Product Life-Cycle Assessment: Closing the Loop

product-life-cycle-assessmentIf you’re interested in green and environmental issues you may have heard the phrase ‘life-cycle assessment’ in relation to a particular product. It can be difficult to ascertain exactly what this life-cycle assessment involves – so we’re hoping to shed some light on the process, the different types of assessment that take place and explain what’s involved with each step.

A look at the bigger picture

Essentially, a product life-cycle assessment takes an overall view of that item’s impact on the environment – and in doing so, offers a true picture of how green that product really is. The aim is for consumers, manufacturers and policy makers to be given a true environmental picture of any product.

Although it’s an example that divides the opinion of environmentalists around the world, the Toyota Prius provides an interesting picture of why the product life-cycle assessment is required in a world driven by a company’s desire to be seen as green. The Prius is an electric-hybrid car which Toyota claims delivers an impressive 60 miles per gallon of fuel – a statistic that puts it as a firm environmental favourite.

However, there are claims that the construction methods used to create the batteries that power the Prius are hugely detrimental to the environment – with some sources saying the manufacturing plant impacts the environment so greatly that by the time a Prius is driven from the showroom – it’s already had the environmental impact it would take any other car 1,000 gallons of fuel to match.

What’s the verdict?

So, is the Prius good or bad? That’s not for us to decide – and we’re not suggesting one way or another, we’re simply using this as an illustration of how complex any environmental consideration can be in a product with such an intensive manufacturing process and prolonged lifespan. At the other end of the calculation you’d have to consider how long the Prius will run for – and whether that balances a supposedly negative building method.

Ingredients of product life-cycle assessment

The assessment is ordinarily broken down into different stages:

Extraction and processing of raw materials

This is a full understanding of the journey from source to point of manufacture that the building blocks of any product take. For example, in the manufacture of a table you would begin by looking at the trees that provide the wood, the logging process that takes them from forest to timber yard and the impact of the machinery used throughout that process.

You would repeat this process for every raw material that goes into the table’s manufacture.

Manufacturing

Next comes the manufacturing itself – if machinery or any industrial process is used to piece our table together then resources used in that process must be considered when we look at the overall impact of the product on the environment.

Packaging

The packaging that a product is delivered in is effectively another product in itself. Although unlikely in our table example, it’s not uncommon for extravagant packaging to represent 10-20% of a product’s recommended retail price. Curtis Packaging, an award-winning UK based sustainable packaging company suggest manufacturers pay careful consideration to the impact of packaging on a product’s overall green credentials – from raw materials to the point of disposal, the packing that adorns your product can have serious environmental considerations.

Marketing

At first glance you could be forgiven for thinking marketing a product comes with no environmental impact – but you’d be wrong. From the printing of advertising materials – to the sales team’s 20,000 annual miles in company vehicles – there can be a lot of resource put into any marketing process. However, measurement is no mean feat – companies can find it difficult to differentiate between their overall carbon footprint and that associated with any one product.

Product use, re-use and maintenance

This is where the impact of a product moves from the manufacturer and into the hands of the consumer. What does typical use look like? How long is a product being used for? Does one person’s use vary compared to another’s? For our example table, the answers could be fairly simple – on the other hand, there’s a huge amount of variation when you look at a broad range of car drivers.

Packaging that adorns your product can have serious environmental impact.

Packaging that adorns your product can have serious environmental impact.

For any product that requires maintenance, the LCA just became much more complex (again!) – just as packaging represented an entirely separate product that requires its own assessment – a similar process is required when a car receives a tank of fuel, a top up of coolant, brake fluid, spark plugs, brake pads… hopefully you get the picture (hint – it’s complex and sprawling!)

However difficult it might be to anticipate, it’s an environmental imperative that big industry is aware of the impact they have – even when their product has left their hands.

Recycling, disposal and waste at the end of the product’s life

From pizza boxes to old cars, it’s easy to think of their job as being done when they’re waved off to a recycling bin or breaker’s yard – but environmentally this could just be the beginning of their impact.

In terms of recycling – the effort and impact of the process must be outweighed by the benefit of the salvaged material, it’s often in life-cycle assessments that decisions are made around what is worth recycling – and what should be destined for landfill. If landfill is the ultimate resting place for any product, what does the deterioration process look like and what does that mean to the environment in the short, medium and long-term?

Then, to bring the assessment cycle full circle – any product that can be processed and re-used re-enters the assessment cycle back at the extraction and processing of raw materials stage…

Ultimately, what is the life-cycle assessment done for?

There’s no one reason that a life-cycle assessment is done. For some companies, they’re keen to explain the full back-story of the product. For others, it can be an exercise in understanding the full process and highlighting any areas that can be financially streamlined – it certainly provides a solid baseline from which improvements can be made.

For the most environmentally ethical companies, the life-cycle assessment gives a true picture of the impact they have on the well-being of the planet – and offers a chance to get a full and honest picture of the moves they and their partners can make in creating a product that fulfils the requirements of the environment – as well as those of the customer and shareholders.

Unending Benefits of Solar Street Lights

solar-steer-lightsSolar power is getting increasing popularity as a dependable source for street lighting all over the world. Some of the benefits associated with solar street lights include reduced dependence on conventional energy, conservation of energy and less reliance on the national grid. In countries experiencing abundance of sunlight, solar lights are the best option to illuminate the streets, garden, parks and other public spaces.

Nowadays, solar street lights are powered by PV panels, in-built battery, LED lights and smart sensors, all integrated into a single compact unit. Solar LED street lights have emerged as a cost-effective and environment-friendly to light up roads and public spaces. LED lights are widely acknowledged for energy conservation, are long-lasting and good-looking, and are maintenance-free. These characteristics make LED-base solar street lights well-suited for commercial as well as domestic lighting applications.

Key Features

A modern solar street light has embedded solar panel, inbuilt lithium-ion batteries, battery management system, night and motion sensors as well as automatic controls. The fully automatic device comes with LEDs, inbuilt and replaceable Lithium-ion battery and passive infrared (PIR) sensors. A typical solar street light is weather-proof and water-resistant, has low insect attraction rate and low glare and has a longer life.

The embedded solar panel converts solar power into electrical energy which is stored in the inbuilt battery, and used for dusk-to-dawn lighting operations. The main innovation of modern solar street lights is the battery management system which is facilitated by the presence of night and motion sensors. During the first 5 hours of night, the system works at average lumens brightness. Subsequently, the intensity of the light reduces till dawn or until PIR sensor is activated by human movement. When people are within a certain radius away from the light, it automatically turns to its full brightness. This smart feature makes solar street lights device a perfect combination of renewable energy and energy efficiency.

Solar powered lights by Deelat Industrial has been tried and successfully tested in a wide variety of domestic and commercial applications. The device is well-suited for lighting up streets, courtyards, gardens, parks, compounds, boundary walls, car parks etc. in an eco-friendly and cost-effective manner.

Unending Benefits

Due to off-grid nature of solar street lights, solar street lights incur minimal operational costs. Such lights are wireless in nature and are independent of the utility company. Compared to conventional street lights, solar street lights require almost zero maintenance. Due to the absence of external wires, these lights do not pose any threat of accidents like electrocution, strangulation and overheating. Infact, solar lights illuminate the streets throughout the night irrespective of power cuts and grid failures.

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar-powered lights are a perfect eco-friendly green lighting solution

Solar street lights are a delight for environmentalists around the world as it can provide significant lowering of carbon footprint of individuals, homes and businesses. In other words, solar-powered lights are a perfect green lighting solution. In terms of cost, solar street lights are a better investment than conventional street lights if the capital as well as O&M costs are considered.

Barcode as a Tool to Reduce Plastic Pollution

plastic-worldThe measures implemented by the current recycling model, which are focused on producer responsibility and final consumer awareness, are not enough to prevent the continued accumulation of plastic waste in the oceans. For example, the Mediterranean Sea currently experience high levels of plastic pollution even if its coastline meets advanced countries.

“Barcode v/s Plastic Waste” continues forward the argument, including and controlling a crucial and forgotten player in the current model of consumption: retail or supermarkets. “Barcode vs Plastic Waste” offers an efficient, win-win-win model: a sustainable and dynamic circle, a cradle to cradle controlled process for this currently destructive material.

Consumers must continue recycling, but reality shows clear that the potential to decrease plastic waste could not depend only upon consumer awareness. A high percentage of plastic waste passes through supermarkets and, subsequently, the entire distribution channel.

While supermarkets do hold responsibility for ENCOURAGING THE USE of plastic and packaging, they also have the potential, although never considered before, to encourage and provide incentives to producers and consumers to reduce their plastic quantities or eliminate it all together.

Following “Barcode v/s Plastic Waste”, Governments should request supermarkets to be responsible for all plastic recollection associated with products they sell, while Public Administration would maintain the duty of control: the barcode which identifies any item sold, offers the possibility to track and account all plastics, containers or packaging by simply adding these information into the barcode.

Having the package information -weight and material composition- inside the barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. We would be able to monitor the recyclable materials per gram through the entire transaction system in real-time, allowing us to review any cash register day by day. Having the package information (weight and material composition) inside the same barcode will offer an extremely easy way to obtain the necessary data to apply follow-up control over its recollection. (i.e. PET 2/45gr. – PET5/75gr. – etc.)

Supermarkets should be responsible for all plastic recollection associated with products they sell

Supermarkets should be responsible for all plastic recollection associated with products they sell

This new recycling process could reach the full capacity in three years, requesting 30% of plastic recollection quantity the first year, 60% the second 90-100% the third.

Considering that from the very first year, supermarkets would very likely push producers to introduce dispensers with refilling containers wherever possible, we would have a considerable reduction of single use plastic at the very beginning.

Along with a necessary law, just new software and a new logistic inside supermarkets will be enough to produce the change. By simply adding future trash into the same barcode already used on any item sold, we would transform millions of negative actions into positive, preventing the loss of tons of raw material with a final reduction of petrol demand. This information would be provided just as the cash register’s account balance appears at the end of the day. Supermarket cash registers are the last control in the commercial process.

Full length proposal is available here

Waste Management in SAARC: Priorities and Cooperation

waste-dump-bangladeshWaste management in the SAARC countries has occasionally been raised as an area for regional co-operation. It fits in with other more pressing regional concerns such as environmental degradation, food safety, power generation, poverty alleviation and trans-boundary technology transfer. The Dhaka Declaration on Waste Management of 2004, for example, recognises the environmental imperative to promote more effective waste management systems ‘with special attention to addressing the needs of the poor’.

Similarly, the SAARC action plan on Climate Change of 2008 listed waste management as an area for nationally appropriate mitigation actions where regional sharing of best practices could be useful. The 2010 convention on co-operation on the environment, also included waste management among a list of 19 areas for the exchange of best practices and knowledge, and transfer of eco-friendly technology. However, these commitments have rarely turned into concerted action.

Effectively tackling the growing waste management crisis has not proved easy for most municipalities. Their capacity to cope has not kept pace with the increasing quantities of waste generated, and yet waste management can be one of the biggest costs of municipal budgets. Often they are able to collect waste only from limited areas of their towns. For the South Asia region, waste collection rates are on average 65%, with wide variations between towns.

At the same time, there is often a very active recycling system through waste pickers and the informal sector, involving large numbers of poor people. Large schemes to recycle, separate and produce useful end-products such as compost have often run into problems if they relied too heavily on donor inputs. Once these were phased out they failed to generate sufficient income from sales to be sustainable.

A municipal drain choked by garbage in north Indian city of Aligarh

A municipal drain choked by garbage in north Indian city of Aligarh

Two global agreements signed in 2015 may help to raise the profile and stimulate greater action on solid waste management. First, the Sustainable Development Goals which include a goal focused on cities and sustainable urban development. Within this, target 11.6 is to “by 2030, reduce the adverse per capita environmental impact of cities, including by paying special attention to air quality and municipal and other waste management”. This is the first time a global agreement of this sort has included commitments on waste management. Second, the Paris Climate Agreement, with a number of South Asian countries including better management of urban waste as part of their Intended Nationally Determined Contribution.

Solid waste management is already a significant concern for municipal governments across the South Asian region. It constitutes one of their largest costs and the problem is growing year on year as urban populations swell. And yet it is an area that has not received the attention it deserves from policy-makers. There are signs this may change, with its inclusion in the SDGs and in many INDCs which are the basis of the Paris Climate Agreement.

Energy Access to Refugees

refugee-camp-energyThere is a strong link between the serious humanitarian situation of refugees and lack of access to sustainable energy resources. According to a 2015 UNCHR report, there are more than 65.3 million displaced people around the world, the highest level of human displacement ever documented. Access to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Needless to say, almost all refugee camps are plagued by fuel poverty and urgent measure are required to make camps livable.

Usually the tragedy of displaced people doesn’t end at the refugee camp, rather it is a continuous exercise where securing clean, affordable and sustainable energy is a major concern. Although humanitarian agencies are providing food like grains, rice and wheat; yet food must be cooked before serving. Severe lack of modern cook stoves and access to clean fuel is a daily struggle for displaced people around the world. This article will shed some light on the current situation of energy access challenges being faced by displaced people in refugee camps.

Why Energy Access Matters?

Energy is the lifeline of our modern society and an enabler for economic development and advancement. Without safe and reliable access to energy, it is really difficult to meet basic human needs. Energy access is a challenge that touches every aspect of the lives of refugees and negatively impacts health, limits educational and economic opportunities, degrades the environment and promotes gender discrimination issues. Lack of energy access in refugee camps areas leads to energy poverty and worsen humanitarian conditions for vulnerable communities and groups.

Energy Access for Cooking

Refugee camps receive food aid from humanitarian agencies yet this food needs to be cooked before consumption. Thus, displaced people especially women and children take the responsibility of collecting firewood, biomass from areas around the camp. However, this expose women and minors to threats like sexual harassments, danger, death and children miss their opportunity for education. Moreover, depleting woods resources cause environmental degradation and spread deforestation which contributes to climate change. Moreover, cooking with wood affects the health of displaced people.

Access to efficient and modern cook stove is a primary solution to prevent health risks, save time and money, reduce human labour and combat climate change. However, humanitarian agencies and host countries can aid camp refugees in providing clean fuel for cooking because displaced people usually live below poverty level and often host countries can’t afford connecting the camp to the main grid. So, the issue of energy access is a challenge that requires immediate and practical solutions. A transition to sustainable energy is an advantage that will help displaced people, host countries and the environment.

Energy Access for Lighting

Lighting is considered as a major concern among refugees in their temporary homes or camps. In the camps life almost stops completely after sunset which delays activities, work and studying only during day time hours. Talking about two vulnerable groups in the refugees’ camps “women and children” for example, children’s right of education is reduced as they have fewer time to study and do homework. For women and girls, not having light means that they are subject to sexual violence and kidnapped especially when they go to public restrooms or collect fire woods away from their accommodations.

Rationale For Sustainable Solutions

Temporary solutions won’t yield results for displaced people as their reallocation, often described as “temporary”, often exceeds 20 years. Sustainable energy access for refugees is the answer to alleviate their dire humanitarian situation. It will have huge positive impacts on displaced people’s lives and well-being, preserve the environment and support host communities in saving fuel costs.  Also, humanitarian agencies should work away a way from business as usual approach in providing aid, to be more innovative and work for practical sustainable solutions when tackling energy access challenge for refugee camps.

UN SDG 7 – Energy Access

The new UN SDG7 aims to “ensure access to affordable, reliable, sustainable and modern energy for all”. SDG 7 is a powerful tool to ensure that displaced people are not left behind when it comes to energy access rights. SDG7 implies on four dimensions: affordability, reliability, sustainability and modernity. They support and complete the aim of SDG7 to bring energy and lightening to empower all human around the world. All the four dimensions of the SDG7 are the day to day challenges facing displaced people. The lack of modern fuels and heavy reliance on primitive sources, such as wood and animal dung leads to indoor air pollution.

Energy access touches every aspect of life in refugee camps

Energy access touches every aspect of life in refugee camps

For millions of people worldwide, life in refugee camps is a stark reality. Affordability is of concern for displaced people as most people flee their home countries with minimum possessions and belongings so they rely on host countries and international humanitarian agencies on providing subsidized fuel for cooking and lightening. In some places, host countries are itself on a natural resources stress to provide electricity for people and refugees are left behind with no energy access resources. However, affordability is of no use if the energy provision is not reliable (means energy supply is intermittent).

Parting Shot

Displaced people need a steady supply of energy for their sustenance and economic development. As for the sustainability provision, energy should produce a consistent stream of power to satisfy basic needs of the displaced people. The sustained power stream should be greater than the resulted waste and pollution which means that upgrading the primitive fuel sources used inside the camp area to the one of modern energy sources like solar energy, wind power, biogas and other off-grid technologies.

For more insights please read this article Renewable Energy in Refugee Camps 

Solid Waste Management in Pakistan

Karachi-Garbage-DumpSolid waste management situation in Pakistan is a matter of grave concern as more than 5 million people to die each year due to waste-related diseases. In Pakistan roughly 20 million tons of solid waste is generated annually, with annual growth rate of about 2.4 percent. Karachi, largest city in the country, generates more than 9,000 tons of municipal waste daily. All major cities, be it Islamabad, Lahore or Peshawar, are facing enormous challenges in tackling the problem of urban waste. The root factors for the worsening garbage problem in Pakistan are lack of urban planning, outdated infrastructure, lack of public awareness and endemic corruption.

Contributing Factors

Being the 6th most populated country in the world; there is a lot of consumerism and with it a great deal of waste being produced. Like other developing countries, waste management sector in Pakistan is plagued by a wide variety of social, cultural, legislative and economic issues.  In the country, more waste is being produced than the number of facilities available to manage it. Some of the major problems are:

  • There is no proper waste collection system
  • Waste is dumped on the streets
  • Different types of waste are not collected separately
  • There are no controlled sanitary landfill sites. Opening burning is common.
  • Citizens are not aware of the relationship between reckless waste disposal and resulting environmental and public health problems

As a result of these problems, waste is accumulating and building up on roadsides, canals, and other common areas and burning trash is common, causing hazardous toxins to be exposed thereby threatening human and environmental health. Among the already few landfill sites that are present, even fewer are in operation. Even within Pakistan’s capital, Islamabad, there are no permanent landfills to be found.

The waste on the roads allows for an ideal environment for various flies to thrive which effects both human health and the health of the environment for other species. The poor solid waste management in Pakistan has caused numerous diseases and environmental problems to rise.

Waste Management Situation in Lahore

In Lahore, the capital of Punjab and the second largest city in Pakistan, there are currently no controlled waste disposal facilities are formal recycling systems, though roughly 27% of waste (by weight) is recycled through the informal sector, Lahore does not have very high performing governmental management in the waste management situation. Instead, the City District Government Lahore established the Lahore Waste Management Company and left the responsibility of the Solid Waste Management in Lahore to them. Beginning in 2011, Lahore Waste Management Company strives to develop a system of SWM that ensures productive collection, recovery, transportation, treatment and disposal of the waste in Lahore.

Lahore Waste Management Company (LWMC) has over 10,000 field workers involved in waste collection and disposal. Though the LWMC is working in phases, 100% collection rates are not seen yet. Lahore currently only has three disposal sites which are no more than dumps, where illegal dumping and trash burning is common. However, there is some resource recovery taking place. It is estimated that 27% of dry recyclables are informally recycled within the city. Additionally a composting plant converts 8% of waste into compost.

In general, the governance over the Waste Management in Lahore is hardly present. Though there are current projects and plans taking place, by the Lahore Waste Management Company for example, in order to achieve a productive and sustainable system in the city it is necessary for all service providers (formal, private, and informal) to take part in decisions and actions.

Current Activities and Projects

According to the United Nations Environment Program, there are six current activities and plans taking place towards an efficient Waste Management System. These current activities are as follows:

  • Solid Waste Management Guidelines (draft) prepared with the support of Japan International Cooperation Agency (JICA), Japan.
  • Converting waste agricultural biomass into energy/ material source – project by UNEP, IETC Japan.
  • North Sindh Urban Services Corporation Limited (NSUSC) – Assisting the district government in design and treatment of water supply, sanitation and solid waste management
  • The URBAN UNIT, Urban Sector Policy & Management Unit P & D Department, Punjab. Conducting different seminars on awareness of waste water, sanitation & solid waste management etc.
  • Lahore Compost (Pvt.) Ltd. only dealing with the organic waste with the cooperation of city district government Lahore, Pakistan. The company is registered as a CDM project with UNFCCC.
  • Different NGOs are involved at small scale for solid waste collection, and recycling.

Additionally, in November 2013 a German company, agreed to invest in the installation of a 100 megawatt power plant which generates energy from waste from Lahore. Progress is being made on the country’s first scientific waste disposal site in Lakhodair. With this in mind, the Lahore Waste Management Company considered other possible technologies for their Waste-to-Energy project. They opened up applications for international companies to hire as the official consultant for LWMC and their project. The results of the feasibility study results showed that the power plant has the potential to process 1035 tons of municipal waste daily, and generate 5.50 megawatt electricity daily.

The Way Forward

Although SWM policies do exist, the levels at which they are implemented and enforced lack as a result of the governmental institutions lacking resources and equipment. These institutions are primarily led by public sector workers and politicians who are not necessarily the most informed on waste management. For improvements in municipal solid waste management, it is necessary for experts to become involved and assist in the environmental governance.

Due to the multiple factors contributing to the solid waste accumulation, the problem has become so large it is beyond the capacity of municipalities. The former director of the Pakistan Council of Scientific and Industrial Research, Dr. Mirza Arshad Ali Beg, stated, “The highly mismanaged municipal solid waste disposal system in Pakistan cannot be attributed to the absence of an appropriate technology for disposal but to the fact that the system has a lot of responsibility but no authority.” Laws and enforcement need to be revised and implemented. The responsibility for future change is in the hands of both the government, and the citizens.

Waste practices in the Pakistan need to be improved. This can start with awareness to the public of the health and environment impacts that dumped and exposed waste causes. It is imperative for the greater public to become environmentally educated, have a change in attitude and take action.

References

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.aljazeera.com/indepth/features/2014/08/solid-waste-pakistan-karachi-2014867512833362.html

http://www.iamcivilengineer.com/2014/04/solid-waste-disposal-and-collection.html

http://www.lwmc.com.pk/about-us.php

http://www.unep.org/ietc/Portals/136/Events/ISWM%20GPWM%20Asia%20Pacific%20Workshop/Pakistan_Presentation.pdf

http://www.dawn.com/news/1081689

http://www.lwmc.com.pk/waste-to-energy.php

Green SMEs: Catalyst for Green Economy

Green SMEsWith ‘green’ being the buzzword across all industries, greening of the business sector and development of green skills has assumed greater importance all over the world. SMEs, startups and ecopreneurs are playing a vital role in the transition to a low-carbon economy by developing new green business models for different industrial sectors. Infact, young and small firms are emerging as main drivers of radical eco-innovation in the industrial and services sectors.

What are Green SMEs

Green SMEs adopt green processes and/or those producing green goods using green production inputs. A judicious exploitation of techno-commercial opportunities and redevelopment of business models, often neglected by established companies, have been the major hallmarks of green SMEs.

For example, SMEs operating in eco-design, green architecture, renewable energy, energy efficiency and sustainability are spearheading the transition to green economy across a wide range of industries. The path to green economy is achieved by making use of production, technology and management practices of green SMEs. Impact investment platforms, such as Swell Investing, allows individuals to invest in environmentally sustainable companies.

Categories of Green Industries

Environmental Protection Resource Management
Protection of ambient air Water management
Protection of climate Management of forest resources
Wastewater management Management of flora and fauna
Waste management Energy management
Noise and vibration abatement Management of minerals
Protection of biodiversity and landscape Eco-construction
Protection against radiation Natural resource management activities
Protection of soil, groundwater and surface water Eco-tourism
Environmental Monitoring and Instrumentation Organic agriculture
Research and Development Research and Development

Key Drivers

The key motivations for a green entrepreneur are to exploit the market opportunity and to promote environmental sustainability. A green business help in the implementation of innovative solutions, competes with established markets and creates new market niches. Green entrepreneurs are a role model for one and all as they combine environmental performance with market targets and profit outcomes, thus contributing to the expansion of green markets.

Some of the popular areas in which small green businesses have been historically successful are renewable energy production (solar, wind and biomass), smart metering, building retrofitting, hybrid cars and waste recycling.

As far as established green industries (such as waste management and wastewater treatment) are concerned, large companies tend to dominate, however SMEs and start-ups can make a mark if they can introduce innovative processes and systems. Eco-friendly transformation of existing practices is another attractive pathway for SMEs to participate in the green economy.

The Way Forward

Policy interventions for supporting green SMEs, especially in developing nations, are urgently required to overcome major barriers, including knowledge-sharing, raising environmental awareness, enhancing financial support, supporting skill development and skill formation, improving market access and implementing green taxation.

In recent decades, entrepreneurship in developing world has been increasing at a rapid pace which should be channeled towards addressing water, energy, environment and waste management challenges, thereby converting environmental constraints into business opportunities.

Solid Waste Management in Nigeria

waste-nigeriaSolid waste management is the most pressing environmental challenge faced by urban and rural areas of Nigeria. Nigeria, with population exceeding 170 million, is one of the largest producers of solid waste in Africa. Despite a host of policies and regulations, solid waste management in the country is assuming alarming proportions with each passing day.

Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected. Reckless disposal of MSW has led to blockage of sewers and drainage networks, and choking of water bodies. Most of the wastes is generated by households and in some cases, by local industries, artisans and traders which litters the immediate surroundings. Improper collection and disposal of municipal wastes is leading to an environmental catastrophe as the country currently lack adequate budgetary provisions for the implementation of integrated waste management programmes across the States.

According to the United Nations Habitat Watch, African city populations will more than triple over the next 40 years. African cities are already inundated with slums; a phenomenon that could triple urban populations and spell disaster, unless urgent actions are initiated. Out of the 36 states and a federal capital in the country, only a few have shown a considerable level of resolve to take proactive steps in fighting this scourge, while the rest have merely paid lip services to issues of waste management indicating a huge lack of interest to develop the waste sector.

Scenario in Lagos

Lagos State, the commercial hub of Nigeria, is the second fastest growing city in Africa and seventh in the world.  The latest reports estimate its population to be more than 21 million making it the largest city in entire Africa.  With per capita waste generation of 0.5 kg per day, the city generates more than 10,000 tons of urban waste every day.

Despite being a model for other states in the country, municipal waste management is a big challenge for the Lagos State Waste Management Agency (LAWMA) to manage alone, hence the need to engage the services of private waste firms and other franchisee to reduce the burden of waste collection and disposal. One fundamental issue is the delayed collection of household solid waste.  In some cases, the wastes are not collected until after a week or two, consequently, the waste bin overflows and litters the surroundings.

Improper waste disposal and lack of reliable transport infrastructure means that collected wastes are soon dispersed to other localities. Another unwelcome practice is to overload collection trucks with 5-6 tons of waste to reduce the number of trips; this has necessitated calls by environmental activist to prevail on the relevant legislature to conform to the modern waste transportation standard.

Situation in Oyo

Away from Lagos State, Oyo is another ancient town in Nigeria with an estimated population of six million people. Here, solid waste is regulated by the Oyo State Solid Waste Management Authority (OYOWMA). Unlike Lagos State, Oyo State does not have a proper waste management scheme that cuts across the nooks and crannies of the state, apart from Ibadan, the capital city, people from other towns like Ogbomoso and Iseyin resort to waste burning. In case the waste generators feels that the amount being charged by the waste franchisee is beyond their means, they dump the waste along flood paths thus compounding the waste predicament.

Burning of municipal wastes is a common practice in Nigeria

Burning of municipal wastes is a common practice in Nigeria

Kano and Rivers State with its fair share of population also suffers similar fate in controlling and managing solid waste. Generally speaking, population increase in Nigeria has led to an unprecedented growth in its economy but with a devastating effect on the environment as more wastes are generated due to the need for housing, manufacturing industries and a boost in trade volume.

Future Perspectives

The government at the federal level as a matter of urgency needs to revive its regulatory framework that will be attractive for private sectors to invest in waste collection, recycling and reusing.  The environmental health officer’s registration council of Nigeria would do well to intensify more effort to monitor and enforce sanitation laws as well as regulate the activities of the franchisees on good sustainable practices.

Taking the advocacy further on waste management, to avoid littering the environment, some manufacturing companies (e.g. chemical and paint industry) have introduced a recall process that will reward individuals who returns empty/used plastic containers. This cash incentive has been proven over time to validate the waste to wealth program embarked upon by the manufacturing companies. It is also expected that the government will build more composting and recycling plants in addition to the ones in Ekiti and Kano State to ensure good sustainable waste management.

Waste management situation in Nigeria currently requires concerted effort to sensitize the general public on the need for proper disposal of solid waste. Also, the officials should be well trained on professionalism, service delivery and ensure that other states within the country have access to quality waste managers who are within reach and can assist on the best approach to managing their waste before collection.

Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

plastic-wastes

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Many people use eco-friendly bags for the sake of green living. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation. You can do your part by using renewable cotton bags.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Challenges in Hazardous Medical Waste Management

medical-waste-managementMedical waste management is a concern of healthcare facilities all over the world; about 10-20% of the facility’s budget every year is spent on waste disposal. According to the WHO, about 85% of the total amount of generated waste is non hazardous but the remaining 15% is considered infectious, toxic or radioactive. While non-hazardous medical waste poses less problems, the risks and challenges of hazardous medical waste management must be considered carefully, since incineration or open burning of hazardous medical waste can result in emissions of dangerous pollutants such as dioxins and furans.

For this reason, measures must be taken to ensure safe disposal of hazardous medical waste waste in order to prevent negative impact on the environment or biological hazards, especially in developing countries.

Health Risks

Biologically hazardous waste can be a source of infection due to the harmful microorganisms it contains; the most exposed are hospital patients, hospital staff, health workers. However, the situation is potentially harmful for the general public as well. The risks include chemical burns, air pollution, radiation burns and toxic exposure to harmful pharmaceutical products and substances, such as mercury or dioxins, especially during the process of waste incineration.

Other risks can also derive from the incorrect disposal of needles and syringes; worldwide, it is estimated that, every year, about 16 billion infections are administered. Unfortunately, not all needles are safely eliminated, creating risk of infection but also the possibility of unintentional reuse. Even though this risk has decreased in recent years, unsafe infections are still responsible for many new cases of HIV, hepatitis B and hepatitis C.

Environmental Impacts

Incorrect disposal of untreated healthcare waste can contaminate drinking and ground water in landfill, and also release dangerous chemical substances in the environment. Deficient waste incineration can also release hazardous pollutants in the air, and generate dioxins and furans, substances which have been linked to cancer and other adverse health conditions. Heavy metals, if incinerated, can lead to the diffusion of toxic metals in the environment.

The Way Forward

There is still a long way to go in order to ensure safe disposal of hazardous healthcare waste. A joint WHO/UNICEF assessment conducted in 2015 found that only 58% of analyzed facilities over 24 countries had appropriate medical waste disposal systems in place.

Strategies to improve healthcare waste segregation is an essential step in medical waste management

In the workplace, it is important to raise awareness and promote self-practices. Training in the areas of infection control and clinical waste management is important in order to maintain a clean, safe environment for patients and staff alike. Specialized industrial cleaning can also be effective in reducing risk of infection.

It is also essential to develop safe methods and technologies of treating hazardous medical waste, as opposed to waste incineration, which has already been shown to be ineffective and dangerous. Alternatives to incineration, such as microwaving or autoclaving, greatly reduce the release of hazardous emissions.

Finally, developing global strategies and systems to improve healthcare waste segregation is another essential step; since only about 15% of clinical waste is hazardous, treatment and disposal costs could be reduced significantly with proper segregation practices. Furthermore, these practices also reduce risks of infections for those workers who handle clinical waste.