Summary of Biomass Combustion Technologies

Direct combustion is the best established and most commonly used technology for converting biomass to heat. During combustion, biomass fuel is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from the biomass, which burn as flames. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat. The hot combustion gases are sometimes used directly for product drying, but more usually they are passed through a heat exchanger to produce hot air, hot water or steam.

The combustion efficiency depends primarily on good contact between the oxygen in the air and the biomass fuel. The main products of efficient biomass combustion are carbon dioxide and water vapor, however tars, smoke and alkaline ash particles are also emitted. Minimization of these emissions and accommodation of their possible effects are important concerns in the design of environmentally acceptable biomass combustion systems.

Biomass combustion systems, based on a range of furnace designs, can be very efficient at producing hot gases, hot air, hot water or steam, typically recovering 65-90% of the energy contained in the fuel. Lower efficiencies are generally associated with wetter fuels. To cope with a diversity of fuel characteristics and combustion requirements, a number of designs of combustion furnaces or combustors are routinely utilized around the world

Underfeed Stokers

Biomass is fed into the combustion zone from underneath a firing grate. These stoker designs are only suitable for small scale systems up to a nominal boiler capacity of 6 MWth and for biomass fuels with low ash content, such as wood chips and sawdust. High ash content fuels such as bark, straw and cereals need more efficient ash removal systems. Sintered or molten ash particles covering the upper surface of the fuel bed can cause problems in underfeed stokers due to unstable combustion conditions when the fuel and the air are breaking through the ash covered surface.

Grate Stokers

The most common type of biomass boiler is based on a grate to support a bed of fuel and to mix a controlled amount of combustion air, which often enters from beneath the grate. Biomass fuel is added at one end of the grate and is burned in a fuel bed which moves progressively down the grate, either via gravity or with mechanical assistance, to an ash removal system at the other end. In more sophisticated designs this allows the overall combustion process to be separated into its three main activities:

  • Initial fuel drying
  • Ignition and combustion of volatile constituents
  • Burning out of the char.

Grate stokers are well proven and reliable and can tolerate wide variations in fuel quality (i.e. variations in moisture content and particle size) as well as fuels with high ash content. They are also controllable and efficient.

Fluidized Bed Boilers

The basis for a fluidized bed combustion system is a bed of an inert mineral such as sand or limestone through which air is blown from below. The air is pumped through the bed in sufficient volume and at a high enough pressure to entrain the small particles of the bed material so that they behave much like a fluid.

The combustion chamber of a fluidized bed plant is shaped so that above a certain height the air velocity drops below that necessary to entrain the particles. This helps retain the bulk of the entrained bed material towards the bottom of the chamber. Once the bed becomes hot, combustible material introduced into it will burn, generating heat as in a more conventional furnace. The proportion of combustible material such as biomass within the bed is normally only around 5%. The primary driving force for development of fluidized bed combustion is reduced SO2 and NOx emissions from coal combustion.

Bubbling fluidized bed (BFB) combustors are of interest for plants with a nominal boiler capacity greater than 10 MWth. Circulating fluidized bed (CFB) combustors are more suitable for plants larger than 30 MWth. The minimum plant size below which CFB and BFB technologies are not economically competitive is considered to be around 5-10 MWe.

Use of Palm Kernel Shells in Circulating Fluidized Bed Power Plants

Palm kernel shells are widely used in fluidized bed combustion-based power plants in Japan and South Korea. The key advantages of fluidized bed combustion (FBC) technology are higher fuel flexibility, high efficiency and relatively low combustion temperature. FBC technology, which can either be bubbling fluidized bed (BFB) or circulating fluidized bed (CFB), is suitable for plant capacities above 20 MW. Palm kernel shells (PKS) is more suitable for CFB-based power plant because its size is less than 4 cm.

With relatively low operating temperature of around 650 – 900 oC, the ash problem can be minimized. Certain biomass fuels have high ash levels and ash-forming materials that can potentially damage these generating units. In addition, the fuel cleanliness factor is also important as certain impurities, such as metals, can block the air pores on the perforated plate of FBC unit. It is to be noted that air, especially oxygen, is essential for the biomass combustion process and for keeping the fuel bed in fluidized condition.

The requirements for clean fuel must be met by the provider or seller of the biomass fuel. Usually the purchasers require an acceptable amount of impurities (contaminants) of less than 1%. Cleaning of PKS is done by sifting (screening) which may either be manual or mechanical.

In addition to PKS, biomass pellets from agricultural wastes or agro-industrial wastes, such as EFB pellets which have a high ash content and low melting point, can also be used in CFB-based power plants. More specifically, CFBs are more efficient and emit less flue gas than BFBs.

The disadvantages of CFB power plant is the high concentration of the flue gas which demands high degree of efficiency of the dust precipitator and the boiler cleaning system. In addition, the bed material is lost alongwith ash and has to be replenished regularly.

A large-scale biomass power plant in Japan

The commonly used bed materials are silica sand and dolomite. To reduce operating costs, bed material is usually reused after separation of ash. The technique is that the ash mixture is separated from a large size material with fine particles and silica sand in a water classifier. Next the fine material is returned to the bed.

Currently power plants in Japan that have an efficiency of more than 41% are only based on ultra supercritical pulverized coal. Modification of power plants can also be done to improve the efficiency, which require more investments. The existing CFB power plants are driving up the need to use more and more PKS in Japan for biomass power generation without significant plant modifications.

Combined Heat and Power Systems in Biomass Industry

Combined Heat and Power (CHP) is the simultaneous generation of multiple forms of useful energy (usually mechanical and thermal) in a single, integrated system. In conventional electricity generation systems, about 35% of the energy potential contained in the fuel is converted on average into electricity, whilst the rest is lost as waste heat. CHP systems use both electricity and heat and therefore can achieve an efficiency of up to 90%.

CHP technologies are well suited for sustainable development projects because they are socio-economically attractive and technologically mature and reliable. In developing countries, cogeneration can easily be integrated in many industries, especially agriculture and food-processing, taking advantage of the biomass residues of the production process. This has the dual benefits of lowering fuel costs and solving waste disposal issues.

CHP systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. Prime movers for CHP units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. A typical CHP system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types.

The success of any biomass-fuelled CHP project is heavily dependent on the availability of a suitable biomass feedstock freely available in urban and rural areas.

Rural Resources Urban Resources
Forest residues Urban wood waste
Wood wastes Municipal solid wastes
Crop residues Agro-industrial wastes
Energy crops Food processing residues
Animal manure Sewage

Technology Options

Reciprocating or internal combustion engines (ICEs) are among the most widely used prime movers to power small electricity generators. Advantages include large variations in the size range available, fast start-up, good efficiencies under partial load efficiency, reliability, and long life.

Steam turbines are the most commonly employed prime movers for large power outputs. Steam at lower pressure is extracted from the steam turbine and used directly or is converted to other forms of thermal energy. System efficiencies can vary between 15 and 35% depending on the steam parameters.

Co-firing of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Most forms of biomass are suitable for co-firing.

Steam engines are also proven technology but suited mainly for constant speed operation in industrial environments. Steam engines are available in different sizes ranging from a few kW to more than 1 MWe.

A gas turbine system requires landfill gas, biogas, or a biomass gasifier to produce the gas for the turbine. This biogas must be carefully filtered of particulate matter to avoid damaging the blades of the gas turbine.  

Stirling engines utilize any source of heat provided that it is of sufficiently high temperature. A wide variety of heat sources can be used but the Stirling engine is particularly well-suited to biomass fuels. Stirling engines are available in the 0.5 to 150 kWe range and a number of companies are working on its further development.

A micro-turbine recovers part of the exhaust heat for preheating the combustion air and hence increases overall efficiency to around 20-30%. Several competing manufacturers are developing units in the 25-250kWe range. Advantages of micro-turbines include compact and light weight design, a fairly wide size range due to modularity, and low noise levels.

Fuel cells are electrochemical devices in which hydrogen-rich fuel produces heat and power. Hydrogen can be produced from a wide range of renewable and non-renewable sources. A future high temperature fuel cell burning biomass might be able to achieve greater than 50% efficiency.

A Glance at Woody Biomass Resources

Woody biomass resources range from corn kernels to corn stalks, from soybean and canola oils to animal fats, from prairie grasses to hardwoods, and even include algae. Woody biomass may be used for energy production at different scales, including large-scale power generation, CHP, or small-scale thermal heating projects. Some of the major sources of woody biomass are being discussed in the following paragraphs:

Pulp and Paper Industry Residues

The largest source of energy from wood is the waste product from the pulp and paper industry called black liquor. Logging and processing operations generate vast amounts of biomass residues. Wood processing produces sawdust and a collection of bark, branches and leaves/needles. A paper mill, which consumes vast amount of electricity, utilizes the pulp residues to create energy for in-house usage.

Forest Residues

Forest harvesting is a major source of biomass for energy. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for bioenergy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Agricultural or Crop Residues

Crop residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy.

Energy Crops

Dedicated energy crops are another source of woody biomass for energy. These crops are fast-growing plants, trees or other herbaceous biomass which are harvested specifically for energy production. Rapidly-growing, pest-tolerant, site and soil-specific crops have been identified by making use of bioengineering. For example, operational yield in the northern hemisphere is 10-15 tonnes/ha annually. A typical 20 MW steam cycle power station using energy crops would require a land area of around 8,000 ha to supply energy on rotation.

Herbaceous energy crops are harvested annually after taking two to three years to reach full productivity. These include grasses such as switchgrass, elephant grass, bamboo, sweet sorghum, wheatgrass etc. Short rotation woody crops are fast growing hardwood trees harvested within five to eight years after planting. These include poplar, willow, silver maple, cottonwood, green ash, black walnut, sweetgum, and sycamore.

Industrial crops are grown to produce specific industrial chemicals or materials, e.g. kenaf and straws for fiber, and castor for ricinoleic acid. Agricultural crops include cornstarch and corn oil soybean oil and meal wheat starch, other vegetable oils etc. Aquatic resources such as algae, giant kelp, seaweed, and microflora also contribute to bioenergy feedstock.

Urban Wood Wastes

Such waste consists of lawn and tree trimmings, whole tree trunks, wood pallets and any other construction and demolition wastes made from lumber. The rejected woody material can be collected after a construction or demolition project and turned into mulch, compost or used to fuel bioenergy plants.

Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.


Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

Biomass Cogeneration Systems

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through biomass cogeneration systems (also known as combined heat and power or CHP system). Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical.

The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. Advanced biomass conversion technologies include biomass integrated gasification combined cycle (BIGCC) systems, cofiring (with coal or gas), pyrolysis and second generation biofuels.

Biomass Cogeneration Systems

A typical biomass cogeneration (or biomass cogen) system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

Biomass cogeneration systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime Movers

Prime movers for biomass cogeneration units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

Key Components

A biomass-fueled cogeneration facility is an integrated power system comprised of three major components:

  • Biomass receiving and feedstock preparation.
  • Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  • Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

Feedstock for Biomass Cogeneration Plants

The lowest cost forms of biomass for cogeneration plants are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.


Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.

Biogas-to-Biomethane Conversion Technologies

biogas-biomethaneRaw biogas contains approximately 30-45% of CO2, and some H2S and other compounds that have to be removed prior to utilization as natural gas, CNG or LNG replacement. Removing these components can be performed by several biogas upgrading techniques. Each process has its own advantages and disadvantages, depending on the biogas origin, composition and geographical orientation of the plant. The biogas-to-biomethane conversion technologies taken into account are pressurized water scrubbing (PWS), catalytic absorption/amine wash (CA), pressure swing absorption (PSA), highly selective membrane separation (MS) and cryogenic liquefaction (CL) which are the most common used biogas cleanup techniques.

The Table below shows a comparison of performance for these techniques at 8 bar (grid) injection.

Table:  Comparison of performance for various upgrading techniques (result at 8 bar) (Robert Lems, 2010) , (Lems R., 2012)

Produced gas quality*2 98 99 97-99 99 99.5 CH4%
Methane slip 1 0.1-0.2 1-3 0.3-0.5 0.5 %
Electrical use 0.23-0.25 0.15-0.18 0.25 0.21-0.24 0.35 kWh/Nm3 feed
Thermal energy use 0,82-1.3 kWth/Nm3 prod.
Reliability / up time 96 94 94 98 94 %
Turn down ratio 50-100 50-100 85-100 0-100 75-100 %
CAPEX Medium Medium Medium Low High  
Operation cost Low Medium Medium Low High  
Foot print Large Large Medium Small Large  
Maintenance needed Medium Medium+ Medium+ Low High  
Ease of operation Medium Medium+ Medium Easy Complex  
Consumables &

waste streams

AC*3/Water AC*3/amines AC*3/ absorbents AC*3/None AC*3/None  
References Many Many Medium Medium Very few  

*2 If no oxygen of nitrogen is present in the raw biogas

*3 Activated carbon (AC) consumption is depending on the presence of certain pollutants (trace components) within the raw biogas.

From the above Table, it can be concluded that the differences between technologies with respect to performance seem to be relatively small. However, some “soft factors” can have a significant impact on technology selection. For example, water scrubber technology is a broadly applied technology. The requirement for clean process water, to make up for discharge and condensation, could be a challenging constraint for remote locations.

Moreover, PWS systems are prone to biological contamination (resulting in clogged packing media and foaming), especially when operated at elevated temperatures. Without additional preventative measures this will result in an increase of operational issues and downtime.

Amine scrubbers are a good choice when surplus heat is available for the regeneration of the washing liquid. The transport and discharge of this washing liquid could however be a burden, as well as the added complexity of operation. With respect to cryogenic Liquefaction (CL) one may conclude that, this technology has a questionable track-record, is highly complex, hard to operate, and should therefore not be selected for small-medium scale applications.

Both PSA and MS provide a “dry” system, both technologies operate without the requirement for a solvent/washing liquid, which significantly simplifies operation and maintenance. Distinctive factor between these technologies is that the membrane based system operates in a continuous mode, while the PSA technology is based on columns filled with absorption materials which operate in a rotating/non-continuous mode.

Moreover, the membrane based system has a more favourable methane slip, energy consumption and turndown ratio. The biggest advantage over PSA however, is that membrane systems do not require any transport of absorbents, its ease of operation and superior up-time.

Main disadvantage of membrane systems are that they are sensitive to pollution by organic compounds, which can decrease efficiency. However, by applying a proper pre-treatment (generally based on activated carbon and condensation) in which these compounds are eliminated, this disadvantage can be relatively easy nullified.

Based on membrane technology, DMT Environmental Technology, developed the Carborex ®MS. A cost-effective plug and play, containerized (and therefore), easy to build in remote locations) biogas upgrading system. The Carborex ®MS membrane system has relatively little mechanical moving components (compared to other upgrading technologies) and therefore, ensures stability of biomethane production, and consequently, the viability of the biogas plant operation.

Moreover, its design for ease of operation and robustness makes this technological platform perfectly suitable for operation at locations with limited experience and expertise on handling of biogas plants.

Impression of a membrane system; Carborex ®MS – by courtesy of DMT

Impression of a membrane system; Carborex ®MS – by courtesy of DMT


Capture of biogas through application of closed ponds or AD’s is not only a necessity for mitigation of greenhouse gas emissions, it is also a method of optimizing liquid waste treatment and methane recovery. Billions of cubic meters of biomethane can be produced on a yearly basis, facilitating a significant reduction of fossil fuel dependency.

Moreover, upgrading of raw biogas-to-biomethane (grid, CNG or LNG quality) provides additional utilization routes that have the extra advantage to be independent of existing infrastructure. To sum up, membrane based technology is the best way forward due to its ease of operation, robustness and the high quality of the end-products.


  • Lems R., D. E. (2012). Next generation biogas upgrading using high selective gas separation membranes. 17th European Biosolids Organic Resources Conference. Leeds: Aqua Enviro Technology .
  • Robert Lems, E. D. (2010). Making pressurized water scrubbing the ultimate biogas upgrading technology with the DMT TS-PWS® system. Energy from Biomass and Waste UK . London: EBW-UK .

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the final article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first two articles can be viewed at these links

Biomass Energy Potential in Pakistan

Being an agricultural economy, biomass energy potential in Pakistan is highly promising. Pakistan is experiencing a severe energy crisis these days which is resulting in adverse long term economic and social problems. The electricity and gas shortages have directly impacted the common man, industry and commercial activities.

The high cost of energy mix is the main underlying reason behind the power crisis. The main fuel for the local power industry is natural gas however due to the continued depletion of this source and demands elsewhere the power generation companies are now dependent on furnace oil which is relatively expensive.

The way out of this crisis is to look for fuel sources which are cheap and abundantly available within the country. This description and requirement is fulfilled by biomass resources which have been largely ignored in the past and are also available in sufficient quantities to tackle the energy crisis prevailing in the country.

Biomass Energy in Pakistan

The potential to produce power from biomass resources is very promising in Pakistan. Being an agrarian economy, more than 60% of the population is involved in agricultural activities in the country. As per World Bank statistics, around 26,280,000 hectares of land is under cultivation in Pakistan. The major sources of biomass energy are crop residues, animal manure and municipal solid wastes

Agricultural Residues

Wheat straw, rice husk, rice straw, cane trash, bagasse, cotton sticks are some of the major crop residues in Pakistan. Sugar cane is a major crop in the country and grown on a wide scale throughout Pakistan. During 2010-2011, the area under sugarcane cultivation was 1,029,000 hectares which is 4% of the total cropped area.

Sugarcane trash which constitutes 10% of the sugar cane is currently burned in the fields. During the year 2010-11, around 63,920,000 metric tons of sugarcane was grown in Pakistan which resulted in trash generation of around 5,752,800 metric tons. As per conservation estimates, the bioenergy potential of cane trash is around 9,475 GWh per year.

Cotton is another major cash crop in Pakistan and is the main source of raw material to the local textile industry. Cotton is grown on around 11% of the total cropped area in the country. The major residue from cotton crop is cotton sticks which is he material left after cotton picking and constitute as much as 3 times of the cotton produced.

Majority of the cotton sticks are used as domestic fuel in rural areas so only one-fourth of the total may be considered as biomass energy resource. The production of cotton sticks during 2010-2011 was approximately 1,474,693 metric tons which is equivalent to power generation potential of around 3,071 GWh.

Cotton sticks constitute as much as 3 times of the cotton produced.

Animal Manure

Pakistan is the world’s fourth largest producer of milk. The cattle and dairy population is around 67,294,000 while the animal manure generation is estimated at 368,434,650 metric tons. Biogas generation from animal manure is a very good proposition for Pakistan as the country has the potential to produce electrical energy equivalent to 23,654 GWh

Municipal Solid Waste

The generation or solid wastes in 9 major urban centers is around 7.12 million tons per annum which is increasing by 2.5% per year due to rapid increase in population and high rate of industrialization. The average calorific value of MSW in Pakistan is 6.89 MJ/kg which implies power generation potential of around 13,900 GWh per annum.

Biomethane Utilization Pathways

biomethane-transportBiogas can be used in raw (without removal of CO2) or in upgraded form. The main function of upgrading biogas is the removal of CO2 (to increase the energy content) and H2S (to reduce risk of corrosion). After upgrading, biogas possesses identical gas quality properties as  natural gas, and can thus be used as natural gas replacement. The main pathways for biomethane utilization are as follows:

  • Production of heat and/or steam
  • Electricity production / combined heat and power production (CHP)
  • Natural gas replacement (gas grid injection)
  • Compressed natural gas (CNG) & diesel replacement – (bio-CNG for transport fuel usage)
  • Liquid natural gas (LNG) replacement – (bio-LNG for transport fuel usage)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

Although biogas is perfectly suitable to be utilized in boilers (as an environmental friendlier source for heat and steam production), this option is rather obsolete due to the abundance of alternative sources from solid waste origin.

Most Palm Oil Mills are already self-reliant with respect to heat and steam production due to the combustion of their solid waste streams (such as EFB and PKS). Consequently, conversion to electricity (by means of a CHP unit) or utilization as natural gas, CNG or LNG replacement, would be a more sensible solution.

The biogas masterplan as drafted by the Asia Pacific Biogas Alliance foresees a distribution in which 30% of the biomethane is used for power generation, 40% for grid injection and 30% as compressed/liquefied fuel for transportation purpose (Asian Pacific Biogas Alliance, 2015).

For each project, the most optimal option has to be evaluated on a case to case basis. Main decision-making factors will be local energy prices and requirements, available infrastructure (for gas and electricity), incentives and funding.

For the locations where local demand is exceeded, and no electricity or gas infrastructure is available within a reasonable distance (<5-10 km, due to investment cost and power loss), production of CNG could offer a good solution.

Moreover, during the utilization of biogas within a CHP unit only 40-50% of the energetic content of the gas is converted into electricity. The rest of the energy is transformed into heat. For those locations where an abundance of heat is available, such as Palm Oil Mills, this effectively means that 50-60% of the energetic content of the biogas is not utilized. Converting the biogas into biomethane (of gas grid or CNG quality) through upgrading, would facilitate the transportation and commercialisation of over 95%  of the energetic content of the biogas.

Within the CNG utilization route, the raw biogas will be upgraded to a methane content of >96%, compressed to 250 bar and stored in racks with gas bottles. The buffered gas (bottles) will be suitable for transportation by truck or ship. For transportation over large distances (>200km), it will be advised to further reduce the gas volume by converting the gas to LNG (trough liquefaction).

Overall the effects and benefits from anaerobic digestion of POME and utilization of biomethane can be summarized as follows:

  • Reduction of emissions i.e. GHG methane and CO2
  • Reduced land use for POME treatment
  • Enhanced self-sufficiency trough availability of on-site diesel replacement (CNG)
  • Expansion of economic activities/generation of additional revenues
    • Sales of surplus electricity (local or to the grid)
    • Sales of biomethane (injection into the natural gas grid)
    • Replacement of on-site diesel usage by CNG
    • Sales of bottled CNG
  • Reducing global and local environmental impact (through fuel replacement)
  • Reducing dependence on fossil fuel, and enhances fuel diversity and security of energy supply
  • Enhancement of local infrastructure and employment
    • Through electrical and gas supply
    • Through Fuel (CNG) supply

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the second article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first article can be viewed at this link

Biomass Energy Scenario in Southeast Asia

The rapid economic growth and industrialization in Southeast Asian region is characterized by a significant gap between energy supply and demand. The energy demand in the region is expected to grow rapidly in the coming years which will have a profound impact on the global energy market. In addition, the region has many locations with high population density, which makes public health vulnerable to the pollution caused by fossil fuels.

Another important rationale for transition from fossil-fuel-based energy systems to renewable ones arises out of observed and projected impacts of climate change. Due to the rising share of greenhouse gas emissions from Asia, it is imperative on all Asian countries to promote sustainable energy to significantly reduce GHGs emissions and foster sustainable energy trends. Rising proportion of greenhouse gas emissions is causing large-scale ecological degradation, particularly in coastal and forest ecosystems, which may further deteriorate environmental sustainability in the region.

The reliance on conventional energy sources can be substantially reduced as the Southeast Asian region is one of the leading producers of biomass resources in the world. Southeast Asia, with its abundant biomass resources, holds a strategic position in the global biomass energy atlas.

There is immense potential of biomass energy in ASEAN countries due to plentiful supply of diverse forms of wastes such as agricultural residues, agro-industrial wastes, woody biomass, animal wastes, municipal solid waste, etc. Southeast Asia is a big producer of wood and agricultural products which, when processed in industries, produces large amounts of biomass residues.


Palm kernel shells is an abundant biomass resource in Southeast Asia

According to conservative estimates, the amount of biomass residues generated from sugar, rice and palm oil mills is more than 200-230 million tons per year which corresponds to cogeneration potential of 16-19 GW. Woody biomass is a good energy resource due to presence of large number of forests and wood processing industries in the region.

The prospects of biogas power generation are also high in the region due to the presence of well-established food processing, agricultural and dairy industries. Another important biomass resource is contributed by municipal solid wastes in heavily populated urban areas.

In addition, there are increasing efforts from the public and private sectors to develop biomass energy systems for efficient biofuel production, e.g. biodiesel and bioethanol. The rapid economic growth and industrialization in Southeast Asia has accelerated the drive to implement the latest biomass energy technologies in order to tap the unharnessed potential of biomass resources, thereby making a significant contribution to the regional energy mix.