Cogeneration of Bagasse

Cogeneration of bagasse is one of the most attractive and successful energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

According to World Alliance for Decentralized Energy (WADE) report on Bagasse Cogeneration, bagasse-based cogeneration could deliver up to 25% of current power demand requirements in the world’s main cane producing countries. The overall potential share in the world’s major developing country producers exceeds 7%. There is abundant opportunity for the wider use of bagasse-based cogeneration in sugarcane-producing countries. It is especially great in the world’s main cane producing countries like Brazil, India, Thailand, Pakistan, Mexico, Cuba, Colombia, Philippines and Vietnam. Yet this potential remains by and large unexploited.

Using bagasse to generate power represents an opportunity to generate significant revenue through the sale of electricity and carbon credits. Additionally, cogeneration of heat and power allows sugar producers to meet their internal energy requirements and drastically reduce their operational costs, in many cases by as much as 25%. Burning bagasse also removes a waste product through its use as a feedstock for the electrical generators and steam turbines.

Most sugarcane mills around the globe have achieved energy self-sufficiency for the manufacture of raw sugar and can also generate a small amount of exportable electricity. However, using traditional equipment such as low-pressure boilers and counter-pressure turbo alternators, the level and reliability of electricity production is not sufficient to change the energy balance and attract interest for export to the electric power grid.

On the other hand, revamping the boiler house of sugar mills with high pressure boilers and condensing extraction steam turbine can substantially increase the level of exportable electricity. This experience has been witnessed in Mauritius, where, following major changes in the processing configurations, the exportable electricity from its sugar factory increased from around 30-40 kWh to around 100–140 kWh per ton cane crushed. In Brazil, the world’s largest cane producer, most of the sugar mills are upgrading their boiler configurations to 42 bars or even higher pressure of up to 67 bars.

Technology Options

The prime technology for sugar mill cogeneration is the conventional steam-Rankine cycle design for conversion of fuel into electricity. A combination of stored and fresh bagasse is usually fed to a specially designed furnace to generate steam in a boiler at typical pressures and temperatures of usually more than 40 bars and 440°C respectively. The high pressure steam is then expanded either in a back pressure or single extraction back pressure or single extraction condensing or double extraction cum condensing type turbo generator operating at similar inlet steam conditions.

Due to high pressure and temperature, as well as extraction and condensing modes of the turbine, higher quantum of power gets generated in the turbine–generator set, over and above the power required for sugar process, other by-products, and cogeneration plant auxiliaries. The excess power generated in the turbine generator set is then stepped up to extra high voltage of 66/110/220 kV, depending on the nearby substation configuration and fed into the nearby utility grid. As the sugar industry operates seasonally, the boilers are normally designed for multi-fuel operations, so as to utilize mill bagasse, procured Bagasse/biomass, coal and fossil fuel, so as to ensure year round operation of the power plant for export to the grid.

Latest Trends

Modern power plants use higher pressures, up to 87 bars or more. The higher pressure normally generates more power with the same quantity of Bagasse or biomass fuel. Thus, a higher pressure and temperature configuration is a key in increasing exportable surplus electricity.

In general, 67 bars pressure and 495°C temperature configurations for sugar mill cogeneration plants are well-established in many sugar mills in India. Extra high pressure at 87 bars and 510°C, configuration comparable to those in Mauritius, is the current trend and there are about several projects commissioned and operating in India and Brazil. The average increase of power export from 40 bars to 60 bars to 80 bars stages is usually in the range of 7-10%.

A promising alternative to steam turbines are gas turbines fuelled by gas produced by thermochemical conversion of biomass. The exhaust is used to raise steam in heat recovery systems used in any of the following ways: heating process needs in a cogeneration system, for injecting back into gas turbine to raise power output and efficiency in a steam-injected gas turbine cycle (STIG) or expanding through a steam turbine to boost power output and efficiency in a gas turbine/steam turbine combined cycle (GTCC). Gas turbines, unlike steam turbines, are characterized by lower unit capital costs at modest scale, and the most efficient cycles are considerably more efficient than comparably sized steam turbines.

Overview of Bioenergy Technologies

A wide range of technologies are available for realizing the energy potential of biomass wastes, ranging from very simple systems for disposing of dry waste to more complex technologies capable of dealing with large amounts of industrial waste. Conversion routes for biomass wastes are generally thermo-chemical or bio-chemical, but may also include chemical and physical.

Thermal Technologies

The three principal methods of thermo-chemical conversion corresponding to each of these energy carriers are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air. Direct combustion is the best established and most commonly used technology for converting wastes to heat. During combustion, biomass is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from wastes, which burn as flames. Steam is expanded through a conventional turbo-alternator to produce electricity. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat.

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. An existing power station is modified to accept the waste resource and utilize it to produce a minor proportion of its electricity.

Gasification systems operate by heating biomass wastes in an environment where the solid waste breaks down to form a flammable gas. The gasification of biomass takes place in a restricted supply of air or oxygen at temperatures up to 1200–1300°C. The gas produced—synthesis gas, or syngas—can be cleaned, filtered, and then burned in a gas turbine in simple or combined-cycle mode, comparable to LFG or biogas produced from an anaerobic digester. The final fuel gas consists principally of carbon monoxide, hydrogen and methane with small amounts of higher hydrocarbons. This fuel gas may be burnt to generate heat; alternatively it may be processed and then used as fuel for gas-fired engines or gas turbines to drive generators. In smaller systems, the syngas can be fired in reciprocating engines, micro-turbines, Stirling engines, or fuel cells.

Pyrolysis is thermal decomposition occurring in the absence of oxygen. During the pyrolysis process, biomass waste is heated either in the absence of air (i.e. indirectly), or by the partial combustion of some of the waste in a restricted air or oxygen supply. This results in the thermal decomposition of the waste to form a combination of a solid char, gas, and liquid bio-oil, which can be used as a liquid fuel or upgraded and further processed to value-added products.

Biochemical Technologies

Biochemical processes, like anaerobic digestion, can also produce clean energy in the form of biogas which can be converted to power and heat using a gas engine. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. In addition, wastes can also yield liquid fuels, such as cellulosic ethanol and biodiesel, which can be used to replace petroleum-based fuels.

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biogas and biofertilizer. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes. An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer.

A variety of fuels can be produced from biomass wastes including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). The three major steps involved in cellulosic ethanol production are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms. Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Rice Straw As Bioenergy Resource

The cultivation of rice results in two types of biomass residues – straw and husk – having attractive potential in terms of energy. Rice husk, the main by-product from rice milling, accounts for roughly 22% of paddy weight, while rice straw to paddy ratio ranges from 1.0 to 4.3. Although the technology for rice husk utilization is well-established worldwide, rice straw is sparingly used as a source of renewable energy. One of the main reasons for the preferred use of husk is its easy procurement. In case of rice straw, however, its collection is difficult and its availability is limited to harvest time.

Rice straw can either be used alone or mixed with other biomass materials in direct combustion, whereby combustion boilers are used in combination with steam turbines to produce electricity and heat. The energy content of rice straw is around 14 MJ per kg at 10 percent moisture content.  The by-products are fly ash and bottom ash, which have an economic value and could be used in cement and/or brick manufacturing, construction of roads and embankments, etc.

Straw fuels have proved to be extremely difficult to burn in most combustion furnaces, especially those designed for power generation. The primary issue concerning the use of rice straw and other herbaceous biomass for power generation is fouling, slagging, and corrosion of the boiler due to alkaline and chlorine components in the ash. Europe, and in particular, Denmark, currently has the greatest experience with straw-fired power and CHP plants.

Because of the large amount of cereal grains (wheat and oats) grown in Denmark, the surplus straw plays a large role in the country’s renewable energy strategy. Technology developed includes combustion furnaces, boilers, and superheat concepts purportedly capable of operating with high alkali fuels and having handling systems which minimize fuel preparation.

A variety of methods are employed by the European plants to prepare straw for combustion. Most use automated truck unloading bridge cranes that clamp up to 12 bales at a time and stack them 4-5 bales high in covered storage. Some systems feed whole bales into the boiler. Probably the best known whole bale feeder is the “Vølund cigar feeding” concept, originally applied by Vølund (now Babcock and Wilcox-Vølund). Whole bales are pushed into the combustion chamber and the straw burned off the face of the bale.

However, the newer Danish plants have moved away from whole-bale systems to shredded straw feed for higher efficiency. For pulverized coal co-firing, the straw usually needs to be ground or cut to small sizes in order to burn completely within relatively short residence times (suspension fired systems) or to feed and mix upon injection with bed media in fluidized bed systems.

The chemical composition of feedstock has a major influence on the efficiency of biomass cogeneration. The low feedstock quality of rice straw is primarily determined by high ash content (10–17%) as compared with wheat straw (around 3%) and also high silica content in ash. On the other hand, rice straw as feedstock has the advantage of having a relatively low total alkali content, whereas wheat straw can typically have more than 25% alkali content in ash.

However, straw quality varies substantially within seasons as well as within regions. If straw is exposed to precipitation in the field, alkali and alkaline compounds are leached, improving the feedstock quality. In turn, moisture content should be less than 10% for combustion technology.

In straw combustion at high temperatures, potassium is transformed and combines with other alkali earth materials such as calcium. This in turn reacts with silicates, leading to the formation of tightly sintered structures on the grates and at the furnace wall. Alkali earths are also important in the formation of slag and deposits. This means that fuels with lower alkali content are less problematic when fired in a boiler.

Thermal Conversion of Biomass

A wide range of technologies exists to convert the energy stored in biomass to more useful forms of energy. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is admitted to the conversion process (usually as air). The major methods of thermal conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air.


Conventional combustion technologies raise steam through the combustion of biomass. This steam may then be expanded through a conventional turbo-alternator to produce electricity. A number of combustion technology variants have been developed. Underfeed stokers are suitable for small scale boilers up to 6 MWth. Grate type boilers are widely deployed. They have relatively low investment costs, low operating costs and good operation at partial loads. However, they can have higher NOx emissions and decreased efficiencies due to the requirement of excess air, and they have lower efficiencies.

Fluidized bed combustors (FBC), which use a bed of hot inert material such as sand, are a more recent development. Bubbling FBCs are generally used at 10-30 MWth capacity, while Circulating FBCs are more applicable at larger scales. Advantages of FBCs are that they can tolerate a wider range of poor quality fuel, while emitting lower NOx levels.


Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. Co-firing may be implemented using different types and percentages of wastes in a range of combustion and gasification technologies. Most forms of biomass wastes are suitable for co-firing. These include dedicated municipal solid wastes, wood waste and agricultural residues such as straw and husk.


Gasification of biomass takes place in a restricted supply of oxygen and occurs through initial devolatilization of the biomass, combustion of the volatile material and char, and further reduction to produce a fuel gas rich in carbon monoxide and hydrogen. This combustible gas has a lower calorific value than natural gas but can still be used as fuel for boilers, for engines, and potentially for combustion turbines after cleaning the gas stream of tars and particulates. If gasifiers are ‘air blown’, atmospheric nitrogen dilutes the fuel gas to a level of 10-14 percent that of the calorific value of natural gas. Oxygen and steam blown gasifiers produce a gas with a somewhat higher calorific value. Pressurized gasifiers are under development to reduce the physical size of major equipment items.

A variety of gasification reactors have been developed over several decades. These include the smaller scale fixed bed updraft, downdraft and cross flow gasifiers, as well as fluidized bed gasifiers for larger applications. At the small scale, downdraft gasifiers are noted for their relatively low tar production, but are not suitable for fuels with low ash melting point (such as straw). They also require fuel moisture levels to be controlled within narrow levels.


Pyrolysis is the term given to the thermal degradation of wood in the absence of oxygen. It enables biomass to be converted to a combination of solid char, gas and a liquid bio-oil. Pyrolysis technologies are generally categorized as “fast” or “slow” according to the time taken for processing the feed into pyrolysis products. These products are generated in roughly equal proportions with slow pyrolysis. Using fast pyrolysis, bio-oil yield can be as high as 80 percent of the product on a dry fuel basis. Bio-oil can act as a liquid fuel or as a feedstock for chemical production. A range of bio-oil production processes are under development, including fluid bed reactors, ablative pyrolysis, entrained flow reactors, rotating cone reactors, and vacuum pyrolysis.

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat and power (CHP).

Biomass gasification provides a means of deriving more diverse forms of energy from the thermochemical conversion of biomass than conventional combustion. The basic gasification process involves devolatization, combustion and reduction.

During devolatization, methane and other hydrocarbons are produced from the biomass by the action of heat which leaves a reactive char.

During combustion, the volatiles and char are partially burned in air or oxygen to generate heat and carbon dioxide. In the reduction phase, carbon dioxide absorbs heat and reacts with the remaining char to produce carbon monoxide (producer gas). The presence of water vapour in a gasifier results in the production of hydrogen as a secondary fuel component.

There are two main types of gasifier that can be used to carry out this conversion, fixed bed gasifiers and fluidized bed gasifiers. The conversion of biomass into a combustible gas involves a two-stage process. The first, which is called pyrolysis, takes place below 600°C, when volatile components contained within the biomass are released. These may include organic compounds, hydrogen, carbon monoxide, tars and water vapour.

Pyrolysis leaves a solid residue called char. In the second stage of the gasification process, this char is reacted with steam or burnt in a restricted quantity of air or oxygen to produce further combustible gas. Depending on the precise design of gasifier chosen, the product gas may have a heating value of 6 – 19 MJ/Nm3.

Layout of a Typical Biomass Gasification Plant

The products of gasification are a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and various hydrocarbons, which can then be used directly in gas turbines, and boilers, or used as precursors for synthesising a wide range of other chemicals.

In addition there are a number of methods that can be used to produce higher quality product gases, including indirect heating, oxygen blowing, and pressurisation. After appropriate treatment, the resulting gases can be burned directly for cooking or heat supply, or used in secondary conversion devices, such as internal combustion engines or gas turbines, for producing electricity or shaft power (where it also has the potential for CHP applications).


See some of our favorite inspirational quotes

Summary of Biomass Combustion Technologies

Direct combustion is the best established and most commonly used technology for converting biomass to heat. During combustion, biomass fuel is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from the biomass, which burn as flames. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat. The hot combustion gases are sometimes used directly for product drying, but more usually they are passed through a heat exchanger to produce hot air, hot water or steam.

The combustion efficiency depends primarily on good contact between the oxygen in the air and the biomass fuel. The main products of efficient biomass combustion are carbon dioxide and water vapor, however tars, smoke and alkaline ash particles are also emitted. Minimization of these emissions and accommodation of their possible effects are important concerns in the design of environmentally acceptable biomass combustion systems.

Biomass combustion systems, based on a range of furnace designs, can be very efficient at producing hot gases, hot air, hot water or steam, typically recovering 65-90% of the energy contained in the fuel. Lower efficiencies are generally associated with wetter fuels. To cope with a diversity of fuel characteristics and combustion requirements, a number of designs of combustion furnaces or combustors are routinely utilized around the world

Underfeed Stokers

Biomass is fed into the combustion zone from underneath a firing grate. These stoker designs are only suitable for small scale systems up to a nominal boiler capacity of 6 MWth and for biomass fuels with low ash content, such as wood chips and sawdust. High ash content fuels such as bark, straw and cereals need more efficient ash removal systems. Sintered or molten ash particles covering the upper surface of the fuel bed can cause problems in underfeed stokers due to unstable combustion conditions when the fuel and the air are breaking through the ash covered surface.

Grate Stokers

The most common type of biomass boiler is based on a grate to support a bed of fuel and to mix a controlled amount of combustion air, which often enters from beneath the grate. Biomass fuel is added at one end of the grate and is burned in a fuel bed which moves progressively down the grate, either via gravity or with mechanical assistance, to an ash removal system at the other end. In more sophisticated designs this allows the overall combustion process to be separated into its three main activities:

  • Initial fuel drying
  • Ignition and combustion of volatile constituents
  • Burning out of the char.

Grate stokers are well proven and reliable and can tolerate wide variations in fuel quality (i.e. variations in moisture content and particle size) as well as fuels with high ash content. They are also controllable and efficient.

Fluidized Bed Boilers

The basis for a fluidized bed combustion system is a bed of an inert mineral such as sand or limestone through which air is blown from below. The air is pumped through the bed in sufficient volume and at a high enough pressure to entrain the small particles of the bed material so that they behave much like a fluid.

The combustion chamber of a fluidized bed plant is shaped so that above a certain height the air velocity drops below that necessary to entrain the particles. This helps retain the bulk of the entrained bed material towards the bottom of the chamber. Once the bed becomes hot, combustible material introduced into it will burn, generating heat as in a more conventional furnace. The proportion of combustible material such as biomass within the bed is normally only around 5%. The primary driving force for development of fluidized bed combustion is reduced SO2 and NOx emissions from coal combustion.

Bubbling fluidized bed (BFB) combustors are of interest for plants with a nominal boiler capacity greater than 10 MWth. Circulating fluidized bed (CFB) combustors are more suitable for plants larger than 30 MWth. The minimum plant size below which CFB and BFB technologies are not economically competitive is considered to be around 5-10 MWe.