Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centrestage in farming process.

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

Modern combine-harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest. Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press-cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.

Biogas Sector in India: Perspectives

Biogas is an often overlooked and neglected aspect of renewable energy in India. While solar, wind and hydropower dominate the discussion in the cuntry, they are not the only options available. Biogas is a lesser known but highly important option to foster sustainable development in agriculture-based economies, such as India.

What is Biogas

Briefly speaking, biogas is the production of gaseous fuel, usually methane, by fermentation of organic material. It is an anaerobic process or one that takes place in the absence of oxygen. Technically, the yeast that causes your bread to rise or the alcohol in beer to ferment is a form of biogas. We don’t use it in the same way that we would use other renewable sources, but the idea is similar. Biogas can be used for cooking, lighting, heating, power generation and much more. Infact, biogas is an excellent and effective to promote development of rural and marginalized communities in all developing countries.

This presents a problem, however. The organic matter is putting off a gas, and to use it, we have to turn it into a liquid. This requires work, machinery and manpower. Research is still being done to figure out the most efficient methods to make it work, but there is a great deal of progress that has been made, and the technology is no longer new.

Fossil Fuel Importation

India has a rapidly expanding economy and the population to fit. This has created problems with electricity supplies to expanding areas. Like most countries, India mainly uses fossil fuels. However, as oil prices fluctuate and the country’s demand for oil grows, the supply doesn’t always keep up with the demand. In the past, India has primarily imported oil from the Middle East, specifically Saudi Arabia and Iraq.

Without a steady and sustainable fossil fuels supply, India has looking more seriously into renewable sources they can produce within the country. Biogas is an excellent candidate to meet those requirements and has been used for this goal before.

Biogas in India

There are significant differences between biogas and fossil fuels, but for India, one of the biggest is that you can create biogas at home. It’s pretty tricky to find, dig up and transform crude oil into gas, but biogas doesn’t have the same barriers. In fact, many farmers who those who have gardens or greenhouses could benefit with proper water management and temperature control so that plants can be grown year round, It still takes some learning and investment, but for many people, especially those who live in rural places, it’s doable.

This would be the most beneficial to people in India because it would help ease the strain of delivering reliable energy sources based on fossil fuels, and would allow the country to become more energy independent. Plus, the rural areas are places where the raw materials for biogas will be more available, such animal manure, crop residues and poultry litter. But this isn’t the first time most people there are hearing about it.

Biogas in India has been around for a long time. In the 1970’s the country began a program called the National Biogas and Manure Management Program (NBMMP) to deal with the same problem — a gas shortage. The country did a great deal of research and implemented a wide variety of ideas to help their people become more self-sufficient, regardless of the availability of traditional gasoline and other fossil fuel based products.

The original program was pioneering for its time, but the Chinese quickly followed suit and have been able to top the market in biogas production in relatively little time. Comparatively, India’s production of biogas is quite small. It only produces about 2.07 billion m3/year of biogas, while it’s estimated that it could produce as much as 48 billion m3/year. This means that there are various issues with the current method’s India is using in its biogas production.

Biogas_Animal

Biogas has the potential to rejuvenate India’s agricultural sector

The original planning in the NBMMP involved scientists who tried to create the most efficient biogas generators. This was good, but it slowed people’s abilities to adopt the techniques individually. China, on the other hand, explicitly worked to help their most rural areas create biogas. This allowed the country to spread the development of biogas to the most people with the lowest barriers to its proliferation.

If India can learn from the strategy that China has employed, they may be able to give their biogas production a significant boost which will also help in the rejuvenation of biomass sector in the country. Doing so will require the help and willingness of both the people and the government. Either way, this is an industry with a lot of room for growth.

Thermal Conversion of Biomass

A wide range of technologies exists to convert the energy stored in biomass to more useful forms of energy. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is admitted to the conversion process (usually as air). The major methods of thermal conversion are combustion in excess air, gasification in reduced air, and pyrolysis in the absence of air.

Combustion

Conventional combustion technologies raise steam through the combustion of biomass. This steam may then be expanded through a conventional turbo-alternator to produce electricity. A number of combustion technology variants have been developed. Underfeed stokers are suitable for small scale boilers up to 6 MWth. Grate type boilers are widely deployed. They have relatively low investment costs, low operating costs and good operation at partial loads. However, they can have higher NOx emissions and decreased efficiencies due to the requirement of excess air, and they have lower efficiencies.

Fluidized bed combustors (FBC), which use a bed of hot inert material such as sand, are a more recent development. Bubbling FBCs are generally used at 10-30 MWth capacity, while Circulating FBCs are more applicable at larger scales. Advantages of FBCs are that they can tolerate a wider range of poor quality fuel, while emitting lower NOx levels.

Co-Firing

Co-firing or co-combustion of biomass wastes with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels. Co-firing involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Co-firing has the major advantage of avoiding the construction of new, dedicated, waste-to-energy power plant. Co-firing may be implemented using different types and percentages of wastes in a range of combustion and gasification technologies. Most forms of biomass wastes are suitable for co-firing. These include dedicated municipal solid wastes, wood waste and agricultural residues such as straw and husk.

Gasification

Gasification of biomass takes place in a restricted supply of oxygen and occurs through initial devolatilization of the biomass, combustion of the volatile material and char, and further reduction to produce a fuel gas rich in carbon monoxide and hydrogen. This combustible gas has a lower calorific value than natural gas but can still be used as fuel for boilers, for engines, and potentially for combustion turbines after cleaning the gas stream of tars and particulates. If gasifiers are ‘air blown’, atmospheric nitrogen dilutes the fuel gas to a level of 10-14 percent that of the calorific value of natural gas. Oxygen and steam blown gasifiers produce a gas with a somewhat higher calorific value. Pressurized gasifiers are under development to reduce the physical size of major equipment items.

A variety of gasification reactors have been developed over several decades. These include the smaller scale fixed bed updraft, downdraft and cross flow gasifiers, as well as fluidized bed gasifiers for larger applications. At the small scale, downdraft gasifiers are noted for their relatively low tar production, but are not suitable for fuels with low ash melting point (such as straw). They also require fuel moisture levels to be controlled within narrow levels.

Pyrolysis

Pyrolysis is the term given to the thermal degradation of wood in the absence of oxygen. It enables biomass to be converted to a combination of solid char, gas and a liquid bio-oil. Pyrolysis technologies are generally categorized as “fast” or “slow” according to the time taken for processing the feed into pyrolysis products. These products are generated in roughly equal proportions with slow pyrolysis. Using fast pyrolysis, bio-oil yield can be as high as 80 percent of the product on a dry fuel basis. Bio-oil can act as a liquid fuel or as a feedstock for chemical production. A range of bio-oil production processes are under development, including fluid bed reactors, ablative pyrolysis, entrained flow reactors, rotating cone reactors, and vacuum pyrolysis.

Overview of Biomass Handling Equipment

The physical handling of biomass fuels during collection or at a processing plant can be challenging to conveying equipment designers, particularly for solid biomass. Biomass fuels tend to vary with density, moisture content and particle size (some even being stringy in nature) and can also be corrosive. Therefore biomass fuel handling equipment is often a difficult part of a plant to adequately design, maintain and operate.

The design and equipment choice for the fuel handling system, including preparation and refinement systems is carried out in accordance with the plant configuration. This is of special importance when the biomass is not homogeneous and contains impurities, typically for forest and agro residues. Some of the common problems encountered have been the unpopular design and undersized fuel handling, preparation and feeding systems. The fuel handling core systems and equipment are dependent on both the raw fuel type and condition as well as on the conversion/combustion technology employed. The core equipments in a biomass power plant include the following:

  1. Fuel reception
  2. Fuel weighing systems
  3. Receiving bunkers
  4. Bunker discharge systems (stoker, screw, grab bucket)
  5. Fuel preparation
  6. Fuel drying systems
  7. Crushers
  8. Chippers
  9. Screening systems
  10. Shredding systems
  11. Grinding systems (for pulverised fuel burners)
  12. Safety systems (explosion relieve, emergency discharge, fire detections etc)
  13. Fuel transport and feeding
  14. Push floors
  15. Belt feeders
  16. Conveyers, Elevators
  17. Tube feeders
  18. Fuel hoppers and silos (refined fuel)
  19. Hopper, bunker and silo discharge
  20. Feeding stokers
  21. Feeding screws
  22. Rotary valves

To enable any available biomass resource to be matched with the end use energy carrier required (heat, electricity or transport fuels) the correct selection of conversion technologies is required. Since the forms in which biomass can be used for energy are diverse, optimal resources, technologies and entire systems will be shaped by local conditions, both physical and socio-economic in nature. Since the majority of people in developing countries will continue using biomass as their primary energy source well into the next century, it is of critical importance that biomass-based energy truly can be modernized to yield multiple socioeconomic and environmental benefits.

Energy Potential of Palm Kernel Shells

palm-kernel-shellsThe Palm Oil industry in Southeast Asia and Africa generates large quantity of biomass wastes whose disposal is a challenging task. Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres. Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%.

Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content. PKS can be readily co-fired with coal in grate fired -and fluidized bed boilers as well as cement kilns in order to diversify the fuel mix.

The primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics. As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Palm kernel shells have been traditionally used as solid fuels for steam boilers in palm oil mills across Southeast Asia. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill. Most palm oil mills in the region are self-sufficient in terms of energy by making use of kernel shells and mesocarp fibers in cogeneration. In recent years, the demand for palm kernel shells has increased considerably in Europe, Asia-Pacific, China etc resulting in price close to that of coal. Nowadays, cement industries and power producers are increasingly using palm kernel shells to replace coal. In grate-fired boiler systems, fluidized-bed boiler systems and cement kilns, palm kernel shells are an excellent fuel.

Cofiring of PKS yields added value for power plants and cement kilns, because the fuel significantly reduces carbon emissions – this added value can be expressed in the form of renewable energy certificates, carbon credits, etc. However, there is a great scope for introduction of high-efficiency cogeneration systems in the industry which will result in substantial supply of excess power to the public grid and supply of surplus PKS to other nations. Palm kernel shell is already extensively in demand domestically by local industries for meeting process heating requirements, thus creating supply shortages in the market.

Palm oil mills around the world may seize an opportunity to supply electricity for its surrounding plantation areas using palm kernel shells, empty fruit branches and palm oil mill effluent which have not been fully exploited yet. This new business will be beneficial for all parties, increase the profitability for palm oil industry, reduce greenhouse gas emissions and increase the electrification ratio in surrounding plantation regions.

Biomass Pelletization Process

Biomass pellets are a popular type of biomass fuel, generally made from wood wastes, agricultural biomass, commercial grasses and forestry residues. In addition to savings in transportation and storage, pelletization of biomass facilitates easy and cost effective handling. Dense cubes pellets have the flowability characteristics similar to those of cereal grains. The regular geometry and small size of biomass pellets allow automatic feeding with very fine calibration. High density of pellets also permits compact storage and rational transport over long distance. Pellets are extremely dense and can be produced with a low moisture content that allows them to be burned with very high combustion efficiency.

Biomass pelletization is a standard method for the production of high density, solid energy carriers from biomass. Pellets are manufactured in several types and grades as fuels for electric power plants, homes, and other applications. Pellet-making equipment is available at a variety of sizes and scales, which allows manufacture at domestic as well industrial-scale production. Pellets have a cylindrical shape and are about 6-25 mm in diameter and 3-50 mm in length. There are European standards for biomass pellets and raw material classification (EN 14961-1, EN 14961-2 and EN 14961-6) and international ISO standards under development (ISO/DIS 17225-1, ISO/DIS 17225-2 and ISO/DIS 17225-6).

Process Description

The biomass pelletization process consists of multiple steps including raw material pre-treatment, pelletization and post-treatment. The first step in the pelletization process is the preparation of feedstock which includes selecting a feedstock suitable for this process, its filtration, storage and protection. Raw materials used are sawdust, wood shavings, wood wastes, agricultural residues like straw, switchgrass etc. Filtration is done to remove unwanted materials like stone, metal, etc. The feedstock should be stored in such a manner that it is away from impurities and moisture. In cases where there are different types of feedstock, a blending process is used to achieve consistency.

The moisture content in biomass can be considerably high and are usually up to 50% – 60% which should be reduced to 10 to 15%. Rotary drum dryer is the most common equipment used for this purpose. Superheated steam dryers, flash dryers, spouted bed dryers and belt dryers can also be used. Drying increases the efficiency of biomass and it produces almost no smoke on combustion. It should be noted that the feedstock should not be over dried, as a small amount of moisture helps in binding the biomass particles. The drying process is the most energy intensive process and accounts for about 70% of the total energy used in the pelletization process.

Schematic of Pelletization of Woody Biomass

Before feeding biomass to pellet mills, the biomass should be reduced to small particles of the order of not more than 3mm.  If the pellet size is too large or too small, it affects the quality of pellet and in turn increases the energy consumption. Therefore the particles should have proper size and should be consistent. Size reduction is done by grinding using a hammer mill equipped with a screen of size 3.2 to 6.4 mm. If the feedstock is quite large, it goes through a chipper before grinding.

The next and the most important step is pelletization where biomass is compressed against a heated metal plate (known as die) using a roller. The die consists of holes of fixed diameter through which the biomass passes under high pressure. Due to the high pressure, frictional forces increase, leading to a considerable rise in temperature. High temperature causes the lignin and resins present in biomass to soften which acts as a binding agent between the biomass fibers. This way the biomass particles fuse to form pellets.

The rate of production and electrical energy used in the pelletization of biomass  are strongly correlated to the raw material type and processing conditions such as moisture content and feed size. The The average energy required to pelletize biomass is roughly between 16 kWh/t and 49kWh/t. During pelletization, a large fraction of the process energy is used to make the biomass flow into the inlets of the press channels.

Binders or lubricants may be added in some cases to produce higher quality pellets. Binders increase the pellet density and durability. Wood contains natural resins which act as a binder. Similarly, sawdust contains lignin which holds the pellet together. However, agricultural residues do not contain much resins or lignin, and so a stabilizing agent needs to be added in this case. Distillers dry grains or potato starch is some commonly used binders. The use of natural additives depends on biomass composition and the mass proportion between cellulose, hemicelluloses, lignin and inorganics.

Due to the friction generated in the die, excess heat is developed. Thus, the pellets are very soft and hot (about 70 to 90oC). It needs to be cooled and dried before its storage or packaging. The pellets may then be passed through a vibrating screen to remove fine materials. This ensures that the fuel source is clean and dust free.

The pellets are packed into bags using an overhead hopper and a conveyor belt. Pellets are stored in elevated storage bins or ground level silos. The packaging should be such that the pellets are protected from moisture and pollutants. Commercial pellet mills and other pelletizing equipment are widely available across the globe.

Insights into Algae Biorefinery

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming of algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels. Algae can be efficiently grown on land that is not suitable for agriculture and hold huge potential to provide a non-food, high-yield source of biodiesel, ethanol and hydrogen fuels.

Several recent studies have pointed out that biofuel from microalgae has the potential to become a renewable, cost-effective alternative for fossil fuel with reduced impact on the environment and the world supply of staple foods, such as wheat, maize and sugar.

What are Algae?

Algae are unicellular microorganisms, capable of photosynthesis. They are one of the world’s oldest forms of life, and it is strongly believed that fossil oil was largely formed by ancient microalgae. Microalgae (or microscopic algae) are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only carbon , water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters. Oils produced by diverse algae strains range in composition. For the most part are like vegetable oils, though some are chemically similar to the hydrocarbons in petroleum.

Advantages of Algae

Apart from lipids, algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D is underway on algae as raw material worldwide, especially in North America and Europe with a high number of start-up companies developing different options.

Most scientific literature suggests an oil production potential of around 25-50 ton per hectare per year for relevant algae species. Microalgae contain, amongst other biochemical, neutral lipids (tri-, di-, monoglycerides free fatty acids), polar lipids (glycolipids, phospholipids), wax esters, sterols and pigments. The total lipid content in microalgae varies from 1 to 90 % of dry weight, depending on species, strain and growth conditions.

Algae-based Biorefinery

In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components.

The term biorefinery was coined to describe the production of a wide range of chemicals and bio-fuels from biomass by the integration of bio-processing and appropriate low environmental impact chemical technologies in a cost-effective and environmentally sustainable. If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and essential fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced can be recovered as well.

The potential for commercial algae production, also known as algaculture, is expected to come from growth in translucent tubes or containers called photo bioreactors or in open systems (e.g. raceways) particularly for industrial mass cultivation or more recently through a hybrid approach combining closed-system pre-cultivation with a subsequent open-system. Major advantages of a algal biorefinery include:

  • Use of industrial refusals as inputs ( CO2,wastewater and desalination plant rejects)
  • Large product basket with energy-derived (biodiesel, methane, ethanol and hydrogen) and non-energy derived (nutraceutical, fertilizers, animal feed and other bulk chemicals) products.
  • Not competing with food production (non-arable land and no freshwater requirements)
  • Better growth yield and lipid content than crops.

Indeed, after oil extraction the resulting algal biomass can be processed into ethanol, methane, livestock feed, used as organic fertilizer due to its high N:P ratio, or simply burned for energy cogeneration (electricity and heat). If, in addition, production of algae is done on residual nutrient feedstock and CO2, and production of microalgae is done on large scale in order to lower production costs, production of bulk chemicals and fuels from microalgae will become economically, environmentally and ethically extremely attractive.

Logistics of a Biopower Plant

Biomass feedstock logistics encompasses all of the unit operations necessary to move biomass feedstock from the land to the energy plant and to ensure that the delivered feedstock meets the specifications of the conversion process. The packaged biomass can be transported directly from farm or from stacks next to the farm to the processing plant. Biomass may be minimally processed before being shipped to the plant, as in case of biomass supply from the stacks. Generally the biomass is trucked directly from farm to biorefinery if no processing is involved.

Another option is to transfer the biomass to a central location where the material is accumulated and subsequently dispatched to the energy conversion facility. While in depot, the biomass could be pre-processed minimally (ground) or extensively (pelletized). The depot also provides an opportunity to interface with rail transport if that is an available option. The choice of any of the options depends on the economics and cultural practices. For example in irrigated areas, there is always space on the farm (corner of the land) where quantities of biomass can be stacked.  The key components to reduce costs in harvesting, collecting and transportation of biomass can be summarized as:

  • Reduce the number of passes through the field by amalgamating collection operations.
  • Increase the bulk density of biomass
  • Work with minimal moisture content.
  • Granulation/pelletization is the best option, though the existing technology is expensive.
  • Trucking seems to be the most common mode of biomass transportation option but rail and pipeline may become attractive once the capital costs for these transport modes are reduced.

The logistics of transporting, handling and storing the bulky and variable biomass material for delivery to the biopower plant is a key part of the supply chain that is often overlooked by project developers. Whether the biomass comes from forest residues on hill country, straw residues from cereal crops grown on arable land, or the non-edible components of small scale, subsistence farming systems, the relative cost of collection will be considerable. Careful development of a system to minimize machinery use, human effort and energy inputs can have a considerable impact on the cost of the biomass as delivered to the processing plant gate.

The logistics of supplying a biomass power plant with consistent and regular volumes of biomass are complex.

Most of the agricultural biomass resources tend to have a relatively low energy density compared with fossil fuels. This often makes handling, storage and transportation more costly per unit of energy carried. Some crop residues are often not competitive because the biomass resource is dispersed over large areas leading to high collection and transport costs. The costs for long distance haulage of bulky biomass will be minimized if the biomass can be sourced from a location where it is already concentrated, such as sugar mill. It can then be converted in the nearby biomass energy plant to more transportable forms of energy carrier if not to be utilized on-site.

The logistics of supplying a biomass power plant with sufficient volumes of biomass from a number of sources at suitable quality specifications and possibly all year round, are complex. Agricultural residues can be stored on the farm until needed. Then they can be collected and delivered directly to the conversion plant on demand. At times this requires considerable logistics to ensure only a few days of supply are available on-site but that the risk of non-supply at any time is low.

Losses of dry matter, and hence of energy content, commonly occur during the harvest transport and storage process. This can either be from physical losses of the biomass material in the field during the harvest operation or dropping off a truck, or by the reduction of dry matter of biomass material which occurs in storage over time as a result of respiration processes and as the product deteriorates. Dry matter loss is normally reduced over time if the moisture content of the biomass can be lowered or oxygen can be excluded in order to constrain pathological action.

To ensure sufficient and consistent biomass supplies, all agents involved with the production, collection, storage, and transportation of biomass require compensation for their share of costs incurred. In addition, a viable biomass production and distribution system must include producer incentives, encouraging them to sell their post-harvest plant residue.

Biochemical Conversion of Biomass

Biochemical conversion of biomass involves use of bacteria, microorganisms and enzymes to breakdown biomass into gaseous or liquid fuels, such as biogas or bioethanol. The most popular biochemical technologies are anaerobic digestion (or biomethanation) and fermentation. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. Biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels.

Anaerobic Digestion

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. A combined heat and power plant system (CHP) not only generates power but also produces heat for in-house requirements to maintain desired temperature level in the digester during cold season. In Sweden, the compressed biogas is used as a transportation fuel for cars and buses. Biogas can also be upgraded and used in gas supply networks.

Working of Anaerobic Digestion Process

Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer. A high proportion of the nutrients remain in the liquor, which can be used as a liquid fertilizer.

Biofuel Production

A variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.