Applications of Biochar

Biochar is a carbon-rich, fine-grained residue which can be produced either by ancient techniques (such as covering burning biomass with soil and allowing it to smoulder) or state-of-the-art modern biomass pyrolysis processes. Combustion and decomposition of woody biomass and agricultural residues results in the emission of a large amount of carbon dioxide. Biochar can store this CO2 in the soil leading to reduction in GHGs emission and enhancement of soil fertility. Biochar holds the promise to tackle chronic human development issues like hunger and food insecurity, low agricultural productivity and soil depletion, deforestation and biodiversity loss, energy poverty, water pollution, air pollution and climate change. Let us have a close look at some of the most promising applications of biochar.

 

Use of biochar in animal farming

At present approx. 90% of the biochar used in Europe goes into animal farming. Different to its application to fields, a farmer will notice its effects within a few days. Whether used in feeding, litter or in slurry treatment, a farmer will quickly notice less smell. Used as a feed supplement, the incidence of diarrhoea rapidly decreases, feed intake is improved, allergies disappear, and the animals become calmer.

In Germany, researchers conducted a controlled experiment in a dairy that was experiencing a number of common health problems: reduced performance, movement disorder, fertility disorders, inflammation of the urinary bladder, viscous salivas, and diarrhoea. Animals were fed different combinations of charcoal, sauerkraut juice or humic acids over periods of 4 to 6 weeks.

Experimenters found that oral application of charcoal (from 200 to 400 g/day), sauerkraut juice and humic acids influenced the antibody levels to C. botulinum, indicating reduced gastrointestinal neurotoxin burden. They found that when the feed supplements were ended, antibody levels increased, indicating that regular feeding of charcoal and other supplements had a tonic effect on cow health.

Biochar as soil conditioner

In certain poor soils (mainly in the tropics), positive effects on soil fertility were seen when applying untreated biochar. These include the higher capacity of the soil to store water, aeration of the soil and the release of nutrients through raising the soil’s pH-value. In temperate climates, soils tend to have humus content of over 1.5%, meaning that such effects only play a secondary role.

Indeed, fresh biochar may adsorb nutrients in the soil, causing at least in the short and medium term – a negative effect on plant growth. These are the reasons why in temperate climates biochar should only be used when first loaded with nutrients and when the char surfaces have been activated through microbial oxidation.

The best method of loading nutrients is to co-compost the char. This involves adding 10–30% biochar (by volume) to the biomass to be composted. Co-composting improves both the biochar and the compost. The resulting compost can be used as a highly efficient substitute for peat in potting soil, greenhouses, nurseries and other special cultures.

Because biochar serves as a carrier for plant nutrients, it can produce organic carbon-based fertilizers by mixing biochar with such organic waste as wool, molasses, ash, slurry and pomace. These are at least as efficient as conventional fertilizers, and have the advantage of not having the well-known adverse effects on the ecosystem. Such fertilizers prevent the leaching of nutrients, a negative aspect of conventional fertilizers. The nutrients are available as and when the plants need them. Through the stimulation of microbial symbiosis, the plant takes up the nutrients stored in the porous carbon structure and on its surfaces.
A range of organic chemicals are produced during pyrolysis. Some of these remain stuck to the pores and surfaces of the biochar and may have a role in stimulating a plant’s internal immune system, thereby increasing its resistance to pathogens. The effect on plant defence mechanisms was mainly observed when using low temperature biochars (pyrolysed at 350° to 450°C). This potential use is, however, only just now being developed and still requires a lot of research effort.

Biochar as construction material

The two interesting properties of biochar are its extremely low thermal conductivity and its ability to absorb water up to 6 times its weight. These properties mean that biochar is just the right material for insulating buildings and regulating humidity. In combination with clay, but also with lime and cement mortar, biochar can be added to clay at a ratio of up to 50% and replace sand in lime and cement mortars. This creates indoor plasters with excellent insulation and breathing properties, able to maintain humidity levels in a room at 45–70% in both summer and winter. This in turn prevents not just dry air, which can lead to respiratory disorders and allergies, but also dampness and air condensing on the walls, which can lead to mould developing.

As per study by the Ithaka Institute’s biochar-plaster wine cellar and seminar rooms in the Ithaka Journal. Such biochar-mud plaster adsorbs smells and toxins, a property not just benefiting smokers. Biochar-mud plasters can improve working conditions in libraries, schools, warehouses, factories and agricultural buildings.

Biochar is an efficient adsorber of electromagnetic radiation, meaning that biochar-mud plaster can prevent “electrosmog”. Biochar can also be applied to the outside walls of a building by jet-spray technique mixing it with lime. Applied at thicknesses of up to 20 cm, it is a substitute for Styrofoam insulation. Houses insulated this way become carbon sinks, while at the same time having a more healthy indoor climate. Should such a house be demolished at a later date, the biochar-mud or biochar-lime plaster can be recycled as a valuable compost additive.

Biochar as decontaminant

As a soil additive for soil remediation – for use in particular on former mine-works, military bases and landfill sites.

Soil substrates – Highly adsorbing and effective for plantation soil substrates for use in cleaning wastewater; in particular urban wastewater contaminated by heavy metals.

A barrier preventing pesticides getting into surface water – berms around fields and ponds can be equipped with 30-50 cm deep barriers made of bio-char for filtering out pesticides.

Treating pond and lake water – bio-char is good for adsorbing pesticides and fertilizers, as well as for improving water aeration.

Use of biochar in wastewater treatment – Our Project

The biochar grounded to a particle size of less than 1.5 mm and surface area of 600 – 1000 m2/g. The figure below is the basic representation of production of bio-char for wastewater treatment.

We conducted a study for municipal wastewater which was obtained from a local municipal treatment plant. The municipal wastewater was tested for its physicochemical parameters including pH, chemical oxygen demand (COD), total suspended solids (TSS), total phosphates (TP) and total Kjeldahl nitrogen (TKN) using the APHA (2005) standard methods.

Bio filtration of the municipal wastewater with biochar acting as the bio adsorbent was allowed to take place over a 5 day period noting the changes in the wastewater parameters. The municipal wastewater and the treated effluent physicochemical.

The COD concentration in the municipal wastewater decreased by 90% upon treatment with bio-char. The decrease in the COD was attributed to the enhanced removal of bio contaminants as they were passed through the bio char due to the bio char’s adsorption properties as well as the high surface area of the bio char. An 89% reduction in the TSS was observed as the bio filtration process with bio char increased from one day to five days

The TKN concentration in the wastewater decreased by 64% upon treatment with bio char as a bio filter. The TP in the wastewater decreased by 78% as the bio filtration time with bio char increase. The wastewater pH changed from being alkaline to neutral during the treatment with bio char over the 5 day period

Use in Textiles

In Japan and China bamboo-based bio-chars are already being woven into textiles to gain better thermal and breathing properties and to reduce the development of odours through sweat. The same aim is pursued through the inclusion of bio-char in shoe soles and socks.

Biochemical Conversion of Biomass

Biochemical conversion of biomass involves use of bacteria, microorganisms and enzymes to breakdown biomass into gaseous or liquid fuels, such as biogas or bioethanol. The most popular biochemical technologies are anaerobic digestion (or biomethanation) and fermentation. Anaerobic digestion is a series of chemical reactions during which organic material is decomposed through the metabolic pathways of naturally occurring microorganisms in an oxygen depleted environment. Biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels.

Anaerobic Digestion

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Anaerobic digestion is a reliable technology for the treatment of wet, organic waste.  Organic waste from various sources is biochemically degraded in highly controlled, oxygen-free conditions circumstances resulting in the production of biogas which can be used to produce both electricity and heat. Almost any organic material can be processed with anaerobic digestion. This includes biodegradable waste materials such as municipal solid waste, animal manure, poultry litter, food wastes, sewage and industrial wastes.

An anaerobic digestion plant produces two outputs, biogas and digestate, both can be further processed or utilized to produce secondary outputs. Biogas can be used for producing electricity and heat, as a natural gas substitute and also a transportation fuel. A combined heat and power plant system (CHP) not only generates power but also produces heat for in-house requirements to maintain desired temperature level in the digester during cold season. In Sweden, the compressed biogas is used as a transportation fuel for cars and buses. Biogas can also be upgraded and used in gas supply networks.

Working of Anaerobic Digestion Process

Digestate can be further processed to produce liquor and a fibrous material. The fiber, which can be processed into compost, is a bulky material with low levels of nutrients and can be used as a soil conditioner or a low level fertilizer. A high proportion of the nutrients remain in the liquor, which can be used as a liquid fertilizer.

Biofuel Production

A variety of fuels can be produced from waste resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The resource base for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues. Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking.

The largest potential feedstock for ethanol is lignocellulosic biomass wastes, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantly, lignocellulosic feedstocks do not interfere with food security.

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat and power (CHP).

Biomass gasification provides a means of deriving more diverse forms of energy from the thermochemical conversion of biomass than conventional combustion. The basic gasification process involves devolatization, combustion and reduction.

During devolatization, methane and other hydrocarbons are produced from the biomass by the action of heat which leaves a reactive char.

During combustion, the volatiles and char are partially burned in air or oxygen to generate heat and carbon dioxide. In the reduction phase, carbon dioxide absorbs heat and reacts with the remaining char to produce carbon monoxide (producer gas). The presence of water vapour in a gasifier results in the production of hydrogen as a secondary fuel component.

There are two main types of gasifier that can be used to carry out this conversion, fixed bed gasifiers and fluidized bed gasifiers. The conversion of biomass into a combustible gas involves a two-stage process. The first, which is called pyrolysis, takes place below 600°C, when volatile components contained within the biomass are released. These may include organic compounds, hydrogen, carbon monoxide, tars and water vapour.

Pyrolysis leaves a solid residue called char. In the second stage of the gasification process, this char is reacted with steam or burnt in a restricted quantity of air or oxygen to produce further combustible gas. Depending on the precise design of gasifier chosen, the product gas may have a heating value of 6 – 19 MJ/Nm3.

Layout of a Typical Biomass Gasification Plant

The products of gasification are a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and various hydrocarbons, which can then be used directly in gas turbines, and boilers, or used as precursors for synthesising a wide range of other chemicals.

In addition there are a number of methods that can be used to produce higher quality product gases, including indirect heating, oxygen blowing, and pressurisation. After appropriate treatment, the resulting gases can be burned directly for cooking or heat supply, or used in secondary conversion devices, such as internal combustion engines or gas turbines, for producing electricity or shaft power (where it also has the potential for CHP applications).

 

See some of our favorite inspirational quotes

How is Biomass Transported

Transporting biomass fuel to a power plant is an important aspect of any biomass energy project. Because a number of low moisture fuels can be readily collected and transported to a centralized biomass plant location or aggregated to enhance project size, this opportunity should be evaluated on a case-by-case basis.

It will be a good proposition to develop biomass energy plants at the location where the bulk of the agricultural waste stream is generated, without bearing the additional cost of transporting waste streams. Effective capture and use of thermal energy at the site for hot water, steam, and even chilled water requirements raises the energy efficiency of the project, thereby improving the value of the waste-to-energy project.

Important Factors

  • The maximum rate of biomass supply to the conversion facility.
  • The form and bulk density of biomass.
  • The hauling distance for biomass transportation to the processing plant.
  • Transportation infrastructure available between the points of biomass dispatch and processing plant

Transportation is primarily concerned with loading and unloading operation and transferring biomass from pre-processing sites to the main processing plant or biorefinery. Truck transport and for a few cases train transport may be the only modes of transport. Barge and pipeline transport and often train transport involve truck transport. Trucks interface with trains at loading and unloading facilities of a depot or processing facility. Barge and pipeline require interfacing with train and/or truck transport at major facilities either on land or at the shores.

Physical form and quality of biomass has the greatest influence on the selection of equipment for the lowest delivered cost possible. A higher bulk density will allow more mass of material to be transported per unit distance. Truck transport is generally well developed, is usually cheapest mode of transport but it becomes expensive as travel distance increases. Pipeline biomass transport is the least known technology and may prove to be the cheapest and safest mode of transport in the near future.

A biomass freight train in England

Transportation costs of low-density and high-moisture agricultural residues straw are a major constraint to their use as an energy source. As a rule of thumb, transportation distances beyond a 25–50- km radius (depending on local infrastructure) are uneconomical. For long distances, agricultural residues could be compressed as bales or briquettes in the field, rendering transport to the site of use a viable option.

Greater use of biomass and larger?scale conversion systems demand larger?scale feedstock handling and delivery infrastructure. To accommodate expansion in feedstock collection and transportation, production centres can be established where smaller quantities of biomass are consolidated, stored, and transferred to long?distance transportation systems, in much the same way that transfer stations are used in municipal waste handling. Pre?processing equipment may be used to densify biomass, increasing truck payloads and reducing transportation costs over longer haul distances.

A Primer on Agricultural Residues

The term agricultural residue is used to describe all the organic materials which are produced as by-products from harvesting and processing of agricultural crops. These residues can be further categorized into primary residues and secondary residues. Agricultural residues, which are generated in the field at the time of harvest, are defined as primary or field based residues whereas those co-produced during processing are called secondary or processing based residues.

  • Primary residues – paddy straw, sugarcane top, maize stalks, coconut empty bunches and frond, palm oil frond and bunches;
  • Secondary residues – paddy husk, bagasse, maize cob, coconut shell, coconut husk, coir dust, saw dust, palm oil shell, fiber and empty bunches, wastewater, black liquor.

Agricultural residues are highly important sources of biomass fuels for both the domestic and industrial sectors. Availability of primary residues for energy application is usually low since collection is difficult and they have other uses as fertilizer, animal feed etc. However secondary residues are usually available in relatively large quantities at the processing site and may be used as captive energy source for the same processing plant involving minimal transportation and handling cost.

Crop residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these materials can be converted into useful energy by a wide range of technologies..

Towards Sustainable Biomass Energy

biomass-balesBiomass is one of the oldest and simplest ways of getting heat and energy, and it’s starting to make a comeback due to its status as renewable resource. Some, however, aren’t so sure that using more of it would be good for our environment. So, how sustainable is biomass energy really?

What is Biomass?

Biomass is organic material from plants and animals. It naturally contains energy because plants absorb it from the sun through photosynthesis. When you burn biomass, it releases that energy. It’s also sometimes converted into a liquid or gas form before it is burned.

Biomass includes a wide variety of materials but includes:

  • Wood and wood processing waste
  • Agricultural crops
  • Garbage made up of food, yard and wood waste
  • Animal manure and human sewage

About five percent of the United States’ energy comes from biomass. Biomass fuel products such as ethanol make up about 48 percent of that five percent while wood makes up about 41 percent and municipal waste accounts for around 11 percent.

The Benefits of Biomass

Biomass is a renewable resource because the plants that store the energy released when it is burned can be regrown continuously. In theory, if you planted the same amount of vegetation that you burned, it would be carbon neutral because the plants would absorb all of the carbon released. Doing this is, however, much easier said than done.

Another potential is that it serves as a use for waste materials that have are already been created. It adds value to what otherwise would be purely waste.

Additionally, many forms of biomass are also relatively low-tech energy sources, so they may be useful, or even required for older buildings that need an electrical renovation.

Drawbacks of Biomass

A major drawback of using biomass fuel is that it is not an efficient process. In fact, burning it can release even more carbon dioxide than burning the same amount of a fossil fuel.

While you can replenish the organic matter you burn, doing so requires complex crop or forest management and the use of a large amount of land.  Also, some biomass, such as wood, takes a long time to grow back. This amounts to a delay in carbon absorption. Additionally, the harvesting of biomass will likely involve some sort of emissions.

 Is it Sustainable?

So, is biomass energy sustainable? Measuring the environmental impacts of biomass fuel use has proven to be complex due to the high number of variables, which has led to a lot of disagreement about this question.

Some assert that biomass use cannot be carbon neutral, because even if you burned and planted the same amount of organic matter, harvesting it would still result in some emissions. This could perhaps be avoided if you used renewable energy to harvest it. A continuous supply of biomass would likely require it to be transported long distances, worsening the challenge of going carbon neutral.

With careful planning, responsible land management and environmentally friendly harvesting and distribution, biomass could be close to, if not entirely, carbon neutral and sustainable. Given our reliance on fossil fuels, high energy consumption levels and the limited availability of land and other resources, this would be an immense challenge to undertake and require a complete overhaul of our energy use.

How to Improve the Biomass Industry

Biomass could emerge as a major solution to our energy and sustainability issues, but it isn’t likely to be a comprehensive solution. There are some things we can do, though, to make biomass use more sustainable when we do use it.

  • Source locally: Using biomass that comes from the local area reduces the impact of distributing it.
  • Clean distribution: If you do transport biofuel long distances, using an electric or hybrid vehicles powered largely by clean energy would be the most eco-friendly way to do it. This also applies to transporting it short distances.

Measuring the environmental impacts of biomass fuel use is complex due to high number of variables

  • Clean harvesting: Using environmentally friendly, non-emitting means of harvesting can greatly reduce the impact of using biomass. This might also involve electric vehicles.
  • Manage land sustainably: For biomass to be healthy for the ecosystem, you must manage land used to grow it with responsible farming practices.
  • Focus on waste: Waste is likely the most environmentally friendly form of biomass because it uses materials that would otherwise simply decompose and doesn’t require you to grow any new resources for your fuel or energy needs.

Is biomass energy sustainable? It has the potential to be, but doing so would be quite complex and require quite a bit of resources. Any easier way to address the problem is to look at small areas of land and portions of energy use first. First, make that sustainable and then we may be able to expand that model on to a broader scale.

Major Issues in Biomass Energy Projects

This article makes an attempt at collating some of the most prominent issues associated with biomass technologies and provides plausible solutions in order to seek further promotion of these technologies. The solutions provided below are based on author’s understanding and experience in this field.

Large Project Costs

The project costs are to a great extent comparable to these technologies which actually justify the cause. Also, people tend to ignore the fact, that most of these plants, if run at maximum capacity could generate a Plant Load Factor (PLF) of 80% and above. This figure is about 2-3 times higher than what its counterparts wind and solar energy based plants could provide. This however, comes at a cost – higher operational costs.

Lower Efficiency of Technologies

The solution to this problem, calls for innovativeness in the employment of these technologies. To give an example, one of the paper mill owners in India, had a brilliant idea to utilize his industrial waste to generate power and recover the waste heat to produce steam for his boilers. The power generated was way more than he required for captive utilization. With the rest, he melts scrap metal in an arc and generates additional revenue by selling it. Although such solutions are not possible in each case, one needs to possess the acumen to look around and innovate – the best means to improve the productivity with regards to these technologies.

Immature Technologies

One needs to look beyond what is directly visible. There is a humongous scope of employment of these technologies for decentralized power generation. With regards to scale, few companies have already begun conceptualizing ultra-mega scale power plants based on biomass resources. Power developers and critics need to take a leaf out of these experiences.

Lack of Funding Options

The most essential aspect of any biomass energy project is the resource assessment. Investors if approached with a reliable resource assessment report could help regain their interest in such projects. Moreover, the project developers also need to look into community based ownership models, which have proven to be a great success, especially in rural areas. The project developer needs to not only assess the resource availability but also its alternative utilization means. It has been observed that if a project is designed by considering only 10-12% of the actual biomass to be available for power generation, it sustains without any hurdles.

Non-Transparent Trade Markets

Most countries still lack a common platform to the buyers and sellers of biomass resources. As a result of this, their price varies from vendor to vendor even when considering the same feedstock. Entrepreneurs need to come forward and look forward to exploiting this opportunity, which could not only bridge the big missing link in the resource supply chain but also could transform into a multi-billion dollar opportunity.

High Risks / Low Paybacks

Biomass energy plants are plagued by numerous uncertainties including fuel price escalation and unreliable resource supply to name just a few. Project owners should consider other opportunities to increase their profit margins. One of these could very well include tying up with the power exchanges as is the case in India, which could offer better prices for the power that is sold at peak hour slots. The developer may also consider the option of merchant sale to agencies which are either in need of a consistent power supply and are presently relying on expensive back-up means (oil/coal) or are looking forward to purchase “green power” to cater to their Corporate Social Responsibility (CSR) initiatives.

Resource Price Escalation

A study of some of the successful biomass energy plants globally would result in the conclusion of the inevitability of having own resource base to cater to the plant requirements. This could be through captive forestry or energy plantations at waste lands or fallow lands surrounding the plant site. Although, this could escalate the initial project costs, it would prove to be a great cushion to the plants operational costs in the longer run. In cases where it is not possible to go for such an alternative, one must seek case-specific procurement models, consider help from local NGOs, civic bodies etc. and go for long-term contracts with the resource providers.

Biogas in Agriculture Sector in India: Key Challenges

Although the conversion of agriculture waste – cattle dung and crop residues –  to biogas and digested slurry is an established and well-proven technology, it has been under-used, probably because until recently, firewood was easily available and chemical fertilizer was relatively affordable to most of the farmers in India.

The National Biogas and Manure Management Programme (NBMMP) was put in place to lower the environmental degradation and prevent greenhouse gas emissions, like carbon dioxide and methane, into the atmosphere. However, this objective of the program is less likely to motivate the farmers and their families to install biogas plants.

This program rolled out by Ministry of Non-Conventional Energy Sources (now Ministry of New and Renewable Energy), New Delhi, with heavy subsidies for family-type biogas plants to increase adoption, was successful with lakhs of biogas plants being installed across the country till now.

It was realised that due to poor dissemination of information and unsatisfactory communication about the plant operation & application of the digested biogas slurry, and unable to perceive the return in terms of value resulted in discontinuation of lakhs of biogas plants across the country.

The entire biogas technology marketing efforts failed to highlight major advantage – an increased revenue from agriculture with the use of high quality and a low-cost homegrown digested biogas slurry as fertiliser. Another advantage was to help farmers’ understand that their land quality and output per acre will increase over the years by the use of digested biogas slurry which has been degraded from the rampant use of chemical fertiliser and pesticides.

Challenges to be addressed

The farmer’s communities today are required to made to understand that their revenue from agriculture is decreasing year on year due to increasing deforestation, degradation of land quality, rampant use of chemical fertiliser and pesticides, lack of farm cattle, injudicious use of water for irrigation, and use heavy vehicles for ploughing.

These ill-advised decisions have made the farmers poorer, impacted the health of their families and the rural environment of villages. The years ahead are crucial if this trend is not reversed.

Unending benefits of biogas technology

Most of the rural and semi-urban areas have a poor perception of the Anaerobic Digestion (or biogas or biomethanation) technology. This technology offers benefits to all spheres of society but have a particular emphasis on the needs of the farmers in rural areas.

Farmers with dairy animals generally have free access to animal waste (dung), which provide input feed for the biogas digesters. Normally, these farmers stock-pile the dung obtained from their cattle as a plant fertilizer, but this has lower nitrogen content than the digested biogas slurry created by the biogas digestion process, which is odorless and makes a better fertilizer to substitute chemical fertilizers. They can use the gas for cooking or heating, for running power generators. The biogas technology helps farmers reduce their burden to buy LPG and harmful chemical fertilizers and pesticides.

In short, biogas technology is an integrated solution for sustainable agriculture, improving health and lowering environment degradation.

The promise of biogas technology

Biogas technology can help in the following manner:

  • Enhance bio-security for dairy animals – being fully fermented, bio-slurry is odorless and does not attract flies, repels termites and pests that are attracted to raw dung.
  • Provides high quality and low-cost homegrown fertiliser for sustainable agriculture.
  • Reduce energy poverty and ensure energy security.
  • Digested biogas slurry is an excellent soil conditioner with humic acid.
  • Save time for women for education and livelihood activities.
  • Increase forest cover as less firewood would be needed on a daily basis.
  • Reduce weed growth

Importance of Government Efforts

The agriculture sector is playing a major role in India economy and it comprises a huge vote bank. Our government has launched various initiatives like GOBAR-DHAN (Galvanizing Organic Bio-Agro Resources Dhan), Sustainable Alternative towards Affordable Transportation (SATAT), and New National Biogas and Organic Manure Programme (NNBOMP) in attempt to revive interest in biogas technology for farmers and entrepreneurs.

rice-straw-biogas

Agricultural residues, such as rice straw, are an important carbon source for anaerobic digestion

These initiatives are aimed at developmental efforts that would benefit the farmers, vehicle-users, and entrepreneurs. These initiatives also hold a great promise for efficient solid waste management and tackling problems of indoor air pollution caused by use of firewood, deforestation and methane gas release in the atmosphere due to open piling of cattle dung.

These initiatives aren’t marketing the value which solves a major challenge – degradation of agriculture land for farming in rural India. The initiative and efforts are majorly focused on waste management, environment and towards behavioral change. These changes are of global importance and can be managed effortlessly by generating tangible results for farmers.

India has an aspiring young workforce which is moving to urban settlements in hope for better opportunities, therefore, productivity and revenue from agriculture needs to grow. The biogas technology can restore agriculture productivity and strengthen revenue to make it attractive.

Note: This article was first published by author on LinkedIn.com. The link to this article – https://www.linkedin.com/pulse/bio-gas-misunderstood-agri-technology-zahir-kapasi/

Biogas from Crop Wastes: European Perspectives

Most, if not all of Europe has a suitable climate for biogas production. The specific type of system depends on the regional climate. Regions with harsher winters may rely more on animal waste and other readily available materials compared to warmer climates, which may have access to more crop waste or organic material.

Regardless of suitability, European opinions vary on the most ethical and appropriate materials to use for biogas production. Multiple proponents argue biogas production should be limited to waste materials derived from crops and animals, while others claim crops should be grown with the intention of being used for biogas production.

Biogas Production From Crops

Europeans in favor of biogas production from crops argue the crops improve the quality of the soil. Additionally, they point to the fact that biogas is a renewable energy resource compared to fossil fuels. Crops can be rotated in fields and grown year after year as a sustainable source of fuel.

Extra crops can also improve air quality. Plants respire carbon dioxide and can help reduce harmful greenhouse gasses in the air which contribute to global climate change.

Biogas crops can also improve water quality because of plant absorption. Crops grown in otherwise open fields reduce the volume of water runoff which makes it to lakes, streams and rivers. The flow of water and harmful pollutants is impeded by the plants and eventually absorbed into the soil, where it is purified.

Urban residents can also contribute to biogas production by growing rooftop or vertical gardens in their homes. Waste from tomatoes, beans and other vegetables is an excellent source of biogas material. Residents will benefit from improved air quality and improved water quality as well by reducing runoff.

Proponents of biogas production from crops aren’t against using organic waste material for biogas production in addition to crop material. They believe crops offer another means of using more sustainable energy resources.

Biogas Production From Waste Materials Only

Opponents to growing crops for biogas argue the crops used for biogas production degrade soil quality, making it less efficient for growing crops for human consumption. They also argue the overall emissions from biogas production from crops will be higher compared to fossil fuels.

Growing crops can be a labor-intensive process. Land must be cleared, fertilized and then seeded. While crops are growing, pesticides and additional fertilizers may be used to promote crop growth and decrease losses from pests. Excess chemicals can run off of fields and degrade the water quality of streams, lakes and rivers and kill off marine life.

Once crops reach maturity, they must be harvested and processed to be used for biogas material. Biogas is less efficient compared to fossil fuels, which means it requires more material to yield the same amount of energy. Opponents argue that when the entire supply chain is evaluated, biogas from crops creates higher rates of emissions and is more harmful to the environment.

Agricultural residues, such as rice straw, are an important carbon source for anaerobic digestion

The supply chain for biogas from agricultural waste materials is more efficient compared to crop materials. Regardless of whether or not the organic waste is reused, it must be disposed of appropriately to prevent any detrimental environmental impacts. When the waste material is then used for biogas production, it creates an economical means of generating useful electricity from material which would otherwise be disposed of.

Rural farms which are further away from the electric grid can create their own sources of energy through biogas production from waste material as well. The cost of the energy will be less expensive and more eco-friendly as it doesn’t have the associated transportation costs.

Although perspectives differ on the type of materials which should be used for biogas production, both sides agree biogas offers an environmentally friendly and sustainable alternative to using fossil fuels.