Prospects of Algae Biofuels in Middle East

Algae biofuels have the potential to become a renewable, cost-effective alternative for fossil fuels with reduced impact on the environment. Algae hold tremendous potential to provide a non-food, high-yield, non-arable land use source of renewable fuels like biodiesel, bioethanol, hydrogen etc. Microalgae are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only CO2, water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters.

algae-middle-east

Algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Microalgae are the fastest growing photosynthesizing organism capable of completing an entire growing cycle every few days. Up to 50% of algae’s weight is comprised of oil, compared with, for example, oil palm which yields just about 20% of its weight in oil. Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D efforts are underway worldwide, especially in North America and Europe, with a high number of start-up companies developing different options for commercializing algae farming.

Prospects of Algae Biofuels in the Middle East

The demand for fossil fuels is growing continuously all around the world and the Middle East is not an exception. The domestic consumption of energy in the Middle East is increasing at an astonishing rate, e.g. Saudi Arabia’s consumption of oil and gas rose by about 5.9 percent over the past five years while electricity demand is witnessing annual growth rate of 8 percent. Although Middle Eastern countries are world’s leading producers of fossil fuels, several cleantech initiatives have been launched in last few years which shows the commitment of regional countries in exploiting renewable sources of energy.

Algae biofuels is an attractive proposition for Middle East countries to offset the environmental impact of the oil and gas industry. The region is highly suitable for mass production of algae because of the following reasons:

  • Presence of large tracts of non-arable lands and extensive coastline.
  • Presence of numerous oil refineries and power plants (as points of CO2 capture) and desalination plants (for salt reuse).
  • Extremely favorable climatic conditions (highest annual solar irradiance).
  • Presence of a large number of sewage and wastewater treatment plants.
  • Existence of highly lipid productive microalgae species in coastal waters.

These factors makes it imperative on Middle East nations to develop a robust Research, Development and Market Deployment plan for a comprehensive microalgal biomass-based biorefinery approach for bio-product synthesis. An integrated and gradual appreciation of technical, economic, social and environmental issues should be considered for a successful implementation of the microalgae-based oleo-feedstock (MBOFs) industry in the region.

Bioenergy and Its Endless Possibilities

Bioenergy is a renewable energy source derived from biological materials, such as plants, animals, and their byproducts. It has been used for thousands of years, dating back to the use of wood for heating and cooking. Today, bioenergy has evolved into a diverse and rapidly growing industry, with applications ranging from electricity generation to transportation fuels and bioproducts. This article will explore the various forms of bioenergy, their benefits, and the endless possibilities they offer for a sustainable future.

future of bioenergy

One of the most common forms of bioenergy is biomass, which refers to organic materials that can be used as fuel. Biomass can be obtained from various sources, including agricultural residues, forestry residues, and dedicated energy crops. These materials can be converted into different forms of energy, such as heat, electricity, and biofuels, through various processes, including combustion, gasification, and fermentation.

One example of biomass utilization is the production of biogas, a mixture of methane and carbon dioxide produced by the anaerobic digestion of organic matter. Biogas can be used as a fuel for heating, electricity generation, and transportation. It can also be upgraded to biomethane, a renewable natural gas that can be injected into the natural gas grid or used as a vehicle fuel. Biogas production not only provides a renewable energy source but also helps reduce greenhouse gas emissions by capturing methane that would otherwise be released into the atmosphere.

Typical layout of a modern biogas facility

Another form of bioenergy is biofuels, which are liquid fuels derived from biomass. There are several types of biofuels, including ethanol, biodiesel, and advanced biofuels. Ethanol is the most widely used biofuel, primarily as a gasoline additive to reduce air pollution and greenhouse gas emissions. It is typically produced from sugar- and starch-rich crops, such as corn and sugarcane. Biodiesel, on the other hand, is made from vegetable oils, animal fats, and recycled cooking grease. It can be used as a diesel fuel substitute or blended with petroleum diesel to reduce emissions.

Advanced biofuels, also known as second-generation biofuels, are produced from non-food biomass sources, such as agricultural and forestry residues, municipal solid waste, and dedicated energy crops like switchgrass and miscanthus. These biofuels have the potential to significantly reduce greenhouse gas emissions compared to fossil fuels and do not compete with food production. Examples of advanced biofuels include cellulosic ethanol, renewable diesel, and biojet fuel.

hazards of biofuel production

In addition to energy production, bioenergy can also be used to produce various bioproducts, such as chemicals, materials, and pharmaceuticals. These bioproducts can replace petroleum-based products, reducing our dependence on fossil fuels and lowering greenhouse gas emissions. One example of bioproducts is bioplastics, which are made from renewable biomass sources like corn starch, cellulose, and vegetable oils. Bioplastics can be used in various applications, including packaging, automotive parts, and consumer goods.

The development of advanced biomanufacturing technologies has opened up new possibilities for bioenergy and bioproducts. For instance, GBI Biomanufacturing is a company that specializes in the production of high-value bioproducts using advanced fermentation processes. Their expertise in bioprocess development and optimization allows them to produce a wide range of products, from biofuels to specialty chemicals and pharmaceuticals. This demonstrates the versatility and potential of bioenergy in various industries.

One of the main benefits of bioenergy is its potential to reduce greenhouse gas emissions and mitigate climate change. Unlike fossil fuels, which release carbon dioxide when burned, bioenergy is considered carbon-neutral because the carbon dioxide released during combustion is offset by the carbon dioxide absorbed by plants during photosynthesis. Moreover, the use of bioenergy can help reduce our dependence on fossil fuels, enhancing energy security and diversifying the energy mix.

Another advantage of bioenergy is its potential to support rural economies and create jobs. The production of biomass and biofuels can provide new income opportunities for farmers and rural communities, as well as stimulate investment in infrastructure and technology. Furthermore, the development of advanced biomanufacturing facilities can create high-skilled jobs in research, engineering, and production.

bioenergy and rural development

Despite its numerous benefits, bioenergy also faces several challenges. One of the main concerns is the competition between bioenergy and food production, as some biofuels are produced from food crops like corn and sugarcane. This can lead to higher food prices and land-use changes, potentially affecting food security and biodiversity. However, the development of advanced biofuels from non-food biomass sources can help address this issue.

The Concept of Biorefinery

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum. By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock.

A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, through CHP technology, for its own use and perhaps enough for sale of electricity to the local utility.

The high value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce GHG emissions from traditional power plant facilities.

biorefinery-process

Biorefinery Platforms

There are several biorefinery platforms which can be employed in a biorefinery with the major ones being the sugar platform and the thermochemical platform (also known as syngas platform).

Sugar platform biorefineries breaks down biomass into different types of component sugars for fermentation or other biological processing into various fuels and chemicals. On the other hand, thermochemical biorefineries transform biomass into synthesis gas (hydrogen and carbon monoxide) or pyrolysis oil.

The thermochemical biomass conversion process is complex, and uses components, configurations, and operating conditions that are more typical of petroleum refining. Biomass is converted into syngas, and syngas is converted into an ethanol-rich mixture.

However, syngas created from biomass contains contaminants such as tar and sulphur that interfere with the conversion of the syngas into products. These contaminants can be removed by tar-reforming catalysts and catalytic reforming processes. This not only cleans the syngas, it also creates more of it, improving process economics and ultimately cutting the cost of the resulting ethanol.

Plus Points

Biorefineries can help in utilizing the optimum energy potential of organic wastes and may also resolve the problems of waste management and GHGs emissions. Biomass wastes can be converted, through appropriate enzymatic/chemical treatment, into either gaseous or liquid fuels.

The pre-treatment processes involved in biorefining generate products like paper-pulp, HFCS, solvents, acetate, resins, laminates, adhesives, flavour chemicals, activated carbon, fuel enhancers, undigested sugars etc. which generally remain untapped in the traditional processes. The suitability of this process is further enhanced from the fact that it can utilize a variety of biomass resources, whether plant-derived or animal-derived.

Future Perspectives

The concept of biomass-based refinery is still in early stages at most places in the world. Problems like raw material availability, feasibility in product supply chain, scalability of the model are hampering its development at commercial-scales. The National Renewable Energy Laboratory (NREL) of USA is leading the front in biorefinery research with path-breaking discoveries and inventions. 

Although the technology is still in nascent stages, but it holds the key to the optimum utilization of wastes and natural resources that humans have always tried to achieve. The onus now lies on governments and corporate sector to incentivize or finance the research and development in this highly promising field.