Your Choices for Alternative Energy

While using alternative sources of energy is a right way for you to save money on your heating and cooling bills, it also allows you to contribute in vital ways to both the environment and the economy.  Alternative energy sources are renewable, environmentally sustainable sources that do not create any by-products that are released into the atmosphere like coal and fossil fuels do.

Burning coal to produce electricity releases particulates and substances such as mercury, arsenic, sulfur and carbon monoxide into the air, all of which can cause health problems in humans.

Other by-products from burning coal are acid rain, sludge run-off and heated water that is released back into the rivers and lakes nearby the coal-fired plants.  While efforts are being made to create “clean coal,” businesses have been reluctant to use the technology due to the high costs associated with changing their plants.

If you are considering taking the plunge and switching to a renewable energy source to save money on your electric and heating bills or to help the environment, you have a lot of decisions to make. The first decision you need to make is which energy source to use in your home or business.  Do you want to switch to solar energy, wind power, biomass energy or geothermal energy?

Emissions from homes using heating oil, vehicles, and electricity produced from fossil fuels also pollute the air and contribute to the number of greenhouse gases that are in the atmosphere and depleting the ozone layer.  Carbon dioxide is one of the gases that is released into the air by the burning of fossil fuels to create energy and in the use of motor vehicles.  Neither coal nor fossil fuels are sources of renewable energy.

Replacing those energy sources with solar, biomass, geothermal or wind-powered generators will allow homes and businesses to have an adequate source of energy always at hand.  While converting to these systems can sometimes be expensive, the costs are quickly coming down, and they pay for themselves in just a few short years because they supply energy that is virtually free.  In some cases, the excess energy they create can be bought from the business or the homeowner.

While there are more than these three alternative energy options, these are the easiest to implement on an individual basis.  Other sources of alternative energy, for instance, nuclear power, hydroelectric power, and natural gas require a primary power source for the heat so it can be fed to your home or business.  Solar, wind, biomass and geothermal energy can all have power sources in your home or business to supply your needs.

1. Solar Energy

Solar power is probably the most widely used source of these options.  While it can be expensive to convert your home or business over to solar energy, or to an alternative energy source for that matter, it is probably the most natural source to turn over to.

You can use the sun’s energy to power your home or business and heat water.  It can be used to passively heat or light up your rooms as well just by opening up your shades.

2. Wind Power

You need your wind turbine to power your home or office, but wind energy has been used for centuries to pump water or for commercial purposes, like grinding grain into flour.  While many countries have wind farms to produce energy on a full-scale basis, you can have your wind turbine at home or at your business to provide electricity for your purposes.

The cost of alternative energy systems has dropped sharply in recent years

3. Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Biomass is the material derived from plants that use sunlight to grow which include plant and animal material such as wood from forests, material left over from agricultural and forestry processes, and organic industrial, human and animal wastes.

Biomass comes from a variety of sources which include wood from natural forests and woodlands, agricultural residues, agro-industrial wastes, animal wastes, industrial wastewater, municipal sewage and municipal solid wastes.

4. Geothermal Energy

A geothermal heat pump helps cool or heat your home or office using the earth’s heat to provide the power needed to heat the liquid that is run through the system to either heat your home in the winter or cool it off in the summer.  While many people use it, it doesn’t provide electricity, so you still need an energy source for that.

Could Biomass Be The Answer To South Africa’s Energy Problem?

South Africa is experiencing a mammoth energy crisis with its debt-laden national power utility, Eskom, being unable to meet the electricity needs of the nation. After extensive periods of load shedding in 2018 and again earlier this year, it is becoming increasingly important to find an alternative source of energy. According to Marko Nokkala, senior sales manager at VTT Technical Research Centre of Finland, South Africa is in the perfect position to utilize biomass as an alternative source of energy.

Things to Consider

Should South Africa choose to delve deeper into biomass energy production, there are a few things that need to be considered. At present, a lot of biomass (such as fruit and vegetables) is utilized as food. It will, therefore, be necessary to identify alternative biomass sources that are not typically used as food, so that a food shortage is never created in the process.

biomass-sustainability

One alternative would be to use municipal solid waste from landfills and dumpsites as well as the wood waste from the very large and lucrative forestry industry in the country. It is also essential to keep in mind that an enormous amount of biomass will be needed to replace even a portion of the 90 million tons of coal that Eskom utilizes every year at its various power stations.

Potential Biomass Conversion Routes

There are a number of processing technologies that South Africans can utilize to turn their biomass into a sustainable energy source. Biochemical conversion involving technology such as anaerobic digestion and fermentation makes use of enzymes, microorganisms, and bacteria to breakdown the biomass into a variety of liquid or vaporous fuels.

WTE_Pathways

Fermentation is especially suitable when the biomass waste boasts a high sugar or water content, as is the case with a variety of agricultural wastes. By placing some focus on microbial fermentation process development, a system can effectively be created that will allow for large-scale biofuel production. Other technologies to consider include thermal methods like co-firing, pyrolysis, and gasification.

Future of biomass energy in South Africa

Despite the various obstacles that may slow down the introduction of large-scale biomass energy production in the country, it still promises to be a viable solution to the pressing energy concern. Biomass energy production does not require any of the major infrastructures that Eskom is currently relying on.

Although the initial setup will require a substantial amount of electricity, running a biomass conversion plant will cost significantly less than a coal-powered power plant in the long run. With the unemployment rate hovering around 27.1% in South Africa at present, any jobs created through the implementation of biomass energy conversion will be of great benefit to the nation.

Conclusion

Without speedy intervention, South Africa may very soon be left in the dark. Although there are already a number of wind farms in operation in the country, the addition of biomass conversion facilities will undoubtedly be of great benefit to Africa’s southernmost country.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. A significant portion of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues.

Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4UScents/kWh.

Biogas potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production.

It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.

Everything You Need to Know About Biomass Energy Systems

Biomass is a versatile energy source that can be used for production of heat, power, transport fuels and biomaterials, apart from making a significant contribution to climate change mitigation. Currently, biomass-driven combined heat and power, co-firing, and combustion plants provide reliable, efficient, and clean power and heat.

Feedstock for biomass energy plants can include residues from agriculture, forestry, wood processing, and food processing industries, municipal solid wastes, industrial wastes and biomass produced from degraded and marginal lands.

biomass-energy-systems

The terms biomass energy, bioenergy and biofuels cover any energy products derived from plant or animal or organic material. The increasing interest in biomass energy and biofuels has been the result of the following associated benefits:

  • Potential to reduce GHG emissions.
  • Energy security benefits.
  • Substitution for diminishing global oil supplies.
  • Potential impacts on waste management strategy.
  • Capacity to convert a wide variety of wastes into clean energy.
  • Technological advancement in thermal and biochemical processes for waste-to-energy transformation.

Biomass can play the pivotal role in production of carbon-neutral fuels of high quality as well as providing feedstock for various industries. This is a unique property of biomass compared to other renewable energies and which makes biomass a prime alternative to the use of fossil fuels. Performance of biomass-based systems for heat and power generation has been already proved in many situations on commercial as well as domestic scales.

Biomass energy systems have the potential to address many environmental issues, especially global warming and greenhouse gases emissions, and foster sustainable development among poor communities. Biomass fuel sources are readily available in rural and urban areas of all countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern biomass-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity as shown. Biomass wastes can be transformed into clean and efficient energy by biochemical as well as thermochemical technologies.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

In addition, biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in lignocellulosic biomass. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

Things You Should Know About Biofuels

Biofuels refers to liquid or gaseous fuels for the transport sector that are predominantly produced from biomass. A variety of fuels can be produced from biomass resources including liquid fuels, such as ethanol, methanol, biodiesel, Fischer-Tropsch diesel, and gaseous fuels, such as hydrogen and methane. The biomass feedstock for biofuel production is composed of a wide variety of forestry and agricultural resources, industrial processing residues, and municipal solid and urban wood residues.

Biodiesel

The agricultural resources include grains used for biofuels production, animal manures and residues, and crop residues derived primarily from corn and small grains (e.g., wheat straw). A variety of regionally significant crops, such as cotton, sugarcane, rice, and fruit and nut orchards can also be a source of crop residues.

The forest resources include residues produced during the harvesting of forest products, fuelwood extracted from forestlands, residues generated at primary forest product processing mills, and forest resources that could become available through initiatives to reduce fire hazards and improve forest health.

Municipal and urban wood residues are widely available and include a variety of materials — yard and tree trimmings, land-clearing wood residues, wooden pallets, organic wastes, packaging materials, and construction and demolition debris.

Globally, biofuels are most commonly used to power vehicles, heat homes, and for cooking. Biofuel industries are expanding in Europe, Asia and the Americas. Biofuels are generally considered as offering many priorities, including sustainability, reduction of greenhouse gas emissions, regional development, social structure and agriculture, and security of supply.

First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats using conventional technology. The basic feedstocks for the production of first-generation biofuels come from agriculture and food processing. The most common first-generation biofuels are:

  • Biodiesel: extraction with or without esterification of vegetable oils from seeds of plants like soybean, oil palm, oilseed rape and sunflower or residues including animal fats derived from rendering applied as fuel in diesel engines
  • Bioethanol: fermentation of simple sugars from sugar crops like sugarcane or from starch crops like maize and wheat applied as fuel in petrol engines
  • Bio-oil: thermochemical conversion of biomass. A process still in the development phase
  • Biogas: anaerobic fermentation or organic waste, animal manures, crop residues an energy crops applied as fuel in engines suitable for compressed natural gas.

First-generation biofuels can be used in low-percentage blends with conventional fuels in most vehicles and can be distributed through existing infrastructure. Some diesel vehicles can run on 100 % biodiesel, and ‘flex-fuel’ vehicles are already available in many countries around the world.

Bioethanol-production-process

Second-generation biofuels are derived from non-food feedstock including lignocellulosic biomass like crop residues or wood. Two transformative technologies are under development.

  • Biochemical: modification of the bioethanol fermentation process including a pre-treatment procedure
  • Thermochemical: modification of the bio-oil process to produce syngas and methanol, Fisher-Tropsch diesel or dimethyl ether (DME).

Advanced conversion technologies are needed for a second-generation biofuels. The second generation technologies use a wider range of biomass resources – agriculture, forestry and waste materials. One of the most promising second-generation biofuel technologies – ligno-cellulosic processing (e. g. from forest materials) – is already well advanced. Pilot plants have been established in the EU, in Denmark, Spain and Sweden.

Third-generation biofuels may include production of bio-based hydrogen for use in fuel cell vehicles, e.g. Algae fuel, also called oilgae. Algae are low-input, high-yield feedstock to produce biofuels.

Cofiring of Biomass

Cofiring of biomass involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Cofiring of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels.

Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Cofiring of biomass has the major advantage of avoiding the construction of new, dedicated, biomass power plant. An existing power station is modified to accept the biomass resource and utilize it to produce a minor proportion of its electricity.

Cofiring of biomass may be implemented using different types and percentages of biomass in a range of combustion and gasification technologies. Most forms of biomass are suitable for cofiring. These include dedicated energy crops, urban wood waste and agricultural residues such as rice straw and rice husk.

The fuel preparation requirements, issues associated with combustion such as corrosion and fouling of boiler tubes, and characteristics of residual ash dictate the cofiring configuration appropriate for a particular plant and biomass resource. These configurations may be categorized into direct, indirect and parallel firing.

1. Direct Cofiring

This is the most common form of biomass cofiring involving direct cofiring of the biomass fuel and the primary fuel (generally coal) in the combustion chamber of the boiler. The cheapest and simplest form of direct cofiring for a pulverized coal power plant is through mixing prepared biomass and coal in the coal yard or on the coal conveyor belt, before the combined fuel is fed into the power station boiler.

2. Indirect Cofiring

If the biomass fuel has different attributes to the normal fossil fuel, then it may be prudent to partially segregate the biomass fuel rather than risk damage to the complete station.

For indirect cofiring, the ash of the biomass resource and the main fuel are kept separate from one another as the thermal conversion is partially carried out in separate processing plants. As indirect co-firing requires a separate biomass energy conversion plant, it has a relatively high investment cost compared with direct cofiring.

Parallel Firing

For parallel firing, totally separate combustion plants and boilers are used for the biomass resource and the coal-fired power plants. The steam produced is fed into the main power plant where it is upgraded to higher temperatures and pressures, to give resulting higher energy conversion efficiencies. This allows the use of problematic fuels with high alkali and chlorine contents (such as wheat straw) and the separation of the ashes.

Utilization of Date Palm Biomass

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date palm residues an excellent biomass resource in date-palm producing nations.

Date palm biomass is an excellent resource for charcoal production in Middle East

A wide range of physico-chemical, thermal and biochemical technologies exists for sustainable utilization of date palm biomass. Apart from charcoal production and energy conversion (using technologies like combustion and gasification), below are few ways for utilization of date palm wastes:

Conversion into fuel pellets or briquettes

Biomass pellets are a popular type of alternative fuel (analogous to coal), generally made from wood wastes and agricultural biomass. The biomass pelletization process consists of multiple steps including pre-treatment, pelletization and post-treatment of biomass wastes. Biomass pellets can be used as a coal replacement in power plant, industries and other application.

Conversion into energy-rich products

Biomass pyrolysis is the thermal decomposition of date palm biomass occurring in the absence of oxygen. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Bio-oil can be upgraded to either a special engine fuel or through gasification processes to a syngas which can then be processed into biofuels. Bio-oil is particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store.

Conversion into biofertilizer

Composting is the most popular method for biological decomposition of organic wastes. Date palm waste has around 80% organic content which makes it very well-suited for the composting process. Commercial-scale composting of date palm wastes can be carried out by using the traditional windrow method or a more advanced method like vermicomposting.

Role of Biogas in Rural Development

Anaerobic digestion has proven to be a beneficial technology in various spheres for rural development. Biogas produced is a green replacement of unprocessed fuels (like fuel wood, dung cakes, crop residues). It is a cost effective replacement for dung cakes and conventional domestic fuels like LPG or kerosene. Biogas technology has the potential to meet the energy requirements in rural areas, and also counter the effects of reckless burning of biomass resources.

Biogas has the potential to rejuvenate India’s agricultural sector

An additional benefit is that the quantity of digested slurry is the same as that of the feedstock fed in a biogas plant. This slurry can be dried and sold as high quality compost. The nitrogen-rich compost indirectly reduces the costs associated with use of fertilizers. It enriches the soil, improves its porosity, buffering capacity and ion exchange capacity and prevents nutrient depletion thus improving the crop quality. This means increased income for the farmer.

Further, being relatively-clean cooking fuel, biogas reduces the health risks associated with conventional chulhas. Thinking regionally, decreased residue burning brings down the seasonal high pollutant levels in air, ensuring a better environmental quality. Anaerobic digestion thus proves to be more efficient in utilization of crop residues. The social benefits associated with biomethanation, along with its capacity to generate income for the rural households make it a viable alternative for conventional methods.

The Way Forward

The federal and stage governments needs to be more proactive in providing easy access to these technologies to the poor farmers. The policies and support of the government are decisive in persuading the farmers to adopt such technologies and to make a transition from wasteful traditional approaches to efficient resource utilization. The farmers are largely unaware of the possible ways in which farm and cattle wastes could be efficiently utilised. The government agencies and NGOs are major stakeholders in creating awareness in this respect.

Moreover, many farmers find it difficult to bear the construction and operational costs of setting up the digester. This again requires the government to introduce incentives (like soft loans) and subsidies to enhance the approachability of the technology and thus increase its market diffusion.

Everything You Should Know About Biomass Storage Methods

Sufficient biomass storage is necessary to accommodate seasonality of production and ensure regular supply to the biomass utilization plant. The type of storage will depend on the properties of the biomass, especially moisture content.

For high moisture biomass intended to be used wet, such as in fermentation and anaerobic digestion systems, wet storage systems can be used, with storage times closely controlled to avoid excessive degradation of feedstock. Storage systems typically used with dry agricultural residues should be protected against spontaneous combustion and excess decomposition, and the maximum storage moisture depends on the type of storage employed.

Consistent and reliable supply of biomass is crucial for any biomass project

Moisture limits must be observed to avoid spontaneous combustion and the emission of regulated compounds. Cost of storage is important to the overall feasibility of the biomass enterprise. In some cases, the storage can be on the same site as the source of the feedstock. In others, necessary volumes can only be achieved by combining the feedstock from a number of relatively close sources. Typically, delivery within about 50 miles is economic, but longer range transport is sometimes acceptable, especially when disposal fees can be reduced.

Storage of biomass fuels is expensive and increases with capacity.

Agricultural residues such as wheat straw, rice husk, rice straw and corn stover are usually spread or windrowed behind the grain harvesters for later baling. Typically these residues are left in the field to air dry to moisture levels below about 14% preferred for bales in stacks or large piles of loose material.

After collection, biomass may be stored in the open or protected from the elements by tarps or various structures. Biomass pelletization may be employed to increase bulk density and reduce storage and transport volume and cost.

Biomass Storage Options

  • Feedstock is hauled directly to the plant with no storage at the production site.
  • Feedstock is stored at the production site and then transported to the plant as needed.
  • Feedstock is stored at a collective storage facility and then transported to the plant from the intermediate storage location.

Biomass Storage Systems

The type of biomass storage system used at the production site, intermediate site, or plant can greatly affect the cost and the quality of the fuel. The most expensive storage systems, no doubt, are the most efficient in terms of maintaining the high fuel quality. Typical storage systems, ranked from highest cost to lowest cost, include:

  • Enclosed structure with crushed rock floor
  • Open structure with crushed rock floor
  • Reusable tarp on crushed rock
  • Outside unprotected on crushed rock
  • Outside unprotected on ground
  • Subterranean

The storage of biomass is often necessary due to its seasonal production versus the need to produce energy all year round. Therefore to provide a constant and regular supply of fuel for the plant requires either storage or multi-feedstock to be used, both of which tend to add cost to the system.

Reducing the cost of handling and stable storage of biomass feedstock are both critical to developing a sustainable infrastructure capable of supplying large quantities of biomass to biomass processing plants. Storage and handling of biomass fuels is expensive and increases with capacity. The most suitable type of fuel store for solid biomass fuel depends on space available and the physical characteristics of the biomass fuel.

How Can Save Money on Commercial Outdoor Lighting?

Do you want to install outdoor lighting on your grounds but not want to overspend on it? Want a nice brightly lit yard in front of your establishment at minimal costs? Well here’s an article to help you pick the perfect outdoor lighting for your establishment.

When it comes to commercial outdoor lighting there are many companies that may sell fixtures that look promising, however, not every fixture can meet your budget. Some of them may not even hold up to the standard which the company claims, so here are a few points to pick the right outdoor lighting:

outdoor-lighting

1. The right type

The question of what kind of lighting works best in your scenario is solved best with an explanation of where and how each type is used.

  • Wall lights: These are most commonly used wherever there is a vertical surface. Commonly used on buildings and walls. Commonly used for porches, patios, and entryways.
  • Hanging lights: A very pretty light, hanging lights work excellently under any roofed area. They are more resistant to damp climates provided they are not directly exposed to the rain. Commonly used for covered patios
  • Post or Pier mounted lights: These are fixtures mounted on posts and are especially useful as they can be placed directly in the open. Their wet rating ensures that they have good resistance to the weather. Pier mounted lights work similarly to posts lights except they must be mounted on a column or wall. Commonly used for outdoor walkways and driveways
  • Landscape Lights: Landscape lights are generally low voltage lighting that is separate from the wall and ceiling lights listed. By efficient use of path lights, spotlights, and floodlights, you can give your property a wonderful look even in the darkest of nights. Commonly used for gardens and landscapes
  • Security Fixtures: These are motion lights that glow when triggered by movement.

2. The right size

When it comes to size, they depend on where you plan to install your outdoor lights. Each lighting setup looks better in different sizes. These will be mentioned below:

  • Porch Wall lights: These look best when they are about one-third the height of the door when only a single fixture is used. However, when two fixtures are used, you could go with lights around a fourth of the height of your door.
  • Ceiling lights: These should be of a suitable size and dimensions depending on the size, also remember to make sure that your room has enough height to keep fit the room.
  • Post and Pier Mounted lights: Fixtures may be of different sizes which mostly depend on the number of bulbs used. If you’re using a pole mounted design, 7 foot tall is considered the right size.

3. Outdoor conditions and needs

The kind of lighting you use will significantly vary depending on what kind of need you have for it. This can be a significant factor in your choice.

  • Water rating: Depending on where you want to use your lamp, it is categorized into wet and damp. Wet rated lamps are used in settings where the lamp is directly exposed to weather. Damp rated lamps are used in places not directly exposed to the elements.
  • Time of usage: This covers whether you plan to keep your lights constantly running or use lights such as motion sensor lights or automatic lights.

Once you have this under wraps, you can pat yourself on the back as you’ve done more than half the job, but now comes the tough part, finding a fixture that is both useful for your particular need as well as affordable.

solar-powered-lights

So how do you find this perfect outdoor lamp?

Well, here are the points which you need to search for in an outdoor lighting fixture to ensure that it fits in well with your budget:

a. Using LED lighting

LEDs are some of the least power consuming bulbs and can thus save you a fortune in electricity prices.

b. Timed lights

By using motion triggered lighting you not only increase the safety of your establishment but also reduce the total electricity consumption of your lighting.

c. Strong, high quality fixtures

By investing in fixtures resistant to wear and tear, you end up with longer lasting lamps, this results in less maintenance costs and thus lower expenses.

d. Solar Power

By using solar powered lighting along with the aforementioned techniques you will be able to sustain a continuous output of light for the entirety of the night.