Conveyor Systems for Waste Management

Conveyor systems are an integral component of waste management and recycling operations. It works for various types of materials and transports them to different locations.  They play a vital role in the process of sorting waste material and their movements.  Mixed wastes are arranged for inspection over a conveyor, which then moves it from one end to another. While on its way items are sorted and unwanted materials are removed.

Conveyors are also used for carrying recycling materials such as wood or paper wastes to their respective grinding and process centers. Waste conveyors are manufactured with materials that do not get damaged by constant exposure to abrasives. They are also not affected by sticky or greasy liquids and dirt. Belt conveyors and chain conveyors are the most commonly used conveyors in recycling plants.

material-recovery-facility

Mostly non-powered conveyors are used in the industry. However, powered belt and roller conveyors are sometimes used for handling small products. They are typically used for pallet handling.

Conveyors are also used for moving waste materials in long streams so that they can be separated. Vibrating belts are attached which separate materials that require inspection. Waste materials and recycling industry is mostly about dealing with contaminated products and trash. Thus additional cautions are considered for the safety and environmental standards of the workers.

Types of Conveyors

Conveyors vary in shapes and dimensions according to their utility. From being installed in biomass plants, waste sorting plants, material recovery facilities, waste-to-energy plants, to being a prime component at food processing facilities, paper industry, mining, and pharmaceutics, conveyors are used everywhere.

Even at tough job-sites where transfer of materials is required across steep inclinations or large distances conveyors can ease the process. Generally, they are classified as belt conveyors and screw conveyors.

Waste_Conveyor

Screw Conveyors

Screw conveyors were invented by Archimedes and its core design hasn’t changed from its original design over these years. They can be vertical or horizontal with an entirely contained, metered space. Screw conveyors are generally used for moving dust-free movement of grains or flakes, powders, sludge, etc. They are made of galvanized metal, carbon steel, stainless steel, tapered screws, discharge chute, or in-feed hoppers.

Belt Conveyors

Belt conveyors have a wide-open frame which enables them to contain and move high loads of material over long distances. This is why they are commonly used in the mining industry and other places where heavy materials are required to be transported.  Structurally they are rugged loops that run over two or more pulleys. Additional rolls are also added in between to provide support in long belts.

Materials ranging from garbage to fine grains and powders and be carried over belt conveyors. They are also used for the movement of commercial waste including paper, plastic, or aluminum cans.

Belt material, configuration, and dimension differ according to its application. Various designs of belts are used nowadays, for example, magnetic belts, flat belts, trough belts, rubber belts, etc. Moreover, conveyors are also designed in shapes such as to carry fluids including sludge and water. Key manufacturing materials for these belts are cotton, canvas, leather, nylon, polyester, silicone, and steel. Dimension, design and materials can be easily customized depending on its application and to meet customer requirements.

5 Things You Need to Know About Making Biodiesel at Home

Biodiesel, a petroleum-based diesel alternative produced by transesterification, works as efficiently as the commercially sold diesel and hardly requires any changes in the engine. For those who don’t know, biodiesel can be produced using any oil derived from plants such as soybean oil, cottonseed oil, canola oil, etc. or from animal fats, like beef tallow and chicken tallow.

Over the past five years, due to the spike in fuel prices, people have started moving towards energy independence and have started small private biodiesel production units. According to reports, biodiesel made from useless tires could solve fuel security problems. Tires are a big problem as they create a lot of waste. We can turn this waste into useful oil and help not only the environment but also the economy.

If you are new to biodiesel production, some of the crucial things to know are:

1. Safety

This should not come as a surprise, safety rules are necessary to avoid the contamination of soil and water resources, fires, and personal poisoning.

Vegetable oil to biodiesel conversion requires methanol and lye. Both these chemicals are extremely dangerous since they are not only inflammable but can also cause neurological damage in case of excessive exposure.

A number of biodiesel related accidents and fires have been reported over the last few years. The incidents were a result of pure neglect. Some of the safety measures you should never forget to take are:

  • Don’t process inside your house.
  • Don’t keep any oily rags in the vicinity, they are the main source of spontaneous combustion leading to huge fires.
  • Don’t use paint stirrers or drills to mix up the biodiesel. It can cause a fire.
  • Don’t use blenders to make test batches, the ingredients can react with rubber seals.

All hazardous and dangerous products should be kept in an approved metal fire cabinet when not in use.

2. Environmental Regulations and Feedstock Collection

Currently, non-commercial and small-scale biodiesel production areas are not subjected to regulations by the Department of Environmental Protection (PADEP). However, if complaints or problems arise due to your biodiesel product, your plant might be subjected to discretionary enforcement. Moreover, you’ll need approval if you wish to increase the size of the production unit.

The disposal of by-products, on the other hand, requires the approval of the PADEP and should be done based on the latest guidelines. These guidelines can be obtained from your local Department of Environmental Protection.

Apart from following the rules and regulations, the availability of feedstock is crucial for the process.

One gallon of biodiesel requires at least one gallon of feedstock oil. To reduce production costs and to prevent food for fuel conflict, using inedible oils as a major source for biodiesel production is advised.

Usually, feedstock and feedstock oil are difficult to obtain, hence pre-planning is the key to produce the required amount of biodiesel on a regular basis. The collection and transportation of feedstock including used cooking oils are regulated by PADEP.

3. Time Commitment and Cost Requirements

New users usually underestimate the time requirements for proper and regular biodiesel production. While planning your biodiesel plant, make sure you allocate enough time to maintaining the equipment since improper maintenance lead to accidents. Feedstock collection and fuel processing also require a lot of time.

Other time-consuming tasks include handling and securing chemicals, air drying and water washing the fuel, testing the duel quality, and disposing of by-products.

Even though the cost requirements per gallon of biodiesel fuel process are much lower than the commercially sold diesel, there are a few things you need to take into consideration beforehand.

A detailed analysis of input costs versus the resultant value of fuel produced needs to be performed. The analysis should also include labor costs.

Investment in equipment and facility, feedstock transport and acquisition, chemicals, energy used and by-product disposal costs need to be accounted for as well.

4. Handling and Disposing By-products

During the production process, a considerable amount of crude glycerol is produced. Other processors that use water for biodiesel purification produced two gallons of waste for every gallon of biodiesel.

Handling this amount of waste can be taxing. It needs to be compliant with the PADEP rules and regulations. This not only requires more time but capital as well.

The crude glycerol by-product has 25 percent methanol as well as some hazardous waste. Converting it into marketable glycerin is not feasible on a small-scale since the evaporation of methanol cannot be contained.

The land application of methanol and glycerol are prohibited by PADEP. The disposal options from crude glycerol including methanol are:

  • Disposing of in a landfill.
  • Anaerobic digestion.
  • Industrial combustion.

You have to get special permission from PADEP for all the above processes.

5. Fuel Quality and Storage

Commercial testing of the fuel quality can rip you off since one batch can cost anything between $1000 and $1500. However, simpler fuel testing techniques like sediment testing, methanol testing, water content, viscosity, and cloud point testing can help you find a rough estimate of how good or bad the fuel is. These tests can also help you in finding what needs to be improved during the production process.

To store the fuel, use proper, biodiesel approved and rubber free containers. Using in-line filters while pumping the fuel in storage containers is the best practice. Usually, biodiesel produces use of 10-micron water-blocking filter or a 1-micron filter.

Petroleum approved containers also work well for storing biodiesel. Once in containers, the fuel should be kept in a dry, clean, and dark environment.

If you plan on storing the fuel for a longer time, using algaecide or fungicide additive is recommended since biodiesel is an organic liquid. Also, during cold seasons, the fuel gels, hence, blending in petroleum or anti-gelling additive is pretty important.

For best engine performance, you must use it within six months. If you can, limit the storage time to 3 months in warm and humid weather since the fuel can develop algae or fungus.

A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at the major landfills in Nigeria:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Municipal Waste Management in Poland

Municipal waste management in Poland has changed dramatically since the early ’90s when, as part of Poland’s privatisation program, municipal authorities were freed of their waste management obligations. The combined Polish recycling rate for dry recyclables and organic waste has increased from 5% in 2004 to 21% in 2010, according to a Copenhagen Resource Institute (CRI) study Municipal Waste Management in Poland (2013). Another source provides similar, corroborating statistics, putting the dry recycling rate in Poland at 14% and the composting rate at 7%.

waste-dump-warsaw

The latest Eurostat data (for 2011) shows that the upward trend continuing, with the total recycled and composted reaching 28%. That is rapid rate of improvement, but leaves Poland well below the latest EU-27 average of 40% (25% recycled and 15% composted) – so what prospect is there of Poland reaching the EU’s mandatory 50% target by 2020?

Responsibility for waste disposal shifted to householders, who were left to individually contract any waste collection company of their choice. In the hard economic climate a ‘cheaper-the-better’ mentality prevailed, which did little to encourage sustainable practices. There wasn’t even an obligation on householders even to sign up for waste collection.

Landfilling was – and remains – the most common way of handling waste, but accompanying reporting and tracking methods were inadequate. Statistically, quantities of waste produced were usually larger than those collected, with the missing tonnages usually being dumped in forests or burned in domestic boilers to avoid waste disposal costs. As a result, waste management became largely uncontrolled, with a 2011 report concluding that ‘’waste management is one of the most badly neglected and at the same time one of the most urgent environmental issues for Poland.’’

Waste Management Legislation

Even after joining the EU in 2005, Poland didn’t rush to introduce reforms to improve practices and help to meet recycling targets. Only recently has Poland introduced several pieces of new waste related legislation, including:

  • Act on maintaining cleanliness and order in municipalities (2012);
  • Act on Waste (2012); and
  • Act on management of packaging and packaging waste (2013).

The first of these was revolutionary in that it gave responsibility for municipal waste collection and disposal back to municipalities. Now they are required to organise garbage collection and the separate collection of biodegradable waste and recyclable materials such as paper, metal, glass and plastic. It is expected that the new law will improve waste management control measures on a local level and greatly reduce the illegal dumping and trash burning.

The Act on Waste helps tackle the previous ‘free for all’ amongst collectors – it obliges waste handlers to act in a manner consistent with waste management principles and plans adopted at national level (by the Council of Ministers), regional level (Voivodeship) and local level (Municipality).

Poland has also this year adopted a new National Waste Management Plan, which states that an essential step towards improving the recycling rate in Poland is to increase landfill fees for recyclable, compostable or recoverable material. If acted upon, this could greatly increase the incentive to divert important municipal waste streams from landfill. The Polish market is clearly responsive to cost: in 2008 after landfill tax was significantly raised, there was a substantial reduction in waste being landfilled.

Declaration of bin-dependence

Although Polish citizens have always had to pay directly for waste collection, the new legislation has made some substantial changes to the payment system. There are now three different calculation methods. Each household is subject to a standard fee, which is then adjusted to reflect either:

  • The number of people living in a household;
  • The number of square metres covered by the property; or
  • The number of cubic metres of water used by the household per month.

The first of these options seems to be the most reasonable and has proven the most popular.

Municipalities are left to determine the standard collection fee, which as a result varies from region to region. Some municipalities charge at little as 3 Polish Zloty (around £0.56) per household, per person, per month, while some charge 20 Zloty (around £3.75).

The standard charge is also affected by a declaration made by the householder regarding waste segregation. If a property owner declares that they have separated out recyclable materials then they pay considerably lower fees. In some municipalities, this could be as low as 50% of the usual charge. Only those who declare that they don’t want to recycle pay full price. It’s rare that people do so: who would pick the most expensive option?

The problem is that some householders declare that they recycle their waste while in reality they don’t. Unfortunately, abusing the system is easy to get away with, especially since the new scheme is still in its early stages and is not yet stable. Monitoring recycling participation in order to crack down on such abuses of the system represents quite a challenging task.

Future Perspectives

Transformation periods are always hard and it is common that they bring misunderstanding and chaos. It isn’t surprising that there are problems with the new system which require ironing out, and the new legislation is nevertheless welcome. However, there is still much work to be done to provide sufficient and sustainable waste management in Poland. This will include such measures as educating the population, improving waste separation at source and securing waste treatment capacity.

Perhaps most importantly, Poland needs to take immediate action to develop its municipal waste treatment capacity across the board. If the 2020 recycling target is to be met, the country will require material recovery facilities, anaerobic digestion and in vessel composting sites, and household waste and recycling centres; and if more waste is to be diverted from landfill it will also need energy from waste (EfW) incinerators and mechanical biological treatment facilities.

According to Eurostat, only 1% of waste in Poland was incinerated in 2011. It has been confirmed so far that an EfW plant will be developed in each of Poland’s 11 biggest cities. Fortunately for Poland, the development of waste treatment installations is quite generously funded by the EU, which covers up to 80% of the total cost: EU subsidy agreements have already been signed for three of the planned EfW plants. The remaining cost will be covered by central, regional and local government.

The CRI paper presents three different scenarios for the future recycling rate in Poland. One of them is very optimistic and predicts that Poland has a chance to meet the 2020 recycling requirements, but each is based simply on a regression analysis of recent trends, rather than an analysis of the likely impact of recent and planned policy measures. What it does make clear, though, is that if Poland continues to progress as it has since 2006, it will reach the 2020 target. How many EU countries can claim that?

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

Behavioral Drivers Behind Food Wastes

By 2075, the United Nations estimates the global population will peak at 9.5 billion, an extra 3 billion mouths to feed by the end of the century. Meanwhile, while we produce about four billion tonnes of food annually, it is estimated that 30-50% of this never reaches our plates. Of the food that does reach us, some western societies throw away up to a third of all food purchased. This has enormous implications for the global environment, from wasting the water used to grow the food to adverse effects on climate, land and biodiversity.

food-waste-behavior

The drivers behind the phenomenal levels of food waste are complex and include public behavior, food pricing, logistical and storage issues. However, given the significant level of waste that happens within the households of societies like the UK and US, it is useful and informative to consider those behaviours that drive this level of waste.

The quality of data around food waste, as with much of waste data, has historically been poor. To this end, WRAP commissioned groundbreaking research in the UK in 2006/7 to act as a baseline to their Love Food Hate Waste campaign. This came up with the alarming statistic that 1/3 of food bought by a UK household was thrown away. Until this time, there had been no comprehensive research, either by food manufacturers, retailers or interest groups, suggesting the importance of government, or some other dis-interested party, taking a lead on the issue.

Back to Basics

There may be a link between the amount of time spent preparing food, and the skill and effort that goes into this, and the amount of food waste produced. This has led to a loss of confidence in the kitchen, with individuals losing basic skills that allow them to cook with leftovers, understand food labeling, including Best Before and Use By, even basic storing. WRAP had found little evidence of best practice storage advice so carried out the research themselves – leading the (surprising for many) conclusion that fruit such as apples and pears are best stored in the fridge wrapped in a plastic cover.

However, this has masked a larger trend of less time spent in the kitchen, due to demographic changes. This of course begs the question – how should we use this when trying to reduce food waste? Should we encourage people to cook from scratch as a principle?

Although waste prevention and recycling are clearly separated within the waste hierarchy, there are apparent links between the two when considering food waste. There is an urgent need for legislation to enforce separate food waste collections, not only to ensure it was diverted to anaerobic digestion or composting, but also as it led to greater self awareness around food waste. WRAP research has clearly showed a fall in food waste when separate food waste collections were introduced.

Role of Packaging

Historically, packaging has always been a high priority to the public when asked about priorities for reducing waste. However, as awareness of food waste has grown, a more nuanced position has developed among waste managers. While excess packaging is clearly undesirable, and, within the UK for instance, the Courtauld Commitment  has helped reduced grocery packaging by 2.9 million tonnes of waste so far, there is a realization of the importance of food packaging in preserving food and hence reducing food waste.

food-packaging

Making food easily accessible and affordable by many, it could be argued, is one of the crowning achievements of our age. Over the last century, the proportion of household income that is spent on food has plummeted, and there is a direct link to malnutrition and food prices, particularly for children. But does cheap food mean that it is less valued and hence greater wastage? Is the answer expensive food? The evidence from WRAP in the UK is that food waste is still a serious economic issue for households, and underlining the economic case for reducing food waste a major incentive for households, especially as food prices are not entering an era of increase and instability, providing added economic urgency

Political Persuasions

Different political persuasions often differ in the approaches they take to changing behaviours and food waste is no different. In the UK, the Courtauld Commitment is a voluntary agreement aimed at encouraging major retailers to take responsibility mainly for packaging, later growing to encompass food waste, voluntary and so far has seen a 21% reduction in food waste post-consumer.

Meanwhile Wales (in the UK) effectively banned food waste from landfill. Scotland has ensured that businesses make food waste available for separate collection – again it’s only once you see it, you can manage it. Campaigns like the UK’s Love Food Hate Waste have been successful but measuring food waste prevention, as with all waste prevention, is notoriously difficult. But, people are now widely aware of food waste as an issue – we even see celebrity chefs actively talking about food waste reduction and recipes involving leftovers or food that is about to go off.

Food-Waste-UK

There is clearly a balance between food waste and food safety, with a commitment to reducing food waste throughout the retail and catering world, not just at home. By engaging environmental health officers to help deliver this, a potentially conflicting message can be delivered in a nuanced and balanced way. Indeed, environmental health officers in Scotland will be responsible for ensuring that Scottish food businesses present their food waste for separate collection.

Role of Communication

It is worth considering how the message should be communicated, and by whom. The community sector are more trusted by the public than government and the private sector are more effective at imparting personal, deeply held beliefs – the sort of beliefs that need to change if we are to see long term changes in attitudes towards consumption and hence waste production.

Furthermore, communications can engage wider audiences that hold an interest in reducing food waste that is perhaps not primarily environmental. The health and economic benefits of issues and behaviours that also result in food waste prevention may be the prevalent message that fits with a particular audience. So whilst the main aim of a training session might be food waste prevention, this is may not be the external message. And this has wider implications for waste prevention, and how we engage audiences around it.

Municipal authorities tasked with waste prevention will need to engage with new groups, in new ways. They will have to consider approaches previously considered to be beyond their powers to engage new audiences – should they be partnering with public health authorities with an interest in nutrition, or social housing providers that are focused on financial inclusion.

Should waste prevention even be a discipline in itself? After all, across material streams it is a motley assortment of behaviours with different drivers. Furthermore, with the knots that one can tie oneself in trying to measure waste that doesn’t get generated, – therefore doesn’t exist – should we integrate waste prevention in to other socio-economic programmes and position it as an “added benefit” to them?

Note: The article is being republished with the permission of our collaborative partner be Waste Wise. The unabridged version can be found at this link. Special thanks to the author Mike Webster.

Recycling of EPS Foam Packaging

Municipalities and organisations around the world are facing a growing problem in disposal and recycling of EPS foam packaging and products. EPS foam (Encapsulated Poly-Styrene) packaging is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. EPS foam (also known as polystyrene) is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc. However, being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often.

eps-foam-recycling

Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world.

Environmental Hazards of EPS Foam

While it is estimated that EPS foam products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.

Even when already disposed of in landfills, polystyrene can easily be carried by the wind and litter the streets or end up polluting water bodies. When EPS foam breaks apart, the small polystyrene components can be eaten by marine organisms which can cause choking or intestinal blockage.

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.

Styrene is derived from either petroleum or natural gas, both of which are non-renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Trends in EPS Foam Recycling

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively.

Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling.

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground.

A Glance at College Recycling Programs

Just one look at your local landfill is enough to convince you that there is a need for more recycling programs. Recycling should be a priority for all institutions across the country. College recycling programs ensure that such institutions make a contribution to environmental conservation.

Every student should have a recycle bin where they dispose of recyclable materials like paper, batteries, water bottles, and so much more. The world is going through a green resource transition, and college institutions should not be left behind.

 

Local communities can also borrow a leaf from college institutions and recycle their waste. The internet is quite resourceful when it comes to researching how a recycling program should work. Students can also use online resources to make their school life easier. For instance, thesis writing services ensure students get the marks they need to graduate.

1. American University

American University strives to be 100% waste-free. Its zero waste policy was adopted in 2010, and since then, the institution has had significant milestones. The system ensures that all university wastes are diverted from landfills. AU uses only renewable materials to ensure no waste is going into the environment.

The university’s environmental conservation efforts ensure it maintains a healthy student community. AU’s fraternity practices sustainable purchasing to maintain an environmentally-friendly campus.

AU makes paper towels from restrooms as well as kitchen wastes. The elimination of water bottles and food trays also helps cut down on wastes. The kitchen grease is recycled for electricity to help manage utility bills.

This institution has one of the finest recycling systems in America’s academic scene. In 2012, the school beat over 600 other universities at a RecycleMania contest.

2. Valencia College

Valencia College has a decade-old recycling system that’s updated each year. The institution has established itself as the model for university sustainability by bagging RecycleMania gold for waste minimization from 2012 through to 2014.

The school encourages students to reduce their waste output. It has a seamless paper, aluminum, plastic, and e-waste management system in place. The school no longer uses water bottles as this is the source of plastic waste in many institutions. Valencia College recycling program aims to reduce the institution’s carbon footprint.

3. College of the Atlantic

College of the Atlantic is well known as the greenest university college in the country. The institution’s recycling system is a comprehensive program that offers outlets for all types of waste.

Aside from outlets for food, the university also has units for composting disposable flatware and kitchen napkins. For foods that cannot be recycled, the campus uses these as a source of renewable energy. The recycling program is run by students to teach them the importance of environmental conservation.

4. University of California

One of University California’s goals is to achieve zero waste by 2020. A 90% waste diversion from landfills will have a significantly positive impact on the environment. The campus also aims to phase out procurement and distribution of Expanded Polystyrene.

Within the institution, is a hub for repurposing items. Students also collect leftover food in their rooms. The school rethinks daily operations to achieve a comprehensive diversion campaign.

5. Kalamazoo College

Kalamazoo College is another higher learning institution with comprehensive waste management and recycling program. The school not only recycles but also donates stationery, mirrors, lamps, and so much more to the surrounding community.

The school’s recycling department handles the exportation of food waste to a local pig farm. Kalamazoo College also recycles e-wastes like batteries, calculators and electric motors.

In addition to recycling, the department also takes up reuse and waste reduction responsibilities. The recycling department is run by students under the supervision of staff in charge. This way, students can understand just how much waste goes into the environment. The campus has two dedicated electric-powered golf carts that help with transportation of waste.

6.     Harvard University

Harvard University is one of the institutions that adopted the single-stream recycling. This means that all recyclable materials are mixed together in one waste receptacle. This is an effective system because it eliminates any confusion or guesswork.

The school runs a recycling program for different kinds of waste, including e-waste, food, ink, paper, and cartridges. Over the years, the recycling program has evolved and improved in efficacy. The school uses competitions to encourage students to reduce waste.

Conclusion

College recycling programs ensure students learn the importance of environment conservation. Institutions of higher learning are an excellent platform to teach students about environmental friendliness. Diverting waste from landfills ensures they don’t overflow with items that can be reused or recycled.

Municipal Solid Waste Management in Oman

Municipal solid waste management is a challenging issue for the Sultanate of Oman. With population of almost 3 million inhabitants, the country produces about 1.9 million tons of solid waste each year. The per capita waste generation in Oman is more than 1.5 kg per day, among the highest worldwide.

Landfill_Middle_East

Prevalent Scenario

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream.

The predominant waste disposal method in Oman is landfilling. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in Oman is marked by lack of collection and disposal facilities, as well as lack of public awareness about waste in the country. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat Sanitary Landfill

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater).

All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

The Way Forward

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish 16 engineered landfills, 65 waste transfer stations and 4 waste treatment plants in different parts of the country.

Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place. Oman is also seriously exploring waste-to-energy as a tool to manage garbage in a sustainable manner.

Combating Concrete Through Sustainable Building Materials

Around 5% of the world’s CO2 emissions are caused by concrete production, so finding sustainable alternatives is essential to slowing down climate change. Fortunately, there are plenty of materials out there which are perfect for mass home construction, without the same ecological damage. If you want to continue to do meaningful things, such as travel the world or live in safe and comfortable accommodation, then finding alternative building materials is the route to doing this sustainably.

1. Hemp Concrete Substitute

By compacting hemp and lime, it is possible to create a building block comparable to concrete. Unlike concrete, however, hemp absorbs carbon dioxide rather than emits it. This means that during the production process, 1m3 of hemp concrete wall will suck up 165kg of CO2. It is just as durable and robust as regular concrete, but will require cannabis legalisation before manufacture can begin.

In countries where the plant is already legal to produce, then the switch to hemp alternative building material should begin immediately. Hemp plastic is an attractive sustainable building material which holds great potential worldwide.

hemp as a construction material

2. Bamboo and Straw

Wood has long been a popular home building material, but not all plants are equally green. Bamboo has the quickest regrowth time of any plant, meaning that it can be replaced as quickly as it is cut down. It is strong and durable. Meanwhile, straw, when packed tightly, is a perfect eco-friendly insulation material. Together, this makes the most environmentally conscious wooden cabin.

In the debate of manufactured vs modular cabins, the latter tends to be preferred due to its rigidity and durability, while the former is more affordable. By constructing modular bamboo cabins, however, you are able to produce a long-lasting, energy efficient home at a much cheaper cost.

bamboo as a construction material

3. Reused Plastic Waste

The world purchases a million plastic bottles a minute or 480 billion a year. We need to seriously start thinking about how we can reduce our consumption of single use plastics, but also what to do with the waste in the meantime.

One thing that the bottles can be used for is the construction of houses. When filled with sand and stacked together, they form a durable and insulating wall. In some countries, this is being used as a way to bring affordable housing to those living in poverty. It is certainly a creative way to build homes without using more of the Earth’s precious resources.

Final Thoughts

There are so many alternatives to concrete out there. Governments and construction companies need to come together to move towards sustainable building practices. This will help to ensure that everyone has a safe place to call home, while recycling resources and cleaning the carbon dioxide out of the atmosphere.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Worm

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid fertilizer produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.