Municipal Waste Management in Poland

waste-dump-warsawMunicipal waste management in Poland has changed dramatically since the early ’90s when, as part of Poland’s privatisation program, municipal authorities were freed of their waste management obligations. The combined Polish recycling rate for dry recyclables and organic waste has increased from 5% in 2004 to 21% in 2010, according to a Copenhagen Resource Institute (CRI) study Municipal Waste Management in Poland (2013). Another source provides similar, corroborating statistics, putting the dry recycling rate in Poland at 14% and the composting rate at 7%.

The latest Eurostat data (for 2011) shows that the upward trend continuing, with the total recycled and composted reaching 28%. That is rapid rate of improvement, but leaves Poland well below the latest EU-27 average of 40% (25% recycled and 15% composted) – so what prospect is there of Poland reaching the EU’s mandatory 50% target by 2020?

Responsibility for waste disposal shifted to householders, who were left to individually contract any waste collection company of their choice. In the hard economic climate a ‘cheaper-the-better’ mentality prevailed, which did little to encourage sustainable practices. There wasn’t even an obligation on householders even to sign up for waste collection.

Landfilling was – and remains – the most common way of handling waste, but accompanying reporting and tracking methods were inadequate. Statistically, quantities of waste produced were usually larger than those collected, with the missing tonnages usually being dumped in forests or burned in domestic boilers to avoid waste disposal costs. As a result, waste management became largely uncontrolled, with a 2011 report concluding that ‘’waste management is one of the most badly neglected and at the same time one of the most urgent environmental issues for Poland.’’

Waste Management Legislation

Even after joining the EU in 2005, Poland didn’t rush to introduce reforms to improve practices and help to meet recycling targets. Only recently has Poland introduced several pieces of new waste related legislation, including:

  • Act on maintaining cleanliness and order in municipalities (2012);
  • Act on Waste (2012); and
  • Act on management of packaging and packaging waste (2013).

The first of these was revolutionary in that it gave responsibility for municipal waste collection and disposal back to municipalities. Now they are required to organise garbage collection and the separate collection of biodegradable waste and recyclable materials such as paper, metal, glass and plastic. It is expected that the new law will improve waste management control measures on a local level and greatly reduce the illegal dumping and trash burning.

The Act on Waste helps tackle the previous ‘free for all’ amongst collectors – it obliges waste handlers to act in a manner consistent with waste management principles and plans adopted at national level (by the Council of Ministers), regional level (Voivodeship) and local level (Municipality).

Poland has also this year adopted a new National Waste Management Plan, which states that an essential step towards improving the recycling rate in Poland is to increase landfill fees for recyclable, compostable or recoverable material. If acted upon, this could greatly increase the incentive to divert important municipal waste streams from landfill. The Polish market is clearly responsive to cost: in 2008 after landfill tax was significantly raised, there was a substantial reduction in waste being landfilled.

Declaration of bin-dependence

Although Polish citizens have always had to pay directly for waste collection, the new legislation has made some substantial changes to the payment system. There are now three different calculation methods. Each household is subject to a standard fee, which is then adjusted to reflect either:

  • The number of people living in a household;
  • The number of square metres covered by the property; or
  • The number of cubic metres of water used by the household per month.

The first of these options seems to be the most reasonable and has proven the most popular.

Municipalities are left to determine the standard collection fee, which as a result varies from region to region. Some municipalities charge at little as 3 Polish Zloty (around £0.56) per household, per person, per month, while some charge 20 Zloty (around £3.75).

The standard charge is also affected by a declaration made by the householder regarding waste segregation. If a property owner declares that they have separated out recyclable materials then they pay considerably lower fees. In some municipalities, this could be as low as 50% of the usual charge. Only those who declare that they don’t want to recycle pay full price. It’s rare that people do so: who would pick the most expensive option?

The problem is that some householders declare that they recycle their waste while in reality they don’t. Unfortunately, abusing the system is easy to get away with, especially since the new scheme is still in its early stages and is not yet stable. Monitoring recycling participation in order to crack down on such abuses of the system represents quite a challenging task.

Future Perspectives

Transformation periods are always hard and it is common that they bring misunderstanding and chaos. It isn’t surprising that there are problems with the new system which require ironing out, and the new legislation is nevertheless welcome. However, there is still much work to be done to provide sufficient and sustainable waste management in Poland. This will include such measures as educating the population, improving waste separation at source and securing waste treatment capacity.

Perhaps most importantly, Poland needs to take immediate action to develop its municipal waste treatment capacity across the board. If the 2020 recycling target is to be met, the country will require material recovery facilities, anaerobic digestion and in vessel composting sites, and household waste and recycling centres; and if more waste is to be diverted from landfill it will also need energy from waste (EfW) incinerators and mechanical biological treatment facilities.

According to Eurostat, only 1% of waste in Poland was incinerated in 2011. It has been confirmed so far that an EfW plant will be developed in each of Poland’s 11 biggest cities. Fortunately for Poland, the development of waste treatment installations is quite generously funded by the EU, which covers up to 80% of the total cost: EU subsidy agreements have already been signed for three of the planned EfW plants. The remaining cost will be covered by central, regional and local government.

The CRI paper presents three different scenarios for the future recycling rate in Poland. One of them is very optimistic and predicts that Poland has a chance to meet the 2020 recycling requirements, but each is based simply on a regression analysis of recent trends, rather than an analysis of the likely impact of recent and planned policy measures. What it does make clear, though, is that if Poland continues to progress as it has since 2006, it will reach the 2020 target. How many EU countries can claim that?

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

Pyrolysis of Municipal Wastes

Pyrolysis-MSWPyrolysis is rapidly developing biomass thermal conversion technology and has been garnering much attention worldwide due to its high efficiency and good eco-friendly performance characteristics. Pyrolysis technology provides an opportunity for the conversion of municipal solid wastes, agricultural residues, scrap tires, non-recyclable plastics etc into clean energy. It offers an attractive way of converting urban wastes into products which can be effectively used for the production of heat, electricity and chemicals.

Pyrolysis of Municipal Wastes

Pyrolysis process consists of both simultaneous and successive reactions when carbon-rich organic material is heated in a non-reactive atmosphere. Simply speaking, pyrolysis is the thermal degradation of organic materials in the absence of oxygen. Thermal decomposition of organic components in the waste stream starts at 350°C–550°C and goes up to 700°C–800°C in the absence of air/oxygen.

Pyrolysis of municipal wastes begins with mechanical preparation and separation of glass, metals and inert materials prior to processing the remaining waste in a pyrolysis reactor. The commonly used pyrolysis reactors are rotary kilns, rotary hearth furnaces, and fluidized bed furnaces. The process requires an external heat source to maintain the high temperature required. Pyrolysis can be performed at relatively small-scale which may help in reducing transport and handling costs.  In pyrolysis of MSW, heat transfer is a critical area as the process is endothermic and sufficient heat transfer surface has to be provided to meet process heat requirements.

The main products obtained from pyrolysis of municipal wastes are a high calorific value gas (synthesis gas or syngas), a biofuel (bio oil or pyrolysis oil) and a solid residue (char). Depending on the final temperature, MSW pyrolysis will yield mainly solid residues at low temperatures, less than 4500C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 8000C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is a liquid fuel popularly known as bio oil.

Wide Range of Products

Bio oil is a dark brown liquid and can be upgraded to either engine fuel or through gasification processes to a syngas and then biodiesel. Pyrolysis oil may also be used as liquid fuel for diesel engines and gas turbines to generate electricity Bio oil is particularly attractive for co-firing because it can be relatively easy to handle and burn than solid fuel and is cheaper to transport and store. In addition, bio oil is also a vital source for a wide range of organic compounds and specialty chemicals.

Syngas is a mixture of energy-rich gases (combustible constituents include carbon monoxide, hydrogen, methane and a broad range of other VOCs). The net calorific value (NCV) of syngas is between 10 and 20MJ/Nm3. Syngas is cleaned to remove particulates, hydrocarbons, and soluble matter, and then combusted to generate electricity. Diesel engines, gas turbines, steam turbines and boilers can be used directly to generate electricity and heat in CHP systems using syngas and pyrolysis oil. Syngas may also be used as a basic chemical in petrochemical and refining industries.

The solid residue from MSW pyrolysis, called char, is a combination of non-combustible materials and carbon. Char is almost pure carbon and can be used in the manufacture of activated carbon filtration media (for water treatment applications) or as an agricultural soil amendment.