Role of Biomass Energy in Rural Development

biomass-balesBiomass energy systems not only offer significant possibilities for clean energy production and agricultural waste management but also foster sustainable development in rural areas. The increased utilization of biomass wastes will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

Biomass energy has the potential to modernize the agricultural economy and catalyze rural development. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small, medium and large-scale biomass-based power plants can play a major role in rural development.

Sustainable harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

Planting of energy crops on abandoned agricultural lands will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Rural areas are the preferred hunting ground for the development of biomass sector worldwide. By making use of various biological and thermal processes (anaerobic digestion, combustion, gasification, pyrolysis), agricultural wastes can be converted into biofuels, heat or electricity, and thus catalyzing sustainable development of rural areas economically, socially and environmentally.

Biomass energy can reduce 'fuel poverty' in remote and isolated communities

Biomass energy can reduce ‘fuel poverty’ in remote and isolated communities

A large amount of energy is utilized in the cultivation and processing of crops like sugarcane, wheat and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs.

There are many areas in India where people still lack access to electricity and thus face enormous hardship in day-to-day lives. Biomass energy promises to reduce ‘fuel poverty’ commonly prevalent among remote and isolated communities.  Obviously, when a remote area is able to access reliable and cheap energy, it will lead to economic development and youth empowerment.

Biomass Energy in China

biomass-chinaBiomass energy in China has been developing at a rapid pace. The installed biomass power generation capacity in China increased sharply from 1.4 GW in 2006 to 14.88 GW in 2017. While the energy share of biomass remains relatively low compared to other sources of renewable energy, China plans to increase the proportion of biomass energy up to 15 percent and total installed capacity of biomass power generation to 30 GW by 2030.

In terms of impact, the theoretical biomass energy resource in China is about 5 billion tons coal equivalent, which equals 4 times of all energy consumption. As per conservative estimates, currently China is only using 5 percent of its total biomass potential.

According to IRENA, the majority of biomass capacity is in Eastern China, with the coastal province of Shandong accounting for 14 percent of the total alone. While the direct burning of mass for heat remains the primary use of biomass in China, in 2009, composition of China’s biomass power generation consisted in 62 percent of straw direct-fired power generation and 29 percent of waste incineration, with a mix of other feedstock accounting for the remaining 9 percent.

Biomass Resources in China

Major biomass resources in China include waste from agriculture, forestry, industries, animal manure and sewage, and municipal solid waste. While the largest contributing sources are estimated to be residues from annual crop production like wheat straw, much of the straw and stalk are presently used for cooking and heating in rural households at low efficiencies. Therefore, agricultural residues, forestry residues, and garden waste were found to be the most cited resources with big potential for energy production in China.

Agricultural residues are derived from agriculture harvesting such as maize, rice and cotton stalks, wheat straw and husks, and are most available in Central and northeastern China where most of the large stalk and straw potential is located. Because straw and stalks are produced as by-products of food production systems, they are perceived to be sustainable sources of biomass for energy that do not threaten food security.

Furthermore, it is estimated that China produces around 700 Mt of straw per year, 37 percent of which is corn straw, 28 percent rice, 20 percent wheat and 15 percent from various other crops. Around 50 percent of this straw is used for fertilizers, for which 350 Mt of straw is available for energy production per year.

Biomass resources are underutilized across China

Biomass resources are underutilized across China

Forestry residues are mostly available in the southern and central parts of China. While a few projects that use forestry wastes like tree bark and wood processing wastes are under way, one of the most cited resources with analyzed potential is garden waste. According to research, energy production from garden waste biomass accounted for 20.7 percent of China’s urban residential electricity consumption, or 12.6 percent of China’s transport gasoline demand in 2008.

Future Perspectives

The Chinese government believes that biomass feedstock should neither compete with edible food crops nor cause carbon debt or negative environmental impacts. As biomass takes on an increasing significant role in the China’s national energy-mix, future research specific to technology assessment, in addition to data collection and supply chain management of potential resources is necessary to continue to understand how biomass can become a game-changer in China’s energy future.

References

IRENA, 2014. Renewable Energy Prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi. www.irena.org/remap

National Academy of Engineering and NRC, 2007: Energy Futures and Urban Air Pollution: Challenges for China and the United States.

Xingang, Z., Zhongfu, T., Pingkuo, L, 2013. Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renewable and Sustainable Energy Reviews, Volume 25, September 2013, 310–317.

Xingang, Z., Jieyu, W., Xiaomeng, L., Tiantian, F., Pingkuo, L, 2012. Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, Volume 16, Issue 6, August 2012, 3722–3729.

Li, J., Jinming, B. MOA/DOE Project Expert Team, 1998. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing, China.

Klimowicz, G., 2014. “China’s big plans for biomass,” Eco-Business, Global Biomass Series, accessed on Apr 6, 2015.

Shi, Y., Ge, Y., Chang, J., Shao, H., and Tang, Y., 2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews 22 (2013) 432–437

Xu, J. and Yuan, Z, 2015. “An overview of the biomass energy policy in China,” BESustainable, May 21, 2015.