How Batteries Can Benefit From Biomass Energy

Organisations and more importantly, battery manufacturers are recognising the need to overcome the problem of global warming. The objective is to develop ways of producing carbon-neutral sources of energy. One of the areas currently being explored is the use of biomass resources to create sustainable, eco-friendly batteries which are suitable for use across a wide range of business sectors. With different forms of biomass energy available, the challenge is finding products that provide high performance along with being commercially viable.

Biomass-Resources

A quick glance at popular biomass resources

What is Biomass Energy?

Biomass is something that we are all familiar with. It is derived from plants and animals and is now becoming an increasingly viable form of renewable energy. Initially, the energy comes from the sun, and in plants, it is converted via photosynthesis.

Regardless of its origin, the biomass will either be converted into biogas, biofuels or burnt directly to create heat. Of course, different sources of biomass produce varying amounts of energy, affecting their efficiency. As a result, high precision battery testing equipment is required to ascertain their viability.

Forms of Biomass Used for Energy

Wood and Products: Renewable sources of timber and the by-products of wood such as wood chip are burned in the home to create heat and in industry, burned to generate electricity. Typically, softwood such as pine is used as it is quicker to replenish than hardwood such as oak.

Agricultural Crops and Waste: With large amounts of waste produced from the farming sector, it is natural that this is an ideal source of energy. The materials are either converted to liquid biofuels or burned directly to generate heat or electricity.

Food and Household Waste: The amount of waste households produced has been increasing annually, and up until recently, the majority was disposed of it landfill sites. Nowadays, this garbage is burned at power stations to produce electricity or converted into biogas at existing landfill sites.

Animal Manure and Human Waste: We frequently hear about the link between animal waste and global warming. Inevitably, the same is also true of human waste. Both can be converted into biogas and burned as a fuel.

How is Biomass Converted to Energy?

Biomass can be converted to energy using different methods depending on the source. Solid forms of biomass such as garbage and wood are generally burned to created heat while other types will be initially converted into either biogas or biofuels such as ethanol or other biodiesel-related fuels used to power vehicles or generators.

Human sewage and animal manure are placed in vessels known as digesters to create biogas. Liquid fuels such as biodiesel are derived from oils and animal fats. Any form of biomass must be burned at some point to generate energy.

Biomass and Batteries

The most common form of battery used in domestic appliances and mobile devices is lithium-ion batteries. However, the performance and capacity are still below what is demanded by manufacturers and consumers. As a result, manufacturers are investigating alternatives such as biomass. Naturally, high precision testing equipment such as that produced by Arbin is required to assess their potential and commercial viability accurately.

The potential of elemental sulphur has been explored although due to its poor electrical conductivity, has failed to make it onto the mass market. A composite of sulphur and porous carbon appears to be a far more viable option although this is a complicated and time-consuming process. Carbon is one of the best conductors available, albeit at a relatively high cost. Therefore, the objective is to source carbon from biowaste, such as popular catkin that can be combined with sulphur. Popular catkin is a highly porous carbon and ideal for Li/S batteries.

High Precision Battery Testing

High precision battery testing is required to establish the commercial viability of popular catkin and other biowaste products. Marginal improvement could have a significant impact and give cell manufacturers a competitive advantage over their rivals.

Naturally, extensive research needs to be conducted to assess a variety of bioproducts that are presenting themselves as potentially viable alternative products. Increasing battery capacity and battery life is something that is required in several sectors such as with EVs, mobile devices and home appliances. Major manufacturers will be eagerly awaiting the findings of testing that is currently ongoing.

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.

Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 32.3 GW in December 2012. The German new solar PV installations increased by about 7.6 GW in 2012, with a record 1.3 million PV systems installed across the country. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 31.32 GW at the end of year 2012. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.

Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which totalled $31billion in 2011. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent ($8.5 billion) directed to wind. In addition, 700 MW of biomass capacity was added in 2011

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2010, the majority ($29 billion) of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In the first six months of 2012, the amount of electricity produced from renewable resource rose from 20% to 25%, bringing Germany closer to its targets of 35% by 2020 and 80% by 2050. According to figures released by the government agency Germany Trade and Invest, 38% of the electricity produced by renewable energy during that period was through wind power, and almost 16% from solar.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector in a particular country. The supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

Biomass as Renewable Energy Resource

biomass_resourcesBiomass is a key renewable energy resource that includes plant and animal material, such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes. The energy contained in biomass originally came from the sun. Through photosynthesis carbon dioxide in the air is transformed into other carbon containing molecules (e.g. sugars, starches and cellulose) in plants. The chemical energy that is stored in plants and animals (animals eat plants or other animals) or in their waste is called biomass energy or bioenergy

What is Biomass

Biomass comes from a variety of sources which include:

  • Wood from natural forests and woodlands
  • Forestry plantations
  • Forestry residues
  • Agricultural residues such as straw, stover, cane trash and green agricultural wastes
  • Agro-industrial wastes, such as sugarcane bagasse and rice husk
  • Animal wastes (cow manure, poultry litter etc)
  • Industrial wastes, such as black liquor from paper manufacturing
  • Sewage
  • Municipal solid wastes (MSW)
  • Food processing wastes

Biomass energy projects provide major business opportunities, environmental benefits, and rural development.  Feedstocks for biomass energy project can be obtained from a wide array of sources without jeopardizing the food and feed supply, forests, and biodiversity in the world.

Agricultural Residues

Crop residues encompasses all agricultural wastes such as bagasse, straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. Large quantities of crop residues are produced annually worldwide, and are vastly underutilised. Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy.

Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilized.

Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat. Agricultural residues are characterized by seasonal availability and have characteristics that differ from other solid fuels such as wood, charcoal, char briquette. The main differences are the high content of volatile matter and lower density and burning time.

Animal Waste

There are a wide range of animal wastes that can be used as sources of biomass energy. The most common sources are animal and poultry manure. In the past this waste was recovered and sold as a fertilizer or simply spread onto agricultural land, but the introduction of tighter environmental controls on odour and water pollution means that some form of waste management is now required, which provides further incentives for waste-to-energy conversion.

The most attractive method of converting these organic waste materials to useful form is anaerobic digestion which gives biogas that can be used as a fuel for internal combustion engines, to generate electricity from small gas turbines, burnt directly for cooking, or for space and water heating.

Forestry Residues

Forestry residues are generated by operations such as thinning of plantations, clearing for logging roads, extracting stem-wood for pulp and timber, and natural attrition. Harvesting may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for biomass energy. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy.

Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Wood Wastes

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Wood wastes generally are concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.

Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kg of wood in the furniture industries will lead to waste generation of almost half (45 %), i.e. 450 kg of wood. Similarly, when processing 1,000 kg of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kg wood.

Industrial Wastes

The food industry produces a large number of residues and by-products that can be used as biomass energy sources. These waste materials are generated from all sectors of the food industry with everything from meat production to confectionery producing waste that can be utilised as an energy source.

Solid wastes include peelings and scraps from fruit and vegetables, food that does not meet quality control standards, pulp and fibre from sugar and starch extraction, filter sludges and coffee grounds. These wastes are usually disposed of in landfill dumps.

Liquid wastes are generated by washing meat, fruit and vegetables, blanching fruit and vegetables, pre-cooking meats, poultry and fish, cleaning and processing operations as well as wine making.

These waste waters contain sugars, starches and other dissolved and solid organic matter. The potential exists for these industrial wastes to be anaerobically digested to produce biogas, or fermented to produce ethanol, and several commercial examples of waste-to-energy conversion already exist.

Pulp and paper industry is considered to be one of the highly polluting industries and consumes large amount of energy and water in various unit operations. The wastewater discharged by this industry is highly heterogeneous as it contains compounds from wood or other raw materials, processed chemicals as well as compound formed during processing.  Black liquor can be judiciously utilized for production of biogas using anaerobic UASB technology.

Municipal Solid Wastes and Sewage

Millions of tonnes of household waste are collected each year with the vast majority disposed of in open fields. The biomass resource in MSW comprises the putrescibles, paper and plastic and averages 80% of the total MSW collected. Municipal solid waste can be converted into energy by direct combustion, or by natural anaerobic digestion in the engineered landfill.

At the landfill sites, the gas produced, known as landfill gas or LFG, by the natural decomposition of MSW (approximately 50% methane and 50% carbon dioxide) is collected from the stored material and scrubbed and cleaned before feeding into internal combustion engines or gas turbines to generate heat and power. The organic fraction of MSW can be anaerobically stabilized in a high-rate digester to obtain biogas for electricity or steam generation.

Sewage is a source of biomass energy that is very similar to the other animal wastes. Energy can be extracted from sewage using anaerobic digestion to produce biogas. The sewage sludge that remains can be incinerated or undergo pyrolysis to produce more biogas.

Clean Cookstoves: An Urgent Necessity

Globally, three billion people in the developing nations are solely dependent on burning firewood, crop residues, animal manure etc for preparing their daily meals on open fires, mud or clay stoves or simply on three rocks strategically placed to balance a cooking vessel.  The temperature of these fires are lower and produce inefficient burning that results in black carbon and other short-lived but high impact pollutants.

These short-lived pollutants not only affect the persons in the immediate area but also contribute much harmful gases more potent than carbon dioxide and methane. For the people in the immediate area, their health is severely hampered as this indoor or domestic air pollution results in significantly higher risks of pneumonia and chronic bronchitis.

To remedy the indoor air pollution (IAP) and health-related issues as well as the environmental pollution in the developing world, clean cookstoves are the way to advance. But to empower rural users to embrace the advanced cookstoves, and achieve sustainable success requires a level of socio-cultural and economic awareness that is related directly to this marginalized group. The solution needs to be appropriate for the style of cooking of the group which means one stove model will not suit or meet the needs and requirements of all developing nation people groups.

Clean cookstoves can significantly reduce health problems caused by indoor air pollution in rural areas

Consideration for such issues as stove top and front loading stove cooking, single pot and double pot cooking, size of the typical cooking vessel and the style of cooking are all pieces of information needed to complete the picture.  Historically, natural draft systems were devised to aid the combustion or burning of the fuels, however, forced draft stoves tend to burn cleaner with better health and environmental benefits. Regardless of cookstove design, the components need to be either made locally or at least available locally so that the long term life of the stove is maintainable and so sustainable.

Now, if the cookstove unit can by powered by  simple solar or biomass system, this will change the whole nature of the life style and domestic duties of the chief cook and the young siblings who are typically charged with collecting the natural firewood to meet the cooking requirement.

Therefore the cookstoves need to be designed and adapted for the people group and their traditional cooking habits, and not in the reverse order. To assess the overall performance of the green cooking stoves requires simple but effective measures of the air quality. The two elements that need to be measured are the black carbon emissions and the temperature of the cooking device.  This can be achieved by miniature aerosol samplers and temperature sensors. The data collected needs to be transmitted in real-time via mobile phones for verification of performance rates.  This is to provide verifiable data in a cost effective monitoring process.

Biomass Energy Potential in Philippines

The Philippines has abundant supplies of biomass energy resources in the form of agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, cane trash, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

At present, biomass technologies utilized in the country vary from the use of bagasse as boiler fuel for cogeneration, rice/coconut husks dryers for crop drying, biomass gasifiers for mechanical and electrical applications, fuelwood and agricultural wastes for oven, kiln, furnace and cook-stoves for cooking and heating purposes. Biomass technologies represent the largest installations in the Philippines in comparison with the other renewable energy, energy efficiency and greenhouse gas abatement technologies.

Biomass energy plays a vital role in the nation’s energy supply. Nearly 30 percent of the energy for the 80 million people living in the Philippines comes from biomass, mainly used for household cooking by the rural poor. Biomass energy application accounts for around 15 percent of the primary energy use in the Philippines. The resources available in the Philippines can generate biomass projects with a potential capacity of more than 200 MW.

Almost 73 percent of this biomass use is traced to the cooking needs of the residential sector while industrial and commercial applications accounts for the rest. 92 percent of the biomass industrial use is traced to boiler fuel applications for power and steam generation followed by commercial applications like drying, ceramic processing and metal production. Commercial baking and cooking applications account for 1.3 percent of its use.

The EC-ASEAN COGEN Programme estimated that the volume of residues from rice, coconut, palm oil, sugar and wood industries is 16 million tons per year. Bagasse, coconut husks and shell can account for at least 12 percent of total national energy supply. The World Bank-Energy Sector Management Assistance Program estimated that residues from sugar, rice and coconut could produce 90 MW, 40 MW, and 20 MW, respectively.

The development of crop trash recovery systems, improvement of agro-forestry systems, introduction of latest energy conversion technologies and development of biomass supply chain can play a major role in biomass energy development in the Philippines. The Philippines is among the most vulnerable nations to climatic instability and experiences some of the largest crop losses due to unexpected climatic events. The country has strong self-interest in the advancement of clean energy technologies, and has the potential to become a role model for other developing nations on account of its broad portfolio of biomass energy resources and its potential to assist in rural development.

Biorefinery Prospects in India

India has a tremendous biomass potential which could easily be relied upon to fulfil most of our energy needs. An estimated 50 MMT (million metric tonnes) of liquid fuels are consumed annually in India, but with the actual biomass potential and its full utilization, India is capable of generating almost double that amount per annum. These biomass estimates only constitute the crop residues available in the country and essentially the second-generation fuels since the use of first-generation crop bases fuels in such food-starved nations is a criminal thought.

Existing Technologies

Currently, there are various technologies available to process such crop residues and generate value products from them. However, essentially, they all revolve around two main kinds of processes, either biochemical or thermal.

The biochemical process involves application of aerobic/anaerobic digestion for the production of biogas; or fermentation, which results in the generation of ethanol. Both these products could be subsequently treated chemically and through trans-esterification process, leading to production of biodiesel.

Alternatively, the thermochemical processes involve either the combustion, gasification or pyrolysis techniques, which produces heat, energy-rich gas and liquid fuels respectively. These products can be used as such, or could be further processed to generate high quality biofuels or chemicals.

The Need

The estimated organized energy breakup for India is 40 percent each for domestic and transport sectors and 20 percent for the industrial sectors. The current share of crude oil and gases is nearly 90 percent for the primary and transport sectors and the remaining 10 percent for the generation of industrial chemicals. The escalating prices of crude oil in the international market and the resulting concern over energy security, has lead developing nations to explore alternative and cheap sources of energy to meet the growing energy demand. One of the promising solution for agrarian economies is Biorefinery.

The Concept

Biorefinery is analogous to the traditional petroleum refineries employing fractional distillation process for obtaining different fractions or components from the same raw material, i.e. the crude oil. Biorefinery involve the integration of different biomass treatment and processing methods into one system, which results in the production of different components from the same biomass.  This makes the entire chain more viable economically and also reduces the waste generated.

Typical Model of a Biorefinery

The outcome ranges from high-volume, low-energy content liquid fuels, which could serve the transportation industry needs, to the low-volume but high-value chemicals, which could add to the feasibility of such a project. Steam and heat generated in the process could be utilized for meeting process heat requirements. By-products like chemicals, fertilizers, pharmaceuticals, polymers etc are also obtained which provide additional revenue streams.

Benefits

Biorefineries can help in utilizing the optimum energy potential of organic wastes and may also resolve the problems of waste management and GHGs emissions. Wastes can be converted, through appropriate enzymatic/chemical treatment, into either gaseous or liquid fuels. The pre-treatment processes involved in biorefining generate products like paper-pulp, HFCS, solvents, acetate, resins, laminates, adhesives, flavour chemicals, activated carbon, fuel enhancers, undigested sugars etc. which generally remain untapped in the traditional processes. The suitability of this process is further enhanced from the fact that it can utilize a variety of biomass resources, whether plant-derived or animal-derived.

Applicability

The concept of biorefinery is still in early stages at most places in the world. Problems like raw material availability, feasibility in product supply chain, scalability of the model are hampering its development at commercial-scales. The National Renewable Energy Laboratory (NREL) of USA is leading the front in biorefinery research with path-breaking discoveries and inventions. Although the technology is still in nascent stages, but it holds the key to the optimum utilization of wastes and natural resources that humans have always tried to achieve. The onus now lies on governments and corporate to incentivize or finance the research and development in this field.

Biomass Conveyors: An Overview

Biomass_ConveyorA well designed biomass conveyor system should take into account the variability of the material and provide the consistent and reliable flow that is crucial to power generation. Depending upon the type of boiler and conversion system, the fuel is either transported directly to the powerhouse via a belt conveyor, or first processed in a chipper/grinder to produce a finer texture. For example, municipal solid waste is deposited into pits where cranes mix the refuse and remove any large, non-combustible items. Sometimes, it is further processed to remove ferrous materials, glass, and other non-combustible materials.

For large pellet-fired biomass system, rail dump method is very common where railway tracks are constructed to transport biomass. Station is specified for train and fuel receiving bins are typically located below the track and rail cars dump into bins, either directly or through a rotary dumper. Fuel received is then transferred by belt conveyors to the biomass storage bins. For small particle size, pneumatic conveying system offer greater flexibility in routing than traditional belt conveyors. Equipment specific to pneumatic systems include positive displacement blowers and rotary feeders that function as air locks.

In a typical biomass thermal power plant, the initial process in the power generation is biomass fuel handling. A railway siding line is taken into the power station and the biomass is delivered in the storage yard. It is then unloaded from the point of delivery by means of wagon tippler. It is rack and pinion type. The biomass is taken from the unloading site to dead storage by belt conveyors. The belt deliver the biomass to warehouse.

The transfer points inside the warehouse are used to transfer biomass to the next belt. The belt elevates the biomass to breaker house. It consists of a rotary machine, which rotates the biomass and separates the light inorganic materials (viz. plastic or other incombustible particles) from it through the action of gravity and transfer it to reject bin house through belt. The belt further elevates the biomass until it reaches the crusher through belt. In the crusher a high-speed 3-phase induction motor is used to crush the biomass according to the requirement, for gasification size range is usually upto 15-20mm, while for biomass-fired boiler, size of 50mm is acceptable. Biomass rises from crusher house and reaches the dead storage.

Cost-effective production of biomass energy is very much dependent on efficient handling of available biomass sources, as well as the efficiency of each process. An important, but often overlooked, area is the efficient receiving of different types and different capacities of biomass as it enters the plant and then conveying this material to the production equipment.  In many cases, the space available for biomass handling is limited.

Receiving equipment can be installed in a pit or at the ground level. The size and volume of the receiving pocket can be suited to vehicle volumes or turn-around times. The receiving pit can be used as small buffer biomass storage or as an emergency or mixing pocket.

Belt conveyors are an economical and reliable choice for transferring biomass over long distances at high capacities with lower noise levels. Designs range from simple, open configurations to totally closed and washable conveyor galleries. Well engineered conveyors have the maximum safe distance between support legs to minimize the cost of civil construction as well as reducing the number of obstructions on the ground.

Chain conveyors are a reliable choice for transporting unscreened or dusty biomass, or when the available space is limited. Screw conveyors are a very economical alternative for transporting biomass over short distances.

Biomass conveyors are an integral feature of all biomass conversion routes

Nowadays, automated conveyor systems are getting traction around the world. Fully automated fuel handling systems employ a biomass storage bin that can hold upto 50 tons (or more) of biomass. The bin is filled by a self-unloading truck with negligible or no onsite staff assistance. From the biomass storage bunker, the fuel is fed automatically to the boiler by augers and conveyors. The fully automated system is a good match for biomass plants where maintenance staff has a large work load and cannot spend much time working with the biomass conversion plant.

Pellet-based hopper systems offer low costs for both installation and operation. In a modern biomass pellet boiler system, fuel is stored in a relatively low-cost grain silo and automatically fed, with no operator intervention, to the boiler or boilers with auger systems similar to those used for conveying feed grain on farms.

The fuel-handling system uses electric motors and is run by automated controls that provide the right amount of fuel to the combustion chamber based on facility demand. Such conveyor systems require minimal maintenance, around 20-30 minutes daily, for ash removal and maintenance of motors and augers, estimated to be about 20-30 minutes per day.

Waste Management Outlook for Nigeria

waste-nigeriaNigeria, the most populous country in Africa with population exceeding 182 million people, is grappling with waste management issues. The country generates around 43.2 million tonnes of waste annually. By 2025 with a population of 233.5 million, Nigeria will be generating an estimated 72.46 million tonnes of waste annually at a projected rate of 0.85 kg of waste/capita/day. This means that Nigeria annual waste generation will almost equal its crude oil production which currently stands at approximately 89.63 million tonnes per year.

Also, at an estimated annual waste generation figure of 72.46 million tonnes, Nigeria will be generating about one-fourth of the total waste that will be produced in the whole of Africa. This is scary and if proper attention is not paid to this enormous challenge, Nigeria might become the “Waste Capital of Africa”.

Waste is a Resource for Nigeria

Nonetheless, this challenge can be turned into a blessing because waste is a resource in disguise. If its potential is properly tapped, waste management can create employment, enable power generation, create a waste-based economy and contribute to economic diversification which Nigeria. There is no doubt that this is achievable because we have examples of countries already utilizing their waste judiciously.

Some good examples of sustainable waste management systems that can be implemented in Nigeria includes (1) Shanghai (China) which turn 50% of the waste generated into power generation electrifying 100,000 homes; (2) Incheon (South Korea) where its Sudokwon landfill receives about 20,000 tons of waste daily which is converted into electric power, has a water recycling and desalination facility, and has created more than 200 jobs; (3) Los Angeles (USA) which produces electric power enough for 70,000 homes in its Puente Hills landfill; (4) Germany whose sophisticated waste processing systems through recycling, composting, and energy generation has already saved the country 20% of the cost of metals and 3% of the cost of energy imports; (5) Austria, though a small country, is doing big things in waste management especially through recycling; (6) Sweden, whose recycling is so revolutionary that the country had to import waste; and (7) Flanders, Belgium which possesses the best waste diversion rate in Europe with 75% of their waste being reused, recycled or composted. An interesting fact is that per capita waste generation rate in Flanders is more than twice that of Nigeria at 1.5 kg/day.

Waste Management Outlook for Nigeria

Below are some of the major things the government need to do to judiciously utilize the free and abundant resource available in the form of trash in Nigeria:

Firstly, attention needs to be paid to building the human resource potential of the country to build the required capacity in conceptualizing fit-for-purpose innovative solution to be deployed in tackling and solving the waste challenge.

While knowledge exchange/transfer through international public private partnership is a possible way in providing waste management solution, it is not sustainable for the country especially because there is already an unemployment problem in Nigeria. Hence, funding the training of interested and passionate individuals and entrepreneurs in waste management is a better way of tackling the waste crisis in Nigeria.

Olusosun is the largest dumpsite in Nigeria

The Federal Government through the Petroleum Trust Development Fund (PTDF) and National Information Technology Development Agency (NITDA) of the Ministry of Communication currently sponsor students to study oil and gas as well as information technology related subjects in foreign countries in the hope of boosting manpower in both sectors of the economy. The same approach should be used in the waste management sector and this can be handled through the Federal Ministry of Environment.

Interestingly, waste generation is almost at par with crude oil production in Nigeria. Therefore, equal attention should be paid to waste-to-wealth sector. Needless to say, this is important as there is no university in Nigeria currently offering waste management as a stand-alone course either at undergraduate or postgraduate level.

Secondly, there is an urgent need for a strong National Waste Management Strategy to checkmate the different types of waste that enters the country’s waste stream as well as the quantity of waste being produced. To develop an effective national waste strategy, a study should be carried out to understand the country’s current stream of waste, generation pattern, and existing management approach. This should be championed by the Federal Ministry of Environment in conjunction with State and Local Government waste management authorities.

Once this is done, each State of the Federation will now integrate their own individual State Waste Management Plan into that of the Federal Government to achieve a holistic waste management development in Nigeria. By so doing, the government would also contribute to climate change mitigation because the methane produced when waste degrades is 25 times more potent than carbon dioxide (a major greenhouse gas known to many and contributor to global warming).

Finally, the government needs to support existing waste management initiatives either through tax-holiday on major equipment that need to be imported for their work and/or on their operation for a certain period of time. Also, if workable, the government can float a grant for innovative ideas and provide liberal subsidies in waste management to jumpstart the growth of the sector.

Lastly, the Government of Nigeria can raise a delegation of experts, entrepreneurs, industry professionals, academia, and youngsters to visit countries with sound waste management strategy for knowledge sharing, capacity-building, technology transfer and first-hand experience.

Note: The unedited version of the article can be found at this link

Prospects of Algae Biofuels in Middle East

Algae biofuels have the potential to become a renewable, cost-effective alternative for fossil fuels with reduced impact on the environment. Algae hold tremendous potential to provide a non-food, high-yield, non-arable land use source of renewable fuels like biodiesel, bioethanol, hydrogen etc. Microalgae are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only CO2, water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters.

algae-middle-east

Algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Microalgae are the fastest growing photosynthesizing organism capable of completing an entire growing cycle every few days. Up to 50% of algae’s weight is comprised of oil, compared with, for example, oil palm which yields just about 20% of its weight in oil. Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D efforts are underway worldwide, especially in North America and Europe, with a high number of start-up companies developing different options for commercializing algae farming.

Prospects of Algae Biofuels in the Middle East

The demand for fossil fuels is growing continuously all around the world and the Middle East is not an exception. The domestic consumption of energy in the Middle East is increasing at an astonishing rate, e.g. Saudi Arabia’s consumption of oil and gas rose by about 5.9 percent over the past five years while electricity demand is witnessing annual growth rate of 8 percent. Although Middle Eastern countries are world’s leading producers of fossil fuels, several cleantech initiatives have been launched in last few years which shows the commitment of regional countries in exploiting renewable sources of energy.

Algae biofuels is an attractive proposition for Middle East countries to offset the environmental impact of the oil and gas industry. The region is highly suitable for mass production of algae because of the following reasons:

  • Presence of large tracts of non-arable lands and extensive coastline.
  • Presence of numerous oil refineries and power plants (as points of CO2 capture) and desalination plants (for salt reuse).
  • Extremely favorable climatic conditions (highest annual solar irradiance).
  • Presence of a large number of sewage and wastewater treatment plants.
  • Existence of highly lipid productive microalgae species in coastal waters.

These factors makes it imperative on Middle East nations to develop a robust Research, Development and Market Deployment plan for a comprehensive microalgal biomass-based biorefinery approach for bio-product synthesis. An integrated and gradual appreciation of technical, economic, social and environmental issues should be considered for a successful implementation of the microalgae-based oleo-feedstock (MBOFs) industry in the region.