Renewable Energy in Australia: Potential and Progress

Recently there has been a lot of talk in how a country can improve their ecological footstep. One way of doing so is definitely changing the way the respective country produces its energy. Australia has recently been headlining the news in regard to the renewable energy situation. Australia’s energy production is looking towards a new future with a specific aim on solar and wind power.

If Australia plans on keeping its water resource at a steady level, it has got to go from its use of coal to renewable sources. Thanks to its abundance in both solar and wind energy, Australia has quite the advantage when it comes to green energy production possibilities.

Unfortunately though due to their geographic position, the water supply is limited for the country. So much so, that the coal industry was taking a toll on the water supply due to the large quantities of water needed when producing energy from coal. As a result, moving over to wind and solar energy fueled productions is a viable option seeing how both respective energy productions do not require water.

The news that Australia was listed as a “water-stressed company” was released by the World Resource Institute; a non-profit organization based in Washington D.C. Moreover, on this past May 13th The Sydney Morning Herald also wrote that 73% of Australia’s electricity needs were met by the use of coal. In respect to these findings and Australia’s continuous growth, it is imperative that new resources are used for energy production.

Australia has been making headlines in renewable energy sector.

Fortunately, Australia’s geography is a big resource as well when it comes to studying the possibilities of implementing the new energy production. It was in fact calculated that the dimensions of the solar power farm needed to meet the country’s demands would result in occupying only 0.1% of Australia’s total land mass; I think we can all agree on the fact that that land could be spared for a solar farm.

And on that note, the government is taking the matter seriously, and has called upon everybody to try and better the situation. The incentives call upon small businesses and households as well by reminding them that there are the possibilities of installing their own solar panels, heat pumps, solar water heaters, and more.

Thanks to the various incentives, the Green Energy Council has stated that there is a lot of activity in the sector, including at least 58 different projects focused on implementing the renewable energy sources. As a consequence of these projects, the council has also stated that there would be an income of $10 billion in investments, 6,141 new jobs, and 5,482 megawatts of renewable energy capacity. Definitely great numbers to look forward to!

How Renewable Energy Can Solve Smog Problem in China

China is currently facing serious environmental problems, with potentially few solutions. Currently, this is mostly taking the form of serious smog issues plaguing North China, with more than 24 cities on red alert. However, with airports being shut down due to lacking visibility and the economy of China being heavily disrupted, action needs to be taken to solve this serious smog problem. While limited action has been taken, perhaps renewable energy is the key to cutting down China’s smog.

smog-china

How Bad Is the Problem?

The smog problem in China has become increasing worse from 2015 to 2017, with more than 90 micrograms of pollution per meter squared. These levels of air pollution are similar to the levels recorded previous to 2014, when the Chinese premier declared a war on pollution due to the health dangers posed by rising air pollution levels.

However, since 2015, levels of air pollution have risen once again. This pollution has had hard hitting effects on urban areas, especially the Chinese capital Beijing, and has caused widespread disruption to the lives of Chinese citizens and economy of the country.

The air pollution leads to the cities becoming hotter than ever. Urban Heat Island effect, which refers to buildings absorbing the sun’s heat well, is exacerbated by the smog. In fact, a car in the heat can reach temperatures of 114 degrees Fahrenheit after just 20 minutes, making travelling on hot days nearly unbearable for any living creature. In order to decrease the heated condition of China, it is essential to decrease the amount of smog covering the cities.

What Has the Chinese Government Done?

The Chinese government has taken limited action in an attempt to minimize the air pollution being created in the country. This includes the Atmospheric Pollution Prevention Plan, which acknowledged the danger posed by air pollution levels and aimed to reduce coal usage in urban areas like Beijing.

However, this is not representative of the main action the government has taken. Primarily, the Chinese government has focused on individual areas and attempting to reduce local pollution levels through efficient coal burning and banning the burning of waste materials, especially on farms. These solutions, while effective on a short-term basis, are not all that is needed, though.

Investment in renewables can reduce China's dependence on coal for power generation

Investment in renewables can reduce China’s dependence on coal for power generation

China needs to reduce its overall usage of coal produced energy, which currently stands at 64 percent of total energy consumption. While this has already been happening in China, the further introduction of renewable energy could be of great help to China’s pollution levels.

How Could Renewable Energy Help?

Many people believe renewable energy to be a small affair, something undertaken by the Western world in a vain attempt to reduce our collective guilt concerning climate change and wastage levels. This is simply not the case. Renewable energy is a $120 billion industry that receives investment and application across the world. This includes solar energy, waste-to-energy technology, wind energy, hydroelectric energy and many more attempts to reduce overall energy usage.

Through investment in renewable energy, China could reduce its dependence on coal and increase the efficiency of its energy production and economy. Smog is directly created by China’s use of coal for its energy production, and by investing in other renewable means, China can simultaneously improve its health situation.

In fact, the obviously positive nature of investment in renewable energy can be clearly seen through the Chinese government’s already existing plans to further incorporate it into the economy. In the five-year plan announced in 2016, the Chinese government explicitly stated it would decrease air pollution levels through investment in wind, solar and biomass energy production technologies.

While the plans additionally included investment in making the coal industry more efficient and reducing emissions on an industrial and commercial level, clearly renewable energy is believed to be a valid alternative energy source.

Overall, it is clear that renewable energy can certainly help with China’s serious smog problem. Whether this should be in tangent with further investment in the coal industry or necessitate the end of widespread coal usage in China is still a question for debate.

About the Author

Emily Folk is freelance writer and blogger on topics of renewable energy and conservation. To get her latest posts, check out her blog Conservation Folks, or follow her on Twitter.

Use of PKS in Circulating Fluidized Bed Power Plants

Palm kernel shells are widely used in fluidized bed combustion-based power plants in Japan and South Korea. The key advantages of fluidized bed combustion (FBC) technology are higher fuel flexibility, high efficiency and relatively low combustion temperature. FBC technology, which can either be bubbling fluidized bed (BFB) or circulating fluidized bed (CFB), is suitable for plant capacities above 20 MW. Palm kernel shells (PKS) is more suitable for CFB-based power plant because its size is less than 4 cm.

palm-kernel-shell-uses

Palm kernel shells is an abundant biomass resource in Southeast Asia

With relatively low operating temperature of around 650 – 900 oC, the ash problem can be minimized. Certain biomass fuels have high ash levels and ash-forming materials that can potentially damage these generating units.

In addition, the fuel cleanliness factor is also important as certain impurities, such as metals, can block the air pores on the perforated plate of FBC unit. It is to be noted that air, especially oxygen, is essential for the biomass combustion process and for keeping the fuel bed in fluidized condition.

The requirements for clean fuel must be met by the provider or seller of the biomass fuel. Usually the purchasers require an acceptable amount of impurities (contaminants) of less than 1%. Cleaning of PKS is done by sifting (screening) which may either be manual or mechanical.

In addition to PKS, biomass pellets from agricultural wastes or agro-industrial wastes, such as EFB pellets which have a high ash content and low melting point, can also be used in CFB-based power plants. More specifically, CFBs are more efficient and emit less flue gas than BFBs.

The disadvantages of CFB power plant is the high concentration of the flue gas which demands high degree of efficiency of the dust precipitator and the boiler cleaning system. In addition, the bed material is lost alongwith ash and has to be replenished regularly.

A large-scale biomass power plant in Japan

The commonly used bed materials are silica sand and dolomite. To reduce operating costs, bed material is usually reused after separation of ash. The technique is that the ash mixture is separated from a large size material with fine particles and silica sand in a water classifier. Next the fine material is returned to the bed.

Currently power plants in Japan that have an efficiency of more than 41% are only based on ultra supercritical pulverized coal. Modification of power plants can also be done to improve the efficiency, which require more investments. The existing CFB power plants are driving up the need to use more and more PKS in Japan for biomass power generation without significant plant modifications.

Cofiring of Biomass

Cofiring of biomass involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Cofiring of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels.

Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Cofiring of biomass has the major advantage of avoiding the construction of new, dedicated, biomass power plant. An existing power station is modified to accept the biomass resource and utilize it to produce a minor proportion of its electricity.

Cofiring of biomass may be implemented using different types and percentages of biomass in a range of combustion and gasification technologies. Most forms of biomass are suitable for cofiring. These include dedicated energy crops, urban wood waste and agricultural residues such as rice straw and rice husk.

The fuel preparation requirements, issues associated with combustion such as corrosion and fouling of boiler tubes, and characteristics of residual ash dictate the cofiring configuration appropriate for a particular plant and biomass resource. These configurations may be categorized into direct, indirect and parallel firing.

1. Direct Cofiring

This is the most common form of biomass cofiring involving direct cofiring of the biomass fuel and the primary fuel (generally coal) in the combustion chamber of the boiler. The cheapest and simplest form of direct cofiring for a pulverized coal power plant is through mixing prepared biomass and coal in the coal yard or on the coal conveyor belt, before the combined fuel is fed into the power station boiler.

2. Indirect Cofiring

If the biomass fuel has different attributes to the normal fossil fuel, then it may be prudent to partially segregate the biomass fuel rather than risk damage to the complete station.

For indirect cofiring, the ash of the biomass resource and the main fuel are kept separate from one another as the thermal conversion is partially carried out in separate processing plants. As indirect co-firing requires a separate biomass energy conversion plant, it has a relatively high investment cost compared with direct cofiring.

Parallel Firing

For parallel firing, totally separate combustion plants and boilers are used for the biomass resource and the coal-fired power plants. The steam produced is fed into the main power plant where it is upgraded to higher temperatures and pressures, to give resulting higher energy conversion efficiencies. This allows the use of problematic fuels with high alkali and chlorine contents (such as wheat straw) and the separation of the ashes.