Salt-Free Water Softeners are Critical for Wastewater Management

If you use hard water in your home, you might’ve noticed that your soap doesn’t lather properly and that there are scales and deposits in your pipes and appliances. This happens because hard water contains excess calcium and magnesium ions. These hardness-causing ions are responsible for the poor soap lathering, your dry skin, and scales forming in your pipes.

Water softeners remedy this by softening water and making it easier to use. There are two types of water softeners; salt-based water softeners and salt-free water softeners. How both types work and why salt-free softeners are critical for wastewater management is the topic of this article.

Why Salt-Free Water Softeners Are Critical for Wastewater Management

How Salt-Based Water Softeners Work

Salt-based water softeners have resin tanks that contain thousands of tiny, negatively charged resin beads.

Hard water contains positively charged magnesium and calcium ions. When it passes through the water softener unit, the resin beads attract the magnesium and calcium so they stick to them. Calcium and magnesium ions are then exchanged for sodium ions. The resin beads eventually become saturated with calcium and magnesium, and they have to be rinsed off with saltwater in a process called regeneration.

Regeneration usually happens in the middle of the night. The process is simple – water softeners have a salt storage tank where brine forms. During regeneration, the sodium ions in the saltwater solution replace the magnesium and calcium ions until the resin bed is fully covered with new sodium. Afterward, the saltwater solution and hardness minerals are washed and flushed down the drain, and the water softener continues its normal operation.

Issues

If you use a salt-based water softener, you have to add a bag of sodium chloride to the salt storage tank every once in a while.

Also, salt-based water softeners consume a lot of water during regeneration. The saltwater rinse-off procedure can waste up to 100 gallons per cycle, depending on the individual water hardness.

Besides consuming some electricity and wasting gallons of water, salt-based water softeners also pollute the environment. The extra sodium may get into the soil and cause stunted growth in plants or finds its way into freshwater. The excess chloride in softened water can harm freshwater plants and organisms by affecting their reproductive patterns and destroying their entire ecosystem.

Overall, salt-based water softeners are an issue for the environment and for plants, which is why several farming cities in southern California have banned or severely restricted their usage.

How Salt-Free Water Softeners Work

Salt-free water softeners are also called water conditioners or descalers. They help stop the effects of hard water, although they operate differently from salt-based water softeners. Salt-free water softeners do not undergo the ion exchange or regeneration process.

In place of ion exchange, salt-free water softeners use various technologies, Template Assisted Crystallization (TAC) being one of the, where hardness minerals are transformed into micro-crystals. In this system, the hard water flows through a “nucleation site” full of TAC media. The nucleation site is where the micro-crystals are formed. As hard water comes in contact with the TAC media, magnesium and calcium ions are attracted and get stuck. More calcium and magnesium ions build up in the nucleation sites, forming small micro-crystals. When the crystals reach a certain size, they break off the TAC media and are released back into the water. The micro-crystals will remain crystalline as they flow through your home plumbing. These crystals will not cause scales to form in your pipes or give you any of the typical hard water problems.

In summary, salt-free water softeners do not remove hardness minerals; they only neutralize them and keep them in harmless forms.

Using a salt-free water softener is an excellent way to eliminate water hardness without all the wastewater and environmental hazards caused by salt-based water softeners. Salt-free softeners also increase your drinking water’s nutritional value because it doesn’t lack minerals beneficial to your body.

effluent-treatment-plant

Other Reasons to Pick Salt-Free Water Softeners

Here are some more reasons salt-free water softeners are an excellent choice and to be preferred over salt-based systems.

Low Energy Consumption

Salt-free water softeners do not require electricity to work. Using a salt-free water softener means you’ll save on your electricity bill, compared to if you were using a salt-based water softener.

Easy to Maintain

Salt-free water softeners are very easy to maintain and install. The systems use either a single tank or cartridge. They don’t need to go through the regeneration process or saltwater rinse off, which means they don’t need drain connections. If you’re thinking about getting a salt-free water softener, you can check out Nuvo water softeners. There are different versions and sizes you could choose from.

Conclusion

Salt-free water softeners are critical to wastewater management because they do not need to go through regeneration, so they don’t produce wastewater. With salt-free water softeners, the processed water goes directly into your house or your water heater. If you live in an area where salt-based water softeners are banned, you can always try using a salt-free water softener. You should also consider getting a salt-free water softener if you run a farm or own a small garden.

Torrified PKS: An Attractive Biomass Commodity in West Africa

Even though palm kernel shell has many similarities with wood pellets, it is not easy to reduce its size which makes it difficult for its optimum cofiring with coal in power plants and industries. Few years ago, Indonesia had exported PKS to Poland for cofiring purposes but because PKS was difficult to make powder (low grindability) it made cofiring performance poor, so the use of PKS for cofiring is currently discontinued.

palm-kernel-shells

 

To improve the quality of PKS, especially for the use of cofiring, PKS must be processed with torrefaction (mild pyrolysis). With the torrefaction process, it becomes easier to make powder from PKS, so that the desired particle size for cofiring is easier to obtain. Another advantage of the torrefaction process is that the caloric value of PKS will also increase by about 20%, Torrified biomass is hygroscopic which means ease in indoor as well as outdoor storage.

During the torrefaction process, PKS is heated at a temperature of around 230 to 300 °C in the absence of oxygen. With continuous pyrolysis technology, torrified PKS production can be carried out at large capacities. The need for biomass fuel for electricity generation is also large, usually requiring 10 thousand tons for each shipment. PKS torrified producers must be able to reach this capacity. The production of 10 thousand tons of PKS that are burned can be done per month or several months, for example, to reach 10 thousand tons it takes 2 months because the factory capacity is 5000 tons per month.

PKS-torrefaction

In general, the advantages of the PKS torrefaction process are as follows:

  • It increases the O/C ratio of the biomass, which improves its thermal process
  • It reduces power requirements for size reduction, and improves handling.
  • It offers cleaner-burning fuel with little acid in the smoke.
  • Torrefied PKS absorbs less moisture when stored.
  • One can produce superior-quality PKS pellets with higher volumetric energy density.

Pelletizing of torrefied PKS can be an option to increase the energy density in volume basis. The pelletizing process resolves some typical problems of biomass fuels: transport and storing costs are minimized, handling is improved, and the volumetric calorific value is increased. Pelletization may not increase the energy density on a mass basis, but it can increase the energy content of the fuel on a volume basis.

Africa, especially West Africa, which has many palm oil plantations and also the location where the palm oil trees originate, can supply torrified PKS to Europe to meet its rapidly-increasing biomass fuel demand.

In Africa, palm kernel shell is generally produced from PKO mills. CPO production is generally carried out on a small scale and only processes the fiber portion of the palm oil fruit. This palm oil mesocarp fibre is processed to produce CPO, while the nut that consist kernels and shells are processed elsewhere to produce the main product of PKO (palm kernel oil). PKO mills are usually quite large by collecting nuts from these small scale CPO producers. PKS is produced from this PKO mills.

nut-cracker-machine-palm-mill

The nut cracker machine separates kernel and shell

The distance between Africa and Europe is also closer than Europe to Malaysia and Indonesia. Currently, even though Europe has produced wood pellets for their renewable energy program to mitigate climate change and the environment, the numbers are still insufficient and they are importing wood pellets from the United States and Canada in large quantities. European wood pellet imports are estimated to reach more than 1.5 million tons per year. Torrified PKS from West Africa can help in meeting the biomass fuel demands for power plants across Europe.

For more information about PKS trading opportunities and our technical consulting services, please email on salman@bioenergyconsult.com or eko.sb.setyawan@gmail.com

Energy Potential of Bagasse

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. Sugarcane produces mainly two types of biomass – sugarcane trash and bagasse. Sugarcane trash is the field residue remaining after harvesting the sugarcane stalk while bagasse is the fibrous residue left over after milling of the sugarcane, with 45-50% moisture content and consisting of a mixture of hard fibre, with soft and smooth parenchymatous (pith) tissue with high hygroscopic property.

Bagasse contains mainly cellulose, hemicellulose, pentosans, lignin, sugars, wax, and minerals. The quantity obtained varies from 22 to 36% on sugarcane and is mainly due to the fibre portion in the sugarcane and the cleanliness of sugarcane supplied, which, in turn, depends on harvesting practices.

The composition of bagasse depends on the variety and maturity of sugarcane as well as harvesting methods applied and efficiency of the sugar processing. Bagasse is usually combusted in furnaces to produce steam for power generation. Bagasse is also emerging as an attractive feedstock for bioethanol production.

It is also utilized as the raw material for production of paper and as feedstock for cattle. The value of Bagasse as a fuel depends largely on its calorific value, which in turn is affected by its composition, especially with respect to its water content and to the calorific value of the sugarcane crop, which depends mainly on its sucrose content.

Moisture contents is the main determinant of calorific value i.e. the lower the moisture content, the higher the calorific value. A good milling process will result in low moisture of 45% whereas 52% moisture would indicate poor milling efficiency. Most mills produce Bagasse of 48% moisture content, and most boilers are designed to burn Bagasse at around 50% moisture.

Bagasse also contains approximately equal proportion of fibre (cellulose), the components of which are carbon, hydrogen and oxygen, some sucrose (1-2 %), and ash originating from extraneous matter. Extraneous matter content is higher with mechanical harvesting and subsequently results in lower calorific value.

For every 100 tons of Sugarcane crushed, a Sugar factory produces nearly 30 tons of wet Bagasse. Bagasse is often used as a primary fuel source for Sugar mills; when burned in quantity, it produces sufficient heat and electrical energy to supply all the needs of a typical Sugar mill, with energy to spare. The resulting CO2 emissions are equal to the amount of CO2 that the Sugarcane plant absorbed from the atmosphere during its growing phase, which makes the process of cogeneration greenhouse gas-neutral.

35MW Bagasse and Coal CHP Plant in Mauritius

Cogeneration of bagasse is one of the most attractive and successful biomass energy projects that have already been demonstrated in many sugarcane producing countries such as Mauritius, Reunion Island, India and Brazil. Combined heat and power from sugarcane in the form of power generation offers renewable energy options that promote sustainable development, take advantage of domestic resources, increase profitability and competitiveness in the industry, and cost-effectively address climate mitigation and other environmental goals.

Torrefaction of Biomass: An Overview

To improve the quality of biomass, especially for cofiring purposes, biomass waste can be processed with torrefaction (also known as mild pyrolysis). With the torrefaction process, it becomes easier to make powder (high grindability) so that the desired particle size for cofiring of biomass is easier to obtain. Another advantage of the torrefaction process is that the caloric value of biomass increases by about 20%. Torrified biomass is essentially hydropobic which means ease in storage including outdoor storage. This condition also makes it easier to handle and use, in addition to reduction in transportation costs.

torrefaction-of-biomass

What is Torrefaction?

Torrefaction, which is currently being considered for effective biomass utilization, is also a form of pyrolysis. In this process (named for the French word for roasting), the biomass is heated to 230 to 300 °C without contact with oxygen. For comparison, pyrolysis of biomass is typically carried out in a relatively low temperature range of 300 to 650 °C compared to 800 to 1000 °C for gasification. Torrefaction is a relatively new process that heats the biomass in the absence of air to improve its usefulness as a fuel.

Torrefaction, a process different from carbonization, is a mild pyrolysis process carried out in a temperature range of 230 to 300 °C in the absence of oxygen. During this process the biomass dries and partially devolatilizes, decreasing its mass while largely preserving its energy content. The torrefaction process removes H2O and CO2 from the biomass. As a result, both the O/C and the H/C ratios of the biomass decrease.

steps-in-biomass-torrefaction

Benefits of Biomass Torrefaction

Torrefaction of biomass improves its energy density, reduces its oxygen-to-carbon (O/C) ratio, and reduces its hygroscopic nature. Torrefaction also increases the relative carbon content of the biomass. The properties of a torrefied biomass depends on torrefaction temperature, time, and on the type of biomass feed.

Torrefaction also modifies the structure of the biomass, making it more friable or brittle. This is caused by the depolymerization of hemicellulose. As a result, the process of size reduction becomes easier, lowering its energy consumption and the cost of handling. This makes it easier to cofire biomass in a pulverized coal-fired boiler or gasify it in an entrained-flow reactor.

Another special feature of torrefaction is that it reduces the hygroscopic property of biomass; therefore, when torrefied biomass is stored, it absorbs less moisture than that absorbed by fresh biomass. For example, while raw bagasse absorbed 186% moisture when immersed in water for two hours, it absorbed only 7.6% moisture under this condition after torrefying the bagasse for 60 minutes at 250 °C (Pimchua et al., 2009). The reduced hygroscopic (or enhanced hydrophobic) nature of torrefied biomass mitigates one of the major shortcomings for energy use of biomass.

In biomass, hemicellulose is like the cement in reinforced concrete, and cellulose is like the steel rods. The strands of microfibrils (cellulose) are supported by the hemicellulose. Decomposition of hemicellulose during torrefaction is like the melting away of the cement from the reinforced concrete. Thus, the size reduction of biomass consumes less energy after torrefaction. During torrefaction the weight loss of biomass comes primarily from the decomposition of its hemicellulose constituents. Hemicellulose decomposes mostly within the temperature range 150 to 280 °C, which is the temperature window of torrefaction.

torrified-biomass

As we can see from figure above, the hemicellulose component undergoes the greatest amount of degradation within the 200 to 300 °C temperature window. Thus, hemicellulose decomposition is the primary mechanism of torrefaction. At lower temperatures (< 160 °C), as biomass dries it releases H2O and CO2. Water and carbon dioxide, which make no contribution to the energy in the product gas, constitute a dominant portion of the weight loss during torrefaction.

Above 180 °C, the reaction becomes exothermic, releasing gas with small heating values. The initial stage (< 250 °C) involves hemicellulose depolymerization, leading to an altered and rearranged polysugar structures. At higher temperatures (250–300 °C) these form chars, CO, CO2, and H2O. The hygroscopic property of biomass is partly lost in torrefaction because of the destruction of OH groups through dehydration, which prevents the formation of hydrogen bonds.

Managing Occupational Risks in the Renewable Energy Sector

According to recent estimates, the renewable energy sector employs 12 million people worldwide. Keeping workers safe is vital in any industry but as the use of clean energies rapidly expands around the globe, more workers are putting themselves at risk climbing wind turbines, maintaining remote solar panels and dealing with flammable biofuels. By identifying and managing the risks involved, a range of safety interventions can be used to reduce the risk of injury to workers.

drone at a wind-farm

Reducing The Risks of Wind Turbine Maintenance

As more wind turbines are constructed, the number of accidents associated with their maintenance and repair has also risen. When a worker is injured on site, a personal injury lawyer will investigate the circumstances and potential causes of the accident. As well as helping to secure appropriate compensation for injured workers, the information gathered can be used to prevent similar accidents happening again.

To further limit the risks to turbine workers, drones are regularly used to carry out hazardous and labor-intensive jobs including the inspection of turbine blades. Drones can now be equipped with extra tools such as AI which enables them to store, analyze and report the data they collect to wind farm managers.

Mitigating the Dangers of Solar Panel Installation

Due to their placement on high roofs and in remote locations, solar energy systems also pose a risk to workers when they are installing, maintaining and repairing solar panels. Taking into account the amount of power generated, working with solar energy is three times more hazardous than wind power and results in up to 150 deaths around the world each year. Risks include exposure to high temperatures, electric shocks and falls, all of which are increased if work has to be carried out in adverse weather conditions.

solar panels pigeon issue

To mitigate these risks, safety interventions to mitigate these risks can include the increased use of specially designed training modules, the automation of certain tasks and changes in shift patterns to avoid fatigue amongst workers.

Reducing Exposure to Hazards in BioFuel Production

While biofuels produced from renewable resources such as plant biomass and vegetable oils are safe to use, they can be dangerous to manufacture. They are highly flammable and can produce potentially hazardous chemical reactions.  These can result in burns and other  injuries caused by exposure to fire, chemicals or explosions. Manufacturers of biofuels should follow the standard safety guidelines for working with chemicals which include storing products correctly, providing adequate personal protection equipment to workers and training them to handle hazardous substances safely.

hazards of biofuel production

As many biofuel businesses are small, in the US they can access consultation services from the Occupational Health and Safety Administration which will give them advice on programs to protect workers and what to do in the event of an emergency.

Bottom Line

As more workers are employed by the renewable industry, the numbers of occupational accidents and injuries are likely to rise. By identifying and managing risks as they become known, safety interventions can be implemented promptly.

How Eco-friendly Batteries Can Benefit From Biomass Energy?

Organisations and more importantly, battery manufacturers are recognising the need to overcome the problem of global warming. The objective is to develop ways of producing carbon-neutral sources of energy. One of the areas currently being explored is the use of biomass resources to create sustainable, eco-friendly batteries which are suitable for use across a wide range of business sectors. With different forms of biomass energy available, the challenge is finding products that provide high performance along with being commercially viable.

Biomass-Resources

A quick glance at popular biomass resources

What is Biomass Energy?

Biomass is something that we are all familiar with. It is derived from plants and animals and is now becoming an increasingly viable form of renewable energy. Initially, the energy comes from the sun, and in plants, it is converted via photosynthesis.

Regardless of its origin, the biomass will either be converted into biogas, biofuels or burnt directly to create heat. Of course, different sources of biomass produce varying amounts of energy, affecting their efficiency. As a result, high precision battery testing equipment is required to ascertain their viability.

Forms of Biomass Used for Energy

1. Wood and Products

Renewable sources of timber and the by-products of wood such as wood chip are burned in the home to create heat and in industry, burned to generate electricity. Typically, softwood such as pine is used as it is quicker to replenish than hardwood such as oak.

2. Agricultural Crops and Waste

With large amounts of waste produced from the farming sector, it is natural that this is an ideal source of energy. The materials are either converted to liquid biofuels or burned directly to generate heat or electricity.

3. Food and Household Waste

The amount of waste households produced has been increasing annually, and up until recently, the majority was disposed of it landfill sites. Nowadays, this garbage is thermochemically processed in waste-to-energy plants to produce electricity or converted into biogas at existing landfill sites.

4. Animal Manure and Human Waste

We frequently hear about the link between animal waste and global warming. Inevitably, the same is also true of human waste. Both can be converted into biogas and burned as a fuel.

How is Biomass Converted to Energy?

Biomass can be converted to energy using different methods depending on the source. Solid forms of biomass such as garbage and wood are generally burned to created heat while other types will be initially converted into either biogas or biofuels such as ethanol or other biodiesel-related fuels used to power vehicles or generators.

Human sewage and animal manure are placed in vessels known as digesters to create biogas. Liquid fuels such as biodiesel are derived from oils and animal fats. Any form of biomass must be burned at some point to generate energy.

Biomass and Batteries

The most common form of battery used in domestic appliances and mobile devices is lithium-ion batteries. However, the performance and capacity are still below what is demanded by manufacturers and consumers. As a result, manufacturers are investigating alternatives such as biomass. Naturally, high precision testing equipment such as that produced by Arbin is required to assess their potential and commercial viability accurately.

The potential of elemental sulphur has been explored although due to its poor electrical conductivity, has failed to make it onto the mass market. A composite of sulphur and porous carbon appears to be a far more viable option although this is a complicated and time-consuming process.

Carbon is one of the best conductors available, albeit at a relatively high cost. Therefore, the objective is to source carbon from biowaste, such as popular catkin that can be combined with sulphur. Popular catkin is a highly porous carbon and ideal for Li/S batteries.

High Precision Battery Testing

High precision battery testing is required to establish the commercial viability of popular catkin and other biowaste products. Marginal improvement could have a significant impact and give cell manufacturers a competitive advantage over their rivals.

Naturally, extensive research needs to be conducted to assess a variety of bioproducts that are presenting themselves as potentially viable alternative products. Increasing battery capacity and battery life is something that is required in several sectors such as with EVs, mobile devices and home appliances. Major manufacturers will be eagerly awaiting the findings of testing that is currently ongoing.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector. It is well-known that the supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

biomass-exchange

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of biomass logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the biomass value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

Biomass Exchange Model

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

Why Fossil Fuels are Preferred Over Biomass by Industries?

Biomass can play a key role in economic development and emerge as a significant alternative to fossil fuels. In this article, we will discuss why fossil fuels are preferred over biomass fuel by the industrial sector.

biomass collection

 

Pyrolysis and the Promise of Biochar

The end application of biomass mostly depends on the feedstock type and the char conversion process. When processed under controlled conditions, biomass converts to char (or biochar). With the presence of high carbon content in biochar, they are highly dependent on the processing conditions of biomass (or fuel), e.g. wood char produced from pyrolysis at low or no air flow can expect to have high carbon and hydrogen with minimal minerals/inorganic presence.

Gas produced under same condition will have a high presence of heavy aromatic carbon and nitrogen gas. However, under the same conditions, if physical structure of biomass varies, the output results can fluctuate to a significant level.

The temperature, pressure, elemental composition, particle size, physical structure (e.g. density, moisture presence, molecular structure, pore size), heating rate, the maximum temperature of process, retention time during the conversion process can change the composition of biochar produced.

Biomass when converted to char has multiple applications with minimal effect on the environment. It has applications in toxic metal remediation and can remove harmful contaminants from soil which can damage plant growth and soil nutrients.

uses of char

Char has potential to stabilise cadmium, lead, chromium, zinc, but they are found to be most effective in stabilisation of lead and copper.  Researchers have found the potential application of biochar in a range of applications, viz. carbon sequestration, solid waste management, green electricity production, wastewater treatment, iron making process and building construction.

Why Fossil Fuel is Preferred Over Biomass Fuel?

Despite the significant contrast of applications and proven to have minimal effect on the environment, why is biomass not preferred or unsuccessful to attract the commercial sector? The answer relies on biomass processing technologies that still need to develop economically feasible. Besides fuel cost, the initial setup of biomass-based technologies need high capital cost, operation and maintenance cost, which eventually lead to a significantly higher cost of end application when compared with fossil fuels.

In most FMCG, sugarcane and fruit-based industries, biomass is produced as their waste, and legal compliances expect them to dispose of their waste sustainably. Industries spend substantial money to dispose of their waste in agreement with legal and environmental regulations. Researchers termed it a negative cost, which means that industries intend to pay to take this biomass off from their facility.

bagasse cogeneration

This could bring a possible opportunity to biomass processing plants to get paid or acquire fuel at no or negative cost. But most processing facilities are far from fuel (or biomass waste) sources, and cost of transportation are significant enough to compare the economics of fuel acquirement with fossil fuel costs. Moreover, processing technologies need cleaning and maintenance which further add up to the cost.

The overall economics of biomass-based electricity and any other end-use process cost higher than fossil fuels, making it very difficult to attract industries to invest in biomass over fossil fuels. Research suggests that biomass processing facilities that are available within the periphery of 200km from the fuel source will cost biomass (or fuel) at zero to negative value, improving the overall economics to a significantly comparable level to fossil fuels.

The Way Forward

To address this issue, small-scale plants must be installed in nearby areas and critical focus is vital on economically small scale biomass processing plants. Considerable research work is going on with small scale gasification plants capable of producing electricity at a small scale, but that is still under pilot project and no large-scale implementation has been found so far. Pyrolysis plants are also under the research zone, producing biochar, but this method is still under research development.

To reach targets of global temperature and carbon emissions into the atmosphere set by the UN at Climate Summit 2015, this area of research is a potentially critical area that can play a significant role in overtaking biomass over fossil fuels.

Clean Cookstoves: An Urgent Necessity

Globally, three billion people in the developing nations are solely dependent on burning firewood, crop residues, animal manure etc for preparing their daily meals on open fires, mud or clay stoves or simply on three rocks strategically placed to balance a cooking vessel.  The temperature of these fires are lower and produce inefficient burning that results in black carbon and other short-lived but high impact pollutants.

These short-lived pollutants not only affect the persons in the immediate area but also contribute much harmful gases more potent than carbon dioxide and methane. For the people in the immediate area, their health is severely hampered as this indoor or domestic air pollution results in significantly higher risks of pneumonia and chronic bronchitis.

To remedy the indoor air pollution (IAP) and health-related issues as well as the environmental pollution in the developing world, clean cookstoves are the way to advance. But to empower rural users to embrace the advanced cookstoves, and achieve sustainable success requires a level of socio-cultural and economic awareness that is related directly to this marginalized group. The solution needs to be appropriate for the style of cooking of the group which means one stove model will not suit or meet the needs and requirements of all developing nation people groups.

Clean cookstoves can significantly reduce health problems caused by indoor air pollution in rural areas

Consideration for such issues as stove top and front loading stove cooking, single pot and double pot cooking, size of the typical cooking vessel and the style of cooking are all pieces of information needed to complete the picture.

Historically, natural draft systems were devised to aid the combustion or burning of the fuels, however, forced draft stoves tend to burn cleaner with better health and environmental benefits. Regardless of cookstove design, the components need to be either made locally or at least available locally so that the long term life of the stove is maintainable and so sustainable.

Now, if the cookstove unit can by powered by  simple solar or biomass system, this will change the whole nature of the life style and domestic duties of the chief cook and the young siblings who are typically charged with collecting the natural firewood to meet the cooking requirement.

Therefore the cookstoves need to be designed and adapted for the people group and their traditional cooking habits, and not in the reverse order. To assess the overall performance of the green cooking stoves requires simple but effective measures of the air quality.

The two elements that need to be measured are the black carbon emissions and the temperature of the cooking device.  This can be achieved by miniature aerosol samplers and temperature sensors. The data collected needs to be transmitted in real-time via mobile phones for verification of performance rates.  This is to provide verifiable data in a cost effective monitoring process.

Biomass Energy Potential in Philippines

The Philippines has abundant supplies of biomass energy resources in the form of agricultural crop residues, forest residues, animal wastes, agro-industrial wastes, municipal solid wastes and aquatic biomass. The most common agricultural wastes are rice hull, bagasse, cane trash, coconut shell/husk and coconut coir. The use of crop residues as biofuels is increasing in the Philippines as fossil fuel prices continue to rise. Rice hull is perhaps the most important, underdeveloped biomass resource that could be fully utilized in a sustainable manner.

At present, biomass technologies utilized in the country vary from the use of bagasse as boiler fuel for cogeneration, rice/coconut husks dryers for crop drying, biomass gasifiers for mechanical and electrical applications, fuelwood and agricultural wastes for oven, kiln, furnace and cook-stoves for cooking and heating purposes. Biomass technologies represent the largest installations in the Philippines in comparison with the other renewable energy, energy efficiency and greenhouse gas abatement technologies.

Biomass energy plays a vital role in the nation’s energy supply. Nearly 30 percent of the energy for the 80 million people living in the Philippines comes from biomass, mainly used for household cooking by the rural poor. Biomass energy application accounts for around 15 percent of the primary energy use in the Philippines. The resources available in the Philippines can generate biomass projects with a potential capacity of more than 200 MW.

Almost 73 percent of this biomass use is traced to the cooking needs of the residential sector while industrial and commercial applications accounts for the rest. 92 percent of the biomass industrial use is traced to boiler fuel applications for power and steam generation followed by commercial applications like drying, ceramic processing and metal production. Commercial baking and cooking applications account for 1.3 percent of its use.

The EC-ASEAN COGEN Programme estimated that the volume of residues from rice, coconut, palm oil, sugar and wood industries is 16 million tons per year. Bagasse, coconut husks and shell can account for at least 12 percent of total national energy supply. The World Bank-Energy Sector Management Assistance Program estimated that residues from sugar, rice and coconut could produce 90 MW, 40 MW, and 20 MW, respectively.

The development of crop trash recovery systems, improvement of agro-forestry systems, introduction of latest energy conversion technologies and development of biomass supply chain can play a major role in biomass energy development in the Philippines. The Philippines is among the most vulnerable nations to climatic instability and experiences some of the largest crop losses due to unexpected climatic events. The country has strong self-interest in the advancement of clean energy technologies, and has the potential to become a role model for other developing nations on account of its broad portfolio of biomass energy resources and its potential to assist in rural development.