The Need-to-Know About Solar Panel Degradation

Some things get better with age – a bottle of whisky, a jar of pickles, or even a life full of wisdom. However, it is contradictory for an electronic device such as the solar power system. Solar panels and their system components are fated to degrade over time despite the lifespan of 20 to 30 years which depends on the manufacturer.

What is Solar Panel Degradation?

Solar panels deteriorate slowly over time. Degradation in solar panels means they generate less power output from the same amount of sunlight as they age. The period of degradation is measured against the lifespan of the solar panels.

what is solar panel degradation

Why Solar Panels Degrade Over Time?

The degradation of solar panels has been a challenging problem for manufacturers in the industry. However, advancements and developments pop up to lower the degradation rate while keeping up the power output. Although it is still a safe investment, the solar power system is expected to deteriorate at or below a specific rate.

The average degradation rate of the panels is at one percent each year. Nevertheless, a study by the National Renewable Energy Laboratory (NREL) shows that quality panels degrade at a rate of 0.4% over time which is remarkably lower.

Types of Solar Panel Degradation

There are three types of solar panel degradation to keep tabs on.

1. Light-Induced Degradation (LID)

Despite slow degradation as time goes by, it is crucial to know what happens to the solar power system once installed for the first time in residences, industries, or businesses. The degradation rate is significantly higher, which is at one to three percent within a short amount of time due to the sun exposure of the panels. This type of degradation is the Light-Induced Degradation or LID.

Without a doubt, sunlight is also considered a factor that contributes to the deterioration of the panels. To address this matter, manufacturers added UV blockers to protect the panels from the intense radiation from the sun.

2. Potential-Induced Degradation (PID)

The Potential-Induced Degradation or PID affects different components in the solar power system, such as the photovoltaic cells or panel frame. Once these components are disrupted, it causes voltage leaks which lowers the amount of electricity the panel can generate.

Although this type of degradation does not typically occur, it can significantly dent the panels’ performance by 30%.

3. Aging-Related Degradation

The solar power system will never be able to evade natural wear and tear. Various external factors contribute to the degradation of the panels. One of these factors, which is also difficult to control, is the weather. The adverse weather conditions in the country, such as snow, ice, hail, strong winds, and heavy rainfall, reduce the panels’ efficiency. These age-related degradations can cause microcracks.

Microcracks are very tiny cracks that form in the crystalline silicon of solar cells. Once these microcracks form, electrical connections also deteriorate. And if this happens, the photons from the sun have fewer paths to flow into; hence, less energy goes to the solar inverter that supplies electricity to the residence, industry, or business.

Microcracks are also caused by thermal cycling. Thermal cycling involves cycling two extreme temperatures rapidly. Warm temperature makes the panel and its components expand, while cold temperature enables it to contract. The constant cycling rapidly between these two extreme temperatures strains the panels and forms microcracks.

Water can get inside since these microcracks create holes on the panel’s surface and damage the seal. Other than these degradations, adverse weather conditions can also cause the hardening of the silicon, eroding of the frames, and contaminating the solar cells.

solar panels pigeon issue

Other reasons that contribute to the deterioration of solar panels

1. Quality of Materials

Some manufacturers will produce substandard or low-quality materials to keep the panels’ price low. These materials and components include solar glass, solar cells, and aluminum frames. Cheap materials increase the risk of product failure, which would eventually lead to more expenditures.

2. Installation

The way the panels are assembled and installed can affect their degradation rate. Installers need to be careful with the handling of solar modules. Since these panels are carried on top of their hardhats, the constant flexing, rocking, and bouncing back and forth can result in microcracks, scratches, and improper installations of electrical connections. Moreover, incompatible components and materials can speed up LID or PID on the panels.

3. Cleaning and Maintenance

Although the solar panel requires little maintenance, it is still vital to periodically monitor and check it to clear any debris or build-up that may affect its performance. It is also essential to check regularly the other components in the system, such as the cables, connections, and inverters, to ensure optimal performance.

Although the degradation of the solar power system is inevitable, it is paramount to understand the reasons they deteriorate in due time. Understanding their life cycle helps set your expectations and get the most out of your superb long-term investment.

About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.
Tagged , , , , , , , , . Bookmark the permalink.

5 Responses to The Need-to-Know About Solar Panel Degradation

  1. Pingback: 5 Things You Can Do About Pigeons Under Your Solar Panels

  2. Pingback: The Latest Developments in Solar Energy Technology

  3. Pingback: 8 Mistakes Homeowners Should Avoid When Switching to Solar

  4. Pingback: 7 Tips To Improve Solar Panel Efficiency | BioEnergy Consult

  5. Pingback: 7 Key Factors Affecting the Lifespan of Home Solar Panels

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.