds 7%.

There is abundant opportunity for the wider use of bagasse-based cogeneration in sugarcane-producing countries. It is especially great in the world’s main cane producing countries like Brazil, India, Thailand, Pakistan, Mexico, Cuba, Colombia, Philippines and Vietnam. Yet this potential remains by and large unexploited.

Using bagasse to generate power represents an opportunity to generate significant revenue through the sale of electricity and carbon credits. Additionally, cogeneration of heat and power allows sugar producers to meet their internal energy requirements and drastically reduce their operational costs, in many cases by as much as 25%. Burning bagasse also removes a waste product through its use as a feedstock for the electrical generators and steam turbines.

Most sugarcane mills around the globe have achieved energy self-sufficiency for the manufacture of raw sugar and can also generate a small amount of exportable electricity. However, using traditional equipment such as low-pressure boilers and counter-pressure turbo alternators, the level and reliability of electricity production is not sufficient to change the energy balance and attract interest for export to the electric power grid.

bagasse-cogen

On the other hand, revamping the boiler house of sugar mills with high pressure boilers and condensing extraction steam turbine can substantially increase the level of exportable electricity. This experience has been witnessed in Mauritius, where, following major changes in the processing configurations, the exportable electricity from its sugar factory increased from around 30-40 kWh to around 100–140 kWh per ton cane crushed.

In Brazil, the world’s largest cane producer, most of the sugar mills are upgrading their boiler configurations to 42 bars or even higher pressure of up to 67 bars.

Technology Options

The prime technology for sugar mill cogeneration is the conventional steam-Rankine cycle design for conversion of fuel into electricity. A combination of stored and fresh bagasse is usually fed to a specially designed furnace to generate steam in a boiler at typical pressures and temperatures of usually more than 40 bars and 440°C respectively.

The high pressure steam is then expanded either in a back pressure or single extraction back pressure or single extraction condensing or double extraction cum condensing type turbo generator operating at similar inlet steam conditions.

35MW-bagasse-coal-chp-plant-mauritius

35MW Bagasse and Coal CHP Plant in Mauritius

 

Due to high pressure and temperature, as well as extraction and condensing modes of the turbine, higher quantum of power gets generated in the turbine–generator set, over and above the power required for sugar process, other by-products, and cogeneration plant auxiliaries. The excess power generated in the turbine generator set is then stepped up to extra high voltage of 66/110/220 kV, depending on the nearby substation configuration and fed into the nearby utility grid.

As the sugar industry operates seasonally, the boilers are normally designed for multi-fuel operations, so as to utilize mill bagasse, sugarcane trash, crop residues, coal and other fossil fuel, so as to ensure year round operation of the power plant for export to the grid.

Latest Trends

Modern power plants use higher pressures, up to 87 bars or more. The higher pressure normally generates more power with the same quantity of Bagasse or biomass fuel. Thus, a higher pressure and temperature configuration is a key in increasing exportable surplus electricity.

In general, 67 bars pressure and 495°C temperature configurations for sugar mill cogeneration plants are well-established in many sugar mills in India. Extra high pressure at 87 bars and 510°C, configuration comparable to those in Mauritius, is the current trend and there are about several projects commissioned and operating in India and Brazil. The average increase of power export from 40 bars to 60 bars to 80 bars stages is usually in the range of 7-10%.

A promising alternative to steam turbines are gas turbines fuelled by gas produced by thermochemical conversion of biomass. The exhaust is used to raise steam in heat recovery systems used in any of the following ways: heating process needs in a cogeneration system, for injecting back into gas turbine to raise power output and efficiency in a steam-injected gas turbine cycle (STIG) or expanding through a steam turbine to boost power output and efficiency in a gas turbine/steam turbine combined cycle (GTCC).

Gas turbines, unlike steam turbines, are characterized by lower unit capital costs at modest scale, and the most efficient cycles are considerably more efficient than comparably sized steam turbines.

Overview of Biomass Energy Technologies

A wide range of bioenergy technologies are available for realizing the energy potential of biomass wastes, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste. Conversion routes for biomass wastes are generally thermo-chemical or bio-chemical, but may also include chemical and physical.

Thermal Technologies

The three principal methods of thermo-chemical conversion corresponding to each of these energy carriers are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. Direct combustion is the best established and most commonly used technology for converting wastes to heat.

During combustion, biomass is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from wastes, which burn as flames. Steam is expanded through a conventional turbo-alternator to produce electricity. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat.

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels.

Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. An existing power station is modified to accept the waste resource and utilize it to produce a minor proportion of its electricity.

Gasification systems operate by heating biomass wastes in an environment where the solid waste breaks down to form a flammable gas. The gasification of biomass takes place in a restricted supply of air or oxygen at temperatures up to 1200–1300°C. The gas produced—synthesis gas, or syngas—can be cleaned, filtered, and then burned in a gas turbine in simple or combined-cycle mode, comparable to LFG or biogas produced from an anaerobic digester.

The final fuel gas consists principally of carbon monoxide, hydrogen and methane with small amounts of higher hydrocarbons. This fuel gas may be burnt to generate heat; alternatively it may be processed and then used as fuel for gas-fired engines or gas turbines to drive generators. In smaller systems, the syngas can be fired in reciprocating engines, micro-turbines, Stirling engines, or fuel cells.

Pyrolysis is thermal decomposition occurring in the absence of oxygen. During the pyrolysis process, biomass waste is heated either in the absence of air (i.e. indirectly), or by the partial combustion of some of the waste in a restricted air or oxygen supply. This results in the thermal decomposition of the waste to form a combination of a solid char, gas, and liquid bio-oil, which can be used as a liquid fuel or upgraded and further processed to value-added products.

Biochemical Technologies

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol and biodiesel, which can be used to replace petroleum-based fuels.

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biogas and biofertilizer. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer.

A variety of fuels can be produced from biomass wastes including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial).

The three major steps involved in cellulosic ethanol production are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms. Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Redecorating Your Home in 2022: 5 Tips for Budding Interior Designers

Changing the décor in our homes is a favorite pastime for many, both reading this and beyond. No matter whether you are the owner of your property or are a tenant who is renting, changing the interior design of the place you are living can make a difference in how comfortable you feel in a property. Home decoration can also bring positive vibes to your property.

However, there are various reasons why someone might choose to redecorate their homes outside of those surrounding levels of comfort. With a record number of people opting to redecorate their homes as a means of using some of their free time throughout the pandemic, we feel confident in saying that there is a lot of people who still have the decorating bug. Let’s be honest; once you are hooked, it is hard to get rid of!

home redecoration in 2022

While that is very well the case, there are some tips and tricks out there to make redecorating your home a breeze. Whether you intend to redecorate just one room in your home or are planning to change the interior of all of them, you should make an effort to think about these tips and tricks beforehand to make the process run that bit smoother.

Interested in finding out what those tips and tricks are? Read on for more and leave us with a better idea understanding of what you should do moving forward.

1. Contemplate The Shape and Size of The Room

It goes without saying, but there will be different sizes of room in your home, which are uniquely shaped; each one is different from the next. As a result, this is a factor that you will need to consider highly when redecorating your home. You would not be setting yourself up for success or any form of creativity by using the same techniques in each room.

Taking the time to tailor your approach for each room in question will go a long way and enable you to make the most of your efforts both in the short and long term. Think about what color schemes you want to implement in the room and whether it would complement the room’s shape, size, and lighting.

From here, you can establish precisely what you need to change in each room, which takes us to the following section.

2. Establish What Materials You Need

While many of us might have the odd tin of paint hidden under the stairs, we feel confident in saying that for a vast majority of people, they will need to hit the shops to pick up the materials they need. Naturally, depending on the size of your project will depend on how much you need to get, so this is certainly a factor you will need to consider and one that you can’t base on the success of someone else.

If you are merely redecorating the walls in your home, then think the likes of paint and wallpaper. Knowing how many tins of paint or rolls of wallpaper you will need is also paramount; there is nothing wrong with overestimating, but the last thing you want is to run out of the material halfway through the job!

On the other hand, suppose you are making more drastic changes, including the likes of replacing the flooring or fitting new light fixtures. There will be a need for different tools and resources when completing a task like this, but other factors should also be considered.

3. Eco-Friendly Decoration

This might not be at the forefront of many people’s minds, but it is something that many people are beginning to consider when decorating their homes. With the fight against climate change highlighted in a range of broadcast media as of late, we feel confident in saying there are some eco-conscious people reading this who might want to make their home eco-friendlier when redecorating.

When in this position, you are in luck! Particularly when changing the light fixtures in your home, you should consider implementing the use of LED light bulbs in varying temperatures and colors. The LED color will bring some character to the room you are redecorating but will enable you another avenue in which to express your creativity.

energy efficient home

That being said, it can be challenging to whittle down the varying options when it comes to this type of thing. Luckily for us, Carbon Switch and other reputable leaders provide guides tailored to this type of thing. Taking the time to flick through them and make an informed decision will go a long way, both in the short and long-term decorating of your home.

4. Step Out of Your Comfort Zone

We have all been guilty of sticking with what we know from time to time. While there is nothing wrong with doing this, what’s stopping you from stepping out of your comfort zone and experimenting a little bit? Particularly if you are redecorating to get rid of the old and bring in the new, or simply giving your home a fresh new look, experimenting with styles, patterns, and colors is an excellent way of doing just that.

At the same time, we understand that you will want to select something that you like and which fits with the rest of your color scheme. Comparing what complements the color scheme the best and narrowing down potential options from there is the ideal place to start and can actually be a fun process to navigate!

Using this process as a means of expressing your character and creativity is truly exciting. What’s more, you could even find an innovative method of completing this process, which you use throughout the rest of your project plans.

5. Plan Your Project Thoroughly

It seems like a somewhat obvious suggestion but is one that we felt was worth a mention all the same. Regardless of the size of the project, planning for a project will go a long way in ensuring its success. While there will undoubtedly be obstacles that crop up and potentially derail or delay your plans, you should make an effort to plan your project as much as possible.

ecofriendly home remodeling

Having a plan from which to work from will keep you focused and motivated to complete your project, something that is essential during tumultuous and stressful moments.

Setting yourself a timeframe is recommended, but you should do what you can to remain flexible with this type of thing. As briefly mentioned previously, you will most likely navigate a wide range of obstacles of varying sizes. While nothing is to say that your project will run smoothly and run to the specified timeframe, allowing yourself a bit of flexibility ensures you do not get too hopeful and feel crushed should your project get delayed in any way.

Furthermore, you could enlist the help of friends and loved ones to help you with your project. You never know, they could have a secret decorating talent they have kept hidden, which would prove most useful in this situation!

Overall, we recognize this piece has only covered the tip of the iceberg when it comes to decorating and interior design. While there are undoubtedly hundreds more tips and tricks out there, we hope you are leaving us with a better understanding of what you should do moving forward and how you can make your project as successful as possible.

Biomass Sector in India – Problems and Challenges

Biomass power plants in India are based mostly on agricultural wastes. Gasifier-based power plants are providing a great solution for off-grid decentralized power and are lighting homes in several Indian states. While for providing grid-based power 8-15 MW thermal biomass power plants are suitable for Indian conditions, they stand nowhere when compared to power plants being set up in Europe which are at least 20 times larger.

biomass_India

Energy from biomass is reliable as it is free of fluctuation unlike wind power and does not need storage to be used in times of non-availability as is the case with solar. Still it is not the preferred renewable energy source till now, the primary reason that may be cited is the biomass supply chain.

Biomass availability is not certain for whole year. Biomass from agriculture is available only after harvesting period which can stretch only for 2-3 months in a year. So there is a need to procure and then store required quantity of biomass within this stipulated time.

Some of the Indian states leading the pack in establishing biomass-based power projects are Karnataka, Andhra Pradesh, and Maharashtra. Ironically, states having agricultural-based economy have not properly been able to utilize the opportunity and figure low on biomass energy utilization. Only Uttar Pradesh has utilized large part of the biomass potential in north Indian States and that is mainly due to the sugarcane industry and the co-generation power plants.

Interestingly Punjab and Haryana don’t have much installed capacity in comparison to potential even though tariff rates are more than Rs. 5 per unit, which are better than most of the states. This can be attributed to the fact that these tariffs were implemented very recently and it will take time to reflect the capacity utilization.

Table: Biomass Potential and Installed Capacity in Key Indian States

State

Power Potential (MWe) Installed Capacity (by 2011)

Tariff

Punjab 2413.2 74.5

@ Rs 5.25 per unit, (2010-11)

Uttar Pradesh 1594.3 592.5 @ Rs 4.70
Haryana 1120.8 35.8 @Rs 5.24 per unit
Rajasthan 1093.5 73.3

@ Rs 4.72/unit water cooled (2010-11)

Maharashtra 1014.2 403 @ Rs 4.98 (2010-11)
Madhya Pradesh 841.7 1.0

@ Rs 3.33 to 5.14/unit paise for 20 years with escalation of 3-8 paise

Karnataka 631.9 365.18

@ Rs 3.66 per unit (PPA signing date)

Rs 4.13 (10th year)

Andhra Pradesh 625 363.25 @ Rs 4.28 per unit  (2010-11)
Gujarat 457.7 0.5

@ Rs 4.40 per unit (with accelerated depreciation)

Chhattisgarh 248.5 231.9 @Rs 3.93 per unit (2010-11)
Kerala 195.9 @ Rs 2.80 per unit escalated at 5% for
five years (2000-01
Source: Biomass Atlas by IISc, Bangalore and MNRE website

The electricity generation could be cheaper than coal if biomass could be sourced economically but ssome established biomass power plants tend to misuse the limit of coal use provided to them (generally 10-15% of biomass use) to keep it operational in lean period of biomass supply. They are not able to run power plants solely on biomass economically which can be attributed to :

  • Biomass price increases very fast after commissioning of power project and therefore government tariff policy needs an annual revision
  • Lack of mechanization in Indian Agriculture Sector
  • Defragmented land holdings
  • Most of the farmers are small or marginal

Government policy is the biggest factor behind lack of investment in biopower sector in states with high biomass potential. Defragmented nature of agricultural lands do not allow high mechanization which results in reduction of efficiency and increase in procurement cost.

Transportation cost constitutes a significant portion of  the costs associated with the establishment and running of biomass power plants. There is need of processing in form of shredding the biomass onsite before transportation to increase its density when procurement is done from more than a particular distance. While transportation in any kind or form from more than 50 Km becomes unviable for a power plant of size 10-15MW. European power plants are importing their biomass in form of pellets from other countries to meet the requirement of the huge biopower plants.

Not all the biomass which is regarded as agri-waste is usually a waste; part of it is used as fuel for cooking while some part is necessary to go back to soil to retain the soil nutrients. According to conservative estimates, only two-third of agricultural residues could be procured for power production.

And as human mentality goes waste is nothing but a heap of ash for the farmer till someone finds a way to make profit out of it, and from there on the demand of waste increases and so its price. Though there is nothing wrong in transferring benefits to the farmers and providing them a competitive cost of the agri-waste but operations becomes increasingly unviable with time.

A robust business model is necessary to motivate local entrepreneurs to take up the responsibility of supplying biomass to processing facilities. Collection centres covering 2-3 villages can be set up to facilitate decentralization of biomass supply mechanism. Biomass power plant operators may explore the possibility of using energy crops as a substitute for crop wastes, in case of crop failure. Bamboo and napier grass can be grown on marginal and degraded lands.