Different Strategies in Composting

Composting can be categorized into different categories depending on the nature of decomposition process. The three major segments of composting are anaerobic composting, aerobic composting, and vermicomposting. In anaerobic composting, the organic matter is decomposed in the absence of air. Organic matter may be collected in pits and covered with a thick layer of soil and left undisturbed six to eight months. Anaerobic microorganisms dominate and develop intermediate compounds including methane, organic acids, hydrogen sulphide and other substances. The process is low-temperature, slow and the compost formed may not be completely converted and may include aggregated masses and phytotoxic compounds.

compost_strategies

Aerobic Composting

Aerobic composting is the process by which organic wastes are converted into compost or manure in presence of air. In this process, aerobic microorganisms break down organic matter and produce carbon dioxide, ammonia, water, heat and humus, the relatively stable organic end-product. Although aerobic composting may produce intermediate compounds such as organic acids, aerobic microorganisms decompose them further. The resultant compost, with its relatively unstable form of organic matter, has little risk of phytotoxicity. The heat generated accelerates the breakdown of proteins, fats and complex carbohydrates such as cellulose and hemicellulose. Hence, the processing time is shorter. Moreover, this process destroys many micro-organisms that are human or plant pathogens, as well as weed seeds, provided it undergoes sufficiently high temperature. Although more nutrients are lost from the materials by aerobic composting, it is considered more efficient and useful than anaerobic composting for agricultural production.

There are a variety of methods for aerobic composting, the most common being the Heap Method, where organic matter needs to be divided into three different types and to be placed in a heap one over the other, covered by a thin layer of soil or dry leaves. This heap needs to be mixed every week, and it takes about three weeks for conversion to take place. The process is same in the Pit Method, but carried out in specially constructed pits. Mixing has to be done every 15 days, and there is no fixed time in which the compost may be ready. Berkley Method uses a labor-intensive technique and has precise requirements of the material to be composted. Easily biodegradable materials, such as grass, vegetable matter, etc., are mixed with animal matter in the ratio of 2:1. Compost is usually ready in 15 days.

Vermicomposting

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost. Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7.

The level of nutrients in compost depends upon the source of the raw material and the species of earthworm. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Synthetic Biology – A Catalyst to Revolutionize Biogas Industry

Essentially a process operating by living organisms, the biogas industry is a natural target for synthetic biology. Synthetic biology combines biology and engineering to design and construct biological devices. Contrary to traditional genetic engineering that only alters an already existing DNA sequence, synthetic biology allows us to build entirely new sequences of DNA and put them to work in cells. This allows us to build novel biological devices that would never exist in nature.

synthetic-biology-biogas

Constructions and operations of devices that do not exist in nature, such as tools, vehicles, computers and the internet, have crafted modern civilization. Now, it is synthetic biology that is challenging nature’s limitations and advancing civilization to a higher level.

Generating biogas via anaerobic digestion of biomass and organic waste is one of the few proven, cost-effective, scalable biomass energy strategies. Biogas consists of mainly methane and carbon dioxide, and combustion of methane with air generates energy which can be used for many purposes such as cooking, heating, producing electricity and vehicle fuel. As a result, countless biogas plants are operating around the globe helping to clean up waste and generate energy. With more plants being built, they come in all sizes ranging from household to factory scales.

Anaerobic digestion is a process where extremely complex microbial communities degrade organic matter, such as sugars, fats and proteins, resulting in biogas as the primary end-product. Such inherent complexity makes this process very difficult to optimize. Mechanical engineers have made tremendous progress to optimize this process, but in many places it still requires government subsidies to be profitable.

Synthetic Biology and Biogas Industry

Essentially a process operating by living organisms, the biogas industry is a natural target for synthetic biology. In terms of their genetic content, organisms are classified into three natural groups, Archaea, Bacteria and Eukarya. Most microbes are Archaea and Bacteria, while humans are Eukarya.

In an anaerobic digester, many different types of Bacteria convert the complex organic matter in waste or biomass to hydrogen gas, carbon dioxide, formate and acetate. A unique group of methanogenic Archaea then produces the invaluable part of biogas, methane, by eating hydrogen and carbon dioxide, formate or acetate.

One can imagine creating a super microbe to convert the complex organic matter directly into biogas, thus making anaerobic digestion faster, more efficient and easier-to-manipulate. Making a synthetic microbial community by reprogramming key microbes may also help them work together when a tough job (i.e., eating extremely complex waste) needs to be done.

Among numerous microbes in anaerobic digester, methanogenic Archaea are one of a few microbial groups that have been extensively studied, and a number of genetic tools are available for engineering via synthetic biology. Therefore, scientists have begun to reprogram methanogenic archaea, allowing them to eat organic matter such as sugars and directly produce methane. If they succeed, they may engineer a super microbe that never existed in nature and revolutionize the biogas industry by making anaerobic digestion much simpler and more efficient.

There is also the possibility of more applications downstream. For instance, upgrading biogas by removal of carbon dioxide improves its combustibility. A super microbe could be made to upgrade biogas using hydrogen gas or even electricity to form more methane from carbon dioxide.

Conceptualized super cell that converts idealized organic matter (2CH2O) directly into biogas.

Grand Challenges

However promising, grand challenges remain when it comes to the use of synthetic biology in biogas industry. About 10,000 moving parts are needed to make an automobile, millions of parts for an airplane, and all the parts are standardized.

Similar to those engineering sectors, synthetic biology also needs many standardized genetic parts and modules to be able to create biological devices that can really revolutionize an industry. Sophisticated genetic tools are needed as well to assemble these parts and put them to work. However, few such parts, modules and tools are at disposal for engineering microbes in an anaerobic digester.

Take methanogenic Archaea for example, only three parts are available in the iGEM registry, the world largest collection of biological parts for synthetic biology. Another challenge is an apparent neglect of synthetic biology by the biogas industry. Symposiums bringing professionals from biogas industry and synthetic biology together for discussions are rare, as are major investments for promoting synthetic biology.

As a result, few research groups are developing synthetic tools and parts for the biogas industry. For example, the aforementioned three iGEM parts were all contributed by only one group, the UGA-iGEM team at the University of Georgia.

Future Perspectives

Synthetic biology is developing faster than ever, and its cost continues to fall. Thanks to prompt actions of many industrial pioneers in embracing and supporting synthetic biology, it is already starting to revolutionize a few fields.

Synthetic biology holds great potentials to revolutionize the biogas industry. To achieve this goal, joint efforts between the biogas industry and academia must be made. The former side needs to understand what synthetic biology can achieve, while the latter side should identify which parts of the process in the biogas industry can be re-designed and optimized by synthetic biology.

Once the two sides start to work together, novel synthetic parts and tools are bound to be invented, and they will make anaerobic digestion a better process for the biogas industry.