How Much Water is Used in Arizona Daily?

Arizona boasts a robust water system and keen management practices. Arizona water supply comes from a diverse portfolio featuring the Colorado River, groundwater, in-state rivers, and reclaimed water. So how much water does the state of Arizona use per day?

Current Arizona Water Supply

According to the Arizona Department of Water Resources (ADWR), the average daily water consumption per resident is 146 gallons. The latest census puts the Arizona population at more than seven million, so the average water consumption of the state is well above a billion gallons per day.

Current Arizona Water Supply

About 20% of the state’s water supply goes to municipal use, mostly residential. As much as 70% of the residential supply goes outdoors for irrigation, swimming pools, car washing, and more. Indoor activities consume the remaining percentage.

Arizona Water Sources

The state of Arizona gets its water from a robust network drawing from multiple sources. While a portion of the Arizona water supply comes from groundwater, more than 80% of the population relies on water from the Colorado River through projects such as CAP – Central Arizona Project. Arizonans also collect water from in-state rivers and reclaimed water.

Below is an overview of the primary water sources:

1. Surface Water

The surface water comes from lakes, rivers, and streams and is a major renewable resource. Arizona’s desert climate means the amount of surface water varies from season to season and over the years. The state has various storage reservoirs and delivery systems to make the most of available surface water. Notable rivers include those set in River Salt, Gila, Verde, and Agua Fria.

2. Colorado River Water

The Colorado River is the largest source of renewable water supply in Arizona, and the state is allowed to use 2.8 million acre-feet annually. Some AZ counties like La Paz and Yuma use Colorado River water. The CAP project also delivers Colorado River water to the Pima, Pinal, and Maricopa counties.

3. Groundwater

For many years, groundwater was the primary source of water in Arizona and many other regions. Groundwater is non-renewable, so the government passed laws in 1980 to improve management. The laws were also created to help reduce the state’s reliance on the resource. Arizona still gets a considerable portion of its water from groundwater found beneath the earth’s surface in natural aquifers.

4. Reclaimed Water

Arizona has seen an increase in the reclaimed water supply as the population grows. Reclaimed water is treated to a safe quality for agriculture, industrial cooling, wildlife areas maintenance, and parks.

Arizona Water Usage Over the Years

Despite the population growth, the state of Arizona uses less water today than in the past. According to ADWR, Arizona used about 7.1 million acre-feet of water back in the 1950s, a figure that is lower than the 7.0 million acre-feet recorded in 2017. An acre-foot is about 326,000 gallons of water, or the volume needed to cover one acre of land with water.

Water demand in Arizona has gone through fluctuations over the years. Today, the demand has leveled out, although the population has grown from about 1 million to 7 million within the last 50 years.

Summary

Arizona uses water from the Colorado River and groundwater but has seen increased reclaimed water supply and surface reservoirs. To remedy this issue, the government has various compacts and strategies in the area to help preserve enough water for future generations.

Water conservation and knowledge are both critical to the state’s wellbeing. About 20% of the water supply goes to municipal use while 70% goes to agriculture. Learn more about Arizona water resources and facts by contacting an Arizona water supply company.

The Importance of Maintaining Your Water Conditioner

Access to clean water is a fundamental human right according to the United Nations. However, trying to get clean water straight to your home might prove to be a challenge. So to overcome that, you’ve had a water tank and conditioner installed on the rooftop of your house.

But just like any other household appliance that you have, you should periodically maintain your water conditioner as well. To further convince you why you should do it, here are some of the reasons why maintaining your water conditioner is important:

1. Any of the various parts of your water conditioner could eventually wear out over time

There could eventually come a time when your water conditioner might suddenly malfunction, thus compromising your previously clean water supply. But instead of needing to replace your entire water conditioner with a brand-new one, you might want to check first if any of its parts have worn down over time. Maybe you’ll only need to change an O-ring or the conditioner valve – and save money in the process.

water-conditioner-maintenance

2. Keeping your water conditioner in tip-top shape ensures that unwanted chemicals are always removed from your water supply

The groundwater in your area generally isn’t safe to drink as it contains various contaminants including, but not limited to, chlorine, ammonia, and chloroform. If you haven’t maintained your water conditioner since you had it installed, anyone in your family might resort to drinking water straight from the tap and then fall ill after experiencing the effects that its various contaminants can bring to them.

Thus, you should always make sure to do periodic maintenance of your water conditioner so that the water running all throughout your house is safe for everyone to drink from.

3. A well-maintained water conditioner helps prevent hard minerals from building up in your plumbing

Even if the groundwater in your area has been treated so that it doesn’t have many contaminants, it may still contain large traces of hard minerals that can accumulate in your plumbing over time. This buildup of hard minerals can cause your water flow rate to decrease, and having a malfunctioning water conditioner wouldn’t do any wonders to your plumbing either.

Regularly maintain your water conditioner so that no hard minerals damage your plumbing.

Aside from either fixing your house’s plumbing on your own or asking for the help of a plumber to get rid of those hard mineral clogs for you, you should also check your water conditioner and ensure that it’s functioning properly. Don’t forget to regularly maintain your water conditioner so that no hard minerals damage your plumbing.

4. Periodically maintaining your water conditioner helps avoid the occurrence of scaling

Another adverse effect that hard minerals in groundwater can bring – aside from causing plumbing clogs as already mentioned above – is scaling. If you’ve noticed that your kitchen sink and bathroom drains, as well as the head of your shower, have turned brown, that’s scaling right there. You can remove the hard minerals deposited on your drains and shower head by thoroughly scrubbing them. But as long as your water conditioner isn’t working as it should, you have to expect the same scaling to happen repeatedly.

You should therefore periodically maintain your water conditioner so that your drains and shower head always look good as new – no matter how much water passes through them.

Conclusion

Clean water can sometimes be hard to come by, most especially if groundwater in your area is scarce during certain times of the day. Thus, having a rooftop water tank and conditioning system installed so that you and your family won’t run out of clean water to use is one of the wisest decisions that you could ever make.

You wouldn’t want to leave your water conditioner unchecked though as it can put you and your family’s health at risk. Instead, you should maintain your water conditioner. It’s entirely up to you if you want to maintain your water conditioner yourself or hire the services of a professional when needed.

A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at the major landfills in Nigeria:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Solid Waste Management in Kuwait

Kuwait, being one of the richest countries, is among the highest per capita waste generators in the world. Each year more than 2 million tons of solid waste is generated in the tiny Arab nation. High standards of living and rapid economic growth has been a major factor behind very high per capita waste generation of 1.4 to 1.5 kg per day.

Kuwait_Waste_Management

Waste Disposal Method

The prevalent solid waste management method in Kuwait is landfill burial. Despite being a small country, Kuwait has astonishingly high number of landfills. There are 18 landfills, of which 14 sites are closed and 4 sites are still in operation. These landfills act as dumpsites, rather than engineered landfills.

Menace of Landfills

Infact, landfill sites in Kuwait are notorious for causing severe public health and environmental issues. Besides piling up huge amounts of garbage, landfill sites generate huge amount of toxic gases (methane, carbon dioxide etc) and plagued by spontaneous fires. Due to fast paced urban development, residential areas have expanded to the edges of landfill sites thus causing grave danger to public health.

The total land area of Kuwait is around 17,820 sq. km, out of which more than 18 sq. km is occupied by landfills. Area of the landfill sites ranges from tens to hundreds of hectares with waste deposition depth varying from 3 to 30 meters.

All kind of wastes, including municipal wastes, food wastes, industrial wastes, construction and demolition debris etc are dumped at these sites. Infact, about 90 percent of the domestic waste is sent to landfills which imply that more landfills will be required to tackle rapidly increasing volumes of solid wastes.

Most of the landfill sites have been closed for more than 20 years due to operational problems and proximity to new residential, commercial and industrial areas. These sites include Sulaibiyah, Kabed, Al Qurain, Shuaiba, Jleeb AI Shuyoukh, West Yarmouk, AI Wafra among others. Migration of leachate beyond landfill site boundaries is a frequent problem noticed across Kuwait. Groundwater contamination has emerged as a serious problem because groundwater occurs at shallow depths throughout the country.

The major landfill sites operated by municipality for solid waste disposal are Jleeb AI Shuyoukh, Sulaibiyah and Al-Qurain. The Qurain landfill, with area of 1 sq. km, was used for dumping of municipal solid waste and construction materials from 1975 until 1985 with total volume of dumped waste being 5 million m3.

The Sulaibiyah landfill site received more than 500 tons of waste per day from 1980 to 2000 with area spanning 3 sq. km. Jleeb AI Shuyoukh, largest landfill site in Kuwait with area exceeding 6 sq. km, received 2500 tons per day of household waste and industrial waste between 1970 and 1993. Around 20 million m3 of wastes was dumped in this facility during its operational period.

Over the years, most of the dumpsites in Kuwait have been surrounded by residential and commercial areas due to urban development over the years. Uncontrolled dumpsites were managed by poorly-trained staff resulting in transformation of dumpsites in breeding grounds for pathogens, toxic gases and spontaneous fires.

Most of the landfill sites have been forced to close, much before achieving their capacities, because of improper disposal methods and concerns related to public health and environment. Due to fast-paced industrial development and urban expansion, some of the landfills are located on the edges of residential, as is the case of Jleeb Al-Shuyoukh and Al-Qurain sites, endangering the lives of hundreds of thousands of people.

3 Ways Zero Valent Iron Can Help in Environment Protection

Zero Valent Iron (ZVI) was developed to eliminate chlorinated hydrocarbon solvents in the soil. Industrial solvents are replete with chlorinated hydrocarbon, so much toxic and bad for the environment. They get disposed in the soil along with other toxic elements to cause harm to our surrounding. In the current years, significant improvements have taken place in the realm of iron-based technology.

Zero Valent Iron can be effectively used in soil remediation

The result of years of research and significant improvement in the iron-based technology is the advent of nanoscale or polymer-supported iron-containing nanoparticles to remove contaminants from solvents and soil. This is all due to the high surface area to the volume ratio of such nanoscale particles that favor the reaction kinetics and sorption.

But, know one thing that high pressure drops may restrict fixed-bed column application. This is why we now have modified nanosized ferrous particles to facilitate arsenic removal. The fabulous reducing agent helps in pollution recovery, and thus it benefits our environment.

Applications of Zero Valent Iron

ZVI in recent times is used widely for wastewater treatment, groundwater, and soil treatment. If made through the physico-chemical process in combination, the ZVI may be very small particles, having a large surface area. ZVI is beneficial for the environment, for it has a strong reductibility, great purity, long aging property, and similar features.

Zerovalent Iron can boost the chlorine removal efficiency of the soil, groundwater, and six valent chromium. Thus, it reduces the time required for environmental remediation. Acting as a fabulous reducing agent, it facilitates pollution recovery. Indeed, you may also combine it to bioremediation to further improve the efficacy of environment pollution recovery. Use it in the soil, solvents and industrial wastewater confidently to get rid of the contaminants. The use of ZVI paves the way for pure water and soil.

What you should look for in ZVI?

Are you planning to procure zero valent elemental metallic ions for wastewater treatment or soil remediation? Zerovalent metals or ZVI has a wide range of applications that range from electrodes and trenches to filters. Yes! It helps in the water filtration process, and thus we have pure drinking water. It gets rid of every trace of impurity or contaminant from the solvent or soil. It is important to look for a reliable company to procure ZVI.

Watch out for the following properties of ZVI

  • The particles must be fine enough to be customized as per your application
  • Look for the great adsorption performance and sound chemical activity
  • A large surface area for that very strong reductibility
  • Make sure the duration of its effect is very long to reduce the injections
  • Very fine ZVI particles to remediate pollution and to save remediation time and effort
  • Must be environment-friendly, deprived of any toxic compound

Enhanced nitrate-removing potential

Zero-valent metal has an enhanced nitrate removal capacity. It eliminates nitrate from the groundwater to facilitate remediation. Hence, biochar-supported ZVI can facilitate nitrate removal while the ones with wider pH can remove larger nitrates. Biochar composite eliminates nitrate from the groundwater without leaving any harmful by-products. But, biochar has a variable nitrate-removal capacity.

ZVI biochar has a potential to reduce nitrate by mediating the redox potential, the electron transfer, pH and thus facilitates enhanced removal or reduction of nitrate from the solvent or soil. Everything revolves around the logic of intensifying chemical reduction in order to eliminate nitrate from the soil or groundwater.

Nitrate and How it Accumulates

Nitrate is the form of nitrogen, which lies beneath the cultivable land. Nitrate is water soluble and may move through the soil quite easily. Owing to its high mobility, it moves to the groundwater table. Once it has moved to the groundwater table, it persists there and deposits to a very high level.

Thus, shallow groundwater is also at a risk of contamination from chemicals of land surfaces. This is a matter of concern, and indeed, nitrate in water may harm human health, aquatic life, livestock life and contaminate the surface water. We can say that it is not that harmful to adult humans, but it can significantly affect the health of the infants. It may reduce the level of oxygen in the blood to cause ‘blue baby’ disorder.

Hence, biological denitrification, ion exchange, and reverse osmosis are the treatment processes to handle this issue. The use of ZVI is a way to denitrification and the key to attaining a safe nitrate level in the water. A zero-valent metallic reduction is an effective way to refine dirty and polluted water. As soon as ZVI is placed in the flowing water or is added to the flowing water, there starts the process of oxidizing. The resultant chain reaction will purify water or remove the contaminants.

A Tool to Remediate Acid Mine Drainage

AMD or Acid Mine Drainage is the most common source of metal in places like the Appalachians, Tennessee, and Kentucky. It is important to remediate acid mine drainage for it is highly acidic and toxic. It is the major contributor to the arsenic environment and something needs to be done. AMD is a rich source of heavy and corrosive metals, acidic in nature. Biological treatment of Acid Mine Drainage is cost-effective, efficient and environment-friendly.

Biotechnological processes are an asset when it comes to treating Acid Mine Drainage in an effective manner. ZVI is environmentally sustainable. When it is very complicated and difficult to treat or remediate Acid Mine Drainage, ZVI eases the process. It gets rid of harmful elements or potentially hazardous substances from AMD to separate metal from acid and toxic compounds. There isn’t a need to abandon a mine site just because there are acidic metal deposits. Mine metals can be reclaimed with ZVI, and herein lays the environmental benefit.

Recycling of metallurgical waste

It is important to treat AMD or Acid Mine Drainage. The ecological solution to separate toxic metals, to reclaim water in large quantities is gaining a lot of attention. ZVI and zero valent metals save our natural resources and prepare the toxic metals for the recycling process. This is only possible through the separation of the acidic part.

We can recycle gallons of water that lay in the pond and other water bodies. It drops the acid level in the water and metal while also prevents heavy metallic reactions. When Acid Mine Drainage is one of the serious concerns in the realm of coal mining, zero valent metals prevent any exposure of sulfur-rich mineral to the water and atmospheric oxygen.

Final Thoughts

Zero-valent metals can help in the treatment of contaminated zones through the process of remediation. Zero valent iron is the highly reactive powder for remediation of wastewater and soil and works fabulously on environmentally contaminated areas. This remediation solution is highly efficient and benefits our environment in multiple ways.