Biomass Energy in Indonesia

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. Sources of biomass energy in Indonesia are scattered all over the country, but the biggest biomass energy potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi.


Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year.

Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil, sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves.

There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and palm kernel shells, making the operations energy self–efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill.

Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

Asbestos Related Illnesses in the Bioenergy Industry

When we think of asbestos, we usually picture old, condemned buildings filled with harmful asbestos-based insulation, but this isn’t always the case.

Since 1989, the use of asbestos has been banned in construction work in the UK and many buildings which contain this harmful substance, are being replaced or made safe.

While this is of course, good news, these buildings are not the only source of asbestos and in this article, we’ll be examining the rising cases of mesothelioma compensation claims by bioenergy industry employees.

Asbestos Related Illnesses in the Bioenergy Industry

What is Asbestos?

A naturally occurring substance, asbestos is a fibrous silicate mineral made up of long, thin microscopic fibrous crystals.  When dormant, asbestos can be relatively harmless but, the danger occurs when fibrils are released into the atmosphere and inhaled by humans.

Inhalation of asbestos can lead to serious diseases such as COPD and mesothelioma, a form of lung cancer which is associated with asbestos and which is almost always terminal.

In recent years, concerns have been growing over the number of bio energy employees who have been diagnosed with this devastating disease

What is Bioenergy?

Bioenergy is the term used for the generation of gas and electricity which is renewable and which causes less harm to the planet’s resources than other, more traditional methods which use coal, oil, natural gas and nuclear energy.

Bioenergy methods use organic matter such as food waste to create a flexible energy source. Wet feedstocks like food and other organise material is placed into sealed tanks and allowed to rot. This creates methane gas which can then be collected and burned to generate electricity. Dry materials like wood pellets are also burned in a furnace to boil water, create steam and thereby generate electricity.

Although bioenergy does produce carbon dioxide and release it into the atmosphere, it does so only at the rate at which the organic matter absorbed the carbon dioxide while growing. This makes it greener and more sustainable.

Energy crops are grown in the UK specifically for the use of producing bio-energy. There are currently 1855 bioenergy plants in the UK, employing around 35,000 people.

What’s the Connection Between Bioenergy and Mesothelioma?

At the beginning of this article, we mentioned that old buildings containing asbestos insulation are not the only places that asbestos can be found. In fact, at any given time, the air we breathe can contain asbestos.

However, this is usually at incredibly low levels of between 0.00001 to 0.0001 fibers per millimeter of air and does not pose any danger to human health. Having said that, many doctors will disagree, as many will argue that no level of asbestos is ever safe.

On average, it’s thought that the ‘danger zone’ for asbestos stands at around 1%. An individual who has been exposed to dangerous levels of asbestos may be unaware of this as symptoms will often not present themselves until ten or even twenty years after the exposure.

Asbestos occurs naturally in rocks, particularly altered ultramafic rocks and some mafic rocks. Asbestos can also occur naturally in some kinds of soil.

The Connection Between Plant Workers and Illnesses

It has been discovered that, in some instances, dedicated bioenergy crop sites have been created on land where the soil has been contaminated by asbestos, either naturally or through previous commercial endeavors.

Employees who are responsible for working with these crops including planting, nurturing and picking, become vulnerable to high levels of asbestos. When inhaled, this level of asbestos can be harmful to health and has led to mesothelioma.

As well as soil contamination, the process of converting food and organic waste into energy such as creating methane, can produce small amounts of asbestos. Although these may be minimal, continued exposure over time can lead to health problems in workers, including mesothelioma.

Unfortunately, mesothelioma is often caught late and on average, the life expectancy of the patient from the point of diagnosis is only between 4 and 18 months.


Asbestos Claims in the UK

In 2020, there were 17,023 asbestos compensation claims, with payouts of around £233.9 million. Despite almost forty years passing since the prohibition of asbestos in buildings, some UK solicitors report that claims are increasing rather than dwindling as victims seek financial compensation after being diagnosed with asbestos related diseases.

While some of these claims are made by former employees of old-style power plants, more and more are now emerging from bioenergy facilities.

Further Risk Assessments Need to be Improved by Employers…

In 2022, it’s reasonable to assume that, when you start a new job, the last thing on your mind is the risk of coming into contact with asbestos. Many of the bioenergy employees who are now making claims are justifiably angry about the fact that they were never made aware of any risk during the course of their work.

While this is devastating, it’s not necessarily evidence of sinister dealings by bioenergy companies. In many cases, employers did not inform their employees of risk for the simple reason that they weren’t aware of it themselves.

There’s no doubt that bioenergy is the future as we continue to move away from environment harming processes. However, while we call this progress in some ways, employers will need to examine all of their processes and materials to identify any possible risks to employees, in order to prevent unnecessary illness and death.

The Concept of Biorefinery

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum. By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock.

A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, through CHP technology, for its own use and perhaps enough for sale of electricity to the local utility.

The high value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce GHG emissions from traditional power plant facilities.


Biorefinery Platforms

There are several biorefinery platforms which can be employed in a biorefinery with the major ones being the sugar platform and the thermochemical platform (also known as syngas platform).

Sugar platform biorefineries breaks down biomass into different types of component sugars for fermentation or other biological processing into various fuels and chemicals. On the other hand, thermochemical biorefineries transform biomass into synthesis gas (hydrogen and carbon monoxide) or pyrolysis oil.

The thermochemical biomass conversion process is complex, and uses components, configurations, and operating conditions that are more typical of petroleum refining. Biomass is converted into syngas, and syngas is converted into an ethanol-rich mixture.

However, syngas created from biomass contains contaminants such as tar and sulphur that interfere with the conversion of the syngas into products. These contaminants can be removed by tar-reforming catalysts and catalytic reforming processes. This not only cleans the syngas, it also creates more of it, improving process economics and ultimately cutting the cost of the resulting ethanol.

Plus Points

Biorefineries can help in utilizing the optimum energy potential of organic wastes and may also resolve the problems of waste management and GHGs emissions. Biomass wastes can be converted, through appropriate enzymatic/chemical treatment, into either gaseous or liquid fuels.

The pre-treatment processes involved in biorefining generate products like paper-pulp, HFCS, solvents, acetate, resins, laminates, adhesives, flavour chemicals, activated carbon, fuel enhancers, undigested sugars etc. which generally remain untapped in the traditional processes. The suitability of this process is further enhanced from the fact that it can utilize a variety of biomass resources, whether plant-derived or animal-derived.

Future Perspectives

The concept of biomass-based refinery is still in early stages at most places in the world. Problems like raw material availability, feasibility in product supply chain, scalability of the model are hampering its development at commercial-scales. The National Renewable Energy Laboratory (NREL) of USA is leading the front in biorefinery research with path-breaking discoveries and inventions. 

Although the technology is still in nascent stages, but it holds the key to the optimum utilization of wastes and natural resources that humans have always tried to achieve. The onus now lies on governments and corporate sector to incentivize or finance the research and development in this highly promising field.

Biobutanol as a Biofuel

The major techno-commercial limitations of existing biofuels has catalyzed the development of advanced biofuels such as cellulosic ethanol, biobutanol and mixed alcohols. Biobutanol is generating good deal of interest as a potential green alternative to petroleum fuels. It is increasingly being considered as a superior automobile fuel in comparison to bioethanol as its energy content is higher. The problem of demixing that is encountered with ethanol-petrol blends is considerably less serious with biobutanol-petrol blends.

Besides, it reduces the harmful emissions substantially. It is less corrosive and can be blended in any concentration with petrol (gasoline). Several research studies suggest that butanol can be blended into either petrol or diesel to as much as 45 percent without engine modifications or severe performance degradation.

Production of Biobutanol

Biobutanol is produced by microbial fermentation, similar to bioethanol, and can be made from the same range of sugar, starch or cellulosic feedstocks. The most commonly used microorganisms are strains of Clostridium acetobutylicum and Clostridium beijerinckii. In addition to butanol, these organisms also produce acetone and ethanol, so the process is often referred to as the “ABE fermentation”.

The main concern with Clostridium acetobutylicum is that it easily gets poisoned at concentrations above 2% of biobutanol in the fermenting mixture. This hinders the production of biobutanol in economically viable quantities.

In recent years, there has been renewed interest in biobutanol due to increasing petroleum prices and search for clean energy resources. Researchers have made significant advances in designing new microorganisms capable of surviving in high butanol concentrations. The new genetically modified micro-organisms have the capacity to degrade even the cellulosic feedstocks.

Latest Trends

Biobutanol production is currently more expensive than bioethanol which has hampered its commercialization. However, biobutanol has several advantages over ethanol and is currently the focus of extensive research and development. There is now increasing interest in use of biobutanol as a transport fuel. As a fuel, it can be transported in existing infrastructure and does not require flex-fuel vehicle pipes and hoses.

Fleet testing of biobutanol has begun in the United States and the European Union. A number of companies are now investigating novel alternatives to traditional ABE fermentation, which would enable biobutanol to be produced on an industrial scale.

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup using rural small town business idea can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas for Rural Areas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas for rural areas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Agricultural Biomass in Malaysia

Malaysia is located in a region where biomass productivity is high which means that the country can capitalize on this renewable energy resource to supplements limited petroleum and coal reserves. Malaysia, as a major player in the palm oil and sago starch industries, produces a substantial amount of agricultural biomass waste which present a great opportunity for harnessing biomass energy in an eco-friendly and commercially-viable manner.

Peninsular Malaysia generates large amounts of wood and’ agricultural residues, the bulk of which are not being currently utilised for any further downstream operations. The major agricultural crops grown in Malaysia are rubber (39.67%), oil palm (34.56%), cocoa (6.75%), rice (12.68%) and coconut (6.34%). Out of the total quantity of residues generated, only 27.0% is used either as fuel for the kiln drying of timber, for the manufacture of bricks, the curing of tobacco leaves, the drying rubber-sheets and for the manufacture of products such as particleboard and fibreboard. The rest has to be disposed of by burning.

Palm Oil Industry

Oil palm is one of the world’s most important fruit crops. Malaysia is one of the largest producers and exporter of palm oil in the world, accounting for 30% of the world’s traded edible oils and fats supply. Palm oil industries in Malaysia have good potential for high pressure modern power plants and the annual power generation potential is about 8,000 GWh. Malaysia produced more than 20 million tonnes of palm oil in 2012 over 5 million hectares of land.

The palm oil industry is a significant branch in Malaysian agriculture. Almost 70% of the volume from the processing of fresh fruit bunch is removed as biomass waste in the form of empty fruit bunches (EFBs), fibers and shells, as well as liquid effluent. Fibres and shells are traditionally used as fuels to generate power and steam. Palm oil mill effluent, commonly known as POME, are sometimes converted into biogas that can be used in gas-fired gensets.

Sugar Industry

The cultivation of sugarcane in Malaysia is surprisingly small. Production is concentrated in the Northwest extremity of peninsular Malaysia in the states of Perlis and Kedah. This area has a distinct dry season needed for cost-efficient sugarcane production. Plantings in the states of Perak and Negri Sembilan were unsuccessful due to high unit costs as producing conditions were less suitable.

The lack of growth in cane areas largely reflects the higher remuneration received by farmers for other crops, especially oil palm. Over the past 20 years while the sugarcane area has remained at around 20000 hectares, that planted to oil palm has expanded from 600 000 hectares to 5 million hectares.

Other leading crops in terms of planted areas are rubber with 2.8 million hectares, rice with 670 000 hectares and cocoa with 380 000 hectares. Malaysia, the world’s third largest rubber producer, accounted for 1 million tons of natural rubber production in 2012. Like oil palm industry, the rubber industry produces a variety of biomass wastes whose energy potential is largely untapped until now.

Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources in Malaysia

  • Agricultural crops e.g. sugarcane, cassava, corn
  • Agricultural residues e.g. rice straw, cassava rhizome, corncobs
  • Woody biomass e.g. fast-growing trees, wood waste from wood mill, sawdust
  • Agro-Industrial wastes e.g. rice husks from rice mills, molasses and bagasse from sugar refineries, residues from palm oil mills
  • Municipal solid waste
  • Animal manure and poultry litter

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.


Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

Biomass from Wood Processing Industries

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Biomass from wood processing industries is generally concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.


Biomass from Wood Processing

The waste resulted from a wood processing is influenced by the diameter of logs being processed, type of saw, specification of product required and skill of workers. Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings. Sometimes, it becomes a complex task to select the best scroll saws for wood cutting.

Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kilos of wood in the furniture industries will lead to wood waste generation of almost half (45 %), i.e. 450 kilos of wood. Similarly, when processing 1,000 kilos of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kilo of wood.

The biomass wastes generated from wood processing industries include sawdust, off-cuts and bark. Recycling of wood wastes is not done by all wood industries, particularly small to medium scale wood industries. The off-cuts and cutting are sold or being used as fuel for wood drying process. Bark and sawdust are usually burned.

Recycling of Wood Wastes

The use of wood wastes is usually practised in large and modern establishment; however, it is commonly only used to generate steam for process drying. The mechanical energy demand such as for cutting, sawing, shaving and pressing is mostly provided by diesel generating set and/or electricity grid. The electricity demand for such an industry is substantially high.

Recycling of wood wastes is not done by all wood industries, particularly by smallholders. These wastes are normally used as fuel for brick making and partly also for cooking. At medium or large establishments some of the wastes, like: dry sawdust and chips, are being used as fuel for wood drying process. Bark and waste sawdust are simply burned or dumped.

Importance of Heating Value

The heating or calorific value is a key factor when evaluating the applicability of a combustible material as a fuel. The heating value of wood and wood waste depends on the species, parts of the tree that are being used (core, bark, stem, wood, branch wood, etc.) and the moisture content of the wood. The upper limit of the heating or calorific value of 100% dry wood on a weight basis is relatively constant, around 20 MJ/kg.

In practice, the moisture content of wood during logging is about 50%. Depending on transportation and storing methods and conditions it may rise to 65% or fall to some 30% at the mill site. The moisture content of the wood waste in an industry depends on the stage where the waste is extracted and whether wood has been dried before this stage.

Biomass Cogeneration Systems

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through biomass cogeneration systems (also known as combined heat and power or CHP system). Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical.

The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. Advanced biomass conversion technologies include biomass integrated gasification combined cycle (BIGCC) systems, cofiring (with coal or gas), pyrolysis and second generation biofuels.

Biomass Cogeneration Systems

A typical biomass cogeneration (or biomass cogen) system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

Biomass cogeneration systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime Movers

Prime movers for biomass cogeneration units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

Key Components

A biomass-fueled cogeneration facility is an integrated power system comprised of three major components:

  • Biomass receiving and feedstock preparation.
  • Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  • Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

Feedstock for Biomass Cogeneration Plants

The lowest cost forms of biomass for cogeneration plants are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.


Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.

Improve Your Home’s Energy Efficiency While Adding Value

You’ve spent the past year furnishing your home, selecting hand-crafted decor, and mixing and matching perfectly balanced wall colors. Everything appears perfect. But your utility bills tell a different story about your home. Your heating bill is through the roof and your electric bill never seems to come down no matter how good a job you do of turning off lights in rooms that aren’t occupied. Sound familiar? If it does, you’re not alone.

Of the $2,000 the average American spends paying for energy each year, $200 to $400 could be going to waste from drafts, air leaks, and outdated heating and cooling systems. If you are interested in reducing energy waste you should begin with a home energy evaluation. Also known as an energy audit, an energy evaluation will assess the way that your home consumes energy and identify what measures you can take to improve energy efficiency. From there, you will be able to choose which upgrades you would like to make.

how to improve the energy efficiency of your home

Upgrade Your Windows

The number one way to add value to your home while increasing the energy efficiency of your home is to upgrade your windows to double-pane Energy Star-rated windows. If you are going to make one feature of your home energy efficient you should prioritize your windows according to over 60% of real estate agents.

New energy-efficient windows help maintain a consistent temperature inside your home year-round. This alone can reduce your energy bills by as much as 15%. When it is time for you to sell your home, new Energy Star-rated windows will help you sell your home for a great price. According to the National Association of Home Builders, 89% of home buyers classified Energy Star windows as either an essential or desirable feature. A bonus that comes with installing Energy Star windows is the visual appeal that new windows add to both the interior and exterior of your home.

Insulate the Attic

Most homes have a layer of insulation in the attic, however, over time more insulation may need to be added. Heat loss through the attic is around 25% for most houses. Reducing that heat loss can save you money and create a less drafty home. To save approximately 15% on heating and cooling costs you can add spray foam insulation to your attic. A relatively affordable improvement that costs around $1,000 to $3,600 spray foam insulation recoups the majority of project costs with an average return on investment of 117%.

Upgrade to Energy Star Appliances

Outdated appliances that are over ten years old use up to 40% more energy than newer energy-efficient models. If you plan to upgrade your appliances you can begin in the kitchen. Appliance upgrades that are the most popular are refrigerators, dishwashers, stove/ovens, and microwaves. When you are looking for appliances choose ones that are stainless steel. According to 75% of real estate agents, stainless steel is the most popular finish among home buyers.

Add Solar Panels

When solar panels first became available to homeowners they were extremely expensive. Now, over a decade later the prices of solar panels have fallen by about 70%. On average, solar panels for residential homes cost between $15,000 and $25,000. Though the initial price tag of solar panels is high, so is their addition to your home’s value.


For every $1 reduction in your annual energy cost, your home’s value increases by $20. So not only are you saving on your energy bills you are increasing your home’s value. Solar panel purchases are different in every area and so are the rebates and tax credits that may be available to you.

Upgrade Your Heating and Cooling Unit

In general, 43% of your home’s utility bill goes to heating and cooling. Keep your HVAC working efficiently by properly maintaining the unit and upgrading to a new one when it is time. The average lifespan of an HVAC system is 15 to 20 years. As HVAC ages, especially in the last five to ten years of its life, the system becomes less energy efficient. An older HVAC system will require more maintenance and will need repairs for parts of the system that are no longer functional.

air conditioner benefits

While installing an entirely new HVAC system will take extra money, it will benefit you when you are in your home and when you sell your home. A new HVAC unit with appropriate insulation can cut your energy use for heating and cooling by 20%. Houses with a new HVAC system have a home value increase of approximately 5-10% of the total value of the home.

Invest in a Smart Thermostat

A basic home thermostat will read and adjust the output of heat or cooling to match your desired temperature. If your thermostat is old or malfunctioning it may not read the temperature of your room correctly and wreak havoc on your heating and cooling costs. You can purchase and have a new thermostat installed or you can invest in a smart thermostat. Going a step beyond simply turning on and off your heating and cooling, a smart thermostat comes with remote sensors that are placed in different rooms around your house. These will ensure that your home can stay at a consistent temperature throughout your entire house.

Advanced smart thermostats will monitor your heating and cooling preference and after one week automatically set up a schedule to meet all your personalized needs. A smart thermostat will save homeowners anywhere from 8%-12% annually on their heating and cooling bills. They are also very popular among young homebuyers who are always interested in adding smart technology to their home.

Bottom Line

Small changes to your home can have a big impact on your energy consumption and your home’s overall value. Take the time to speak to a local real estate agent who can point you toward the best home improvements that will save you money on your monthly bills and add money to your home’s value.