Everything You Need to Know About Biomass Energy Systems

Biomass is a versatile energy source that can be used for production of heat, power, transport fuels and biomaterials, apart from making a significant contribution to climate change mitigation. Currently, biomass-driven combined heat and power, co-firing, and combustion plants provide reliable, efficient, and clean power and heat.

Feedstock for biomass energy plants can include residues from agriculture, forestry, wood processing, and food processing industries, municipal solid wastes, industrial wastes and biomass produced from degraded and marginal lands.

biomass-energy-systems

The terms biomass energy, bioenergy and biofuels cover any energy products derived from plant or animal or organic material. The increasing interest in biomass energy and biofuels has been the result of the following associated benefits:

  • Potential to reduce GHG emissions.
  • Energy security benefits.
  • Substitution for diminishing global oil supplies.
  • Potential impacts on waste management strategy.
  • Capacity to convert a wide variety of wastes into clean energy.
  • Technological advancement in thermal and biochemical processes for waste-to-energy transformation.

Biomass can play the pivotal role in production of carbon-neutral fuels of high quality as well as providing feedstock for various industries. This is a unique property of biomass compared to other renewable energies and which makes biomass a prime alternative to the use of fossil fuels. Performance of biomass-based systems for heat and power generation has been already proved in many situations on commercial as well as domestic scales.

Biomass energy systems have the potential to address many environmental issues, especially global warming and greenhouse gases emissions, and foster sustainable development among poor communities. Biomass fuel sources are readily available in rural and urban areas of all countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern biomass-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity as shown. Biomass wastes can be transformed into clean and efficient energy by biochemical as well as thermochemical technologies.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity.

Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

In addition, biomass wastes can also yield liquid fuels, such as cellulosic ethanol, which can be used to replace petroleum-based fuels. Cellulosic ethanol can be produced from grasses, wood chips and agricultural residues by biochemical route using heat, pressure, chemicals and enzymes to unlock the sugars in lignocellulosic biomass. Algal biomass is also emerging as a good source of energy because it can serve as natural source of oil, which conventional refineries can transform into jet fuel or diesel fuel.

Gasification of Municipal Wastes

Gasification of municipal wastes involves the reaction of carbonaceous feedstock with an oxygen-containing reagent, usually oxygen, air, steam or carbon dioxide, generally at temperatures above 800°C. The process is largely exothermic but some heat may be required to initialise and sustain the gasification process.

utishinai-gasification-plant

The main product of the gasification process is syngas, which contains carbon monoxide, hydrogen and methane. Typically, the gas generated from gasification has a low heating value (LHV) of 3 – 6 MJ/Nm3.The other main product produced by gasification is a solid residue of non-combustible materials (ash) which contains a relatively low level of carbon.

Syngas can be used in a number of ways, including:

  • Syngas can be burned in a boiler to generate steam for power generation or industrial heating.
  • Syngas can be used as a fuel in a dedicated gas engine.
  • Syngas, after reforming, can be used in a gas turbine
  • Syngas can also be used as a chemical feedstock.

Gasification has been used worldwide on a commercial scale for several decades by the chemical, refining, fertilizer and electric power industries. MSW gasification plants are relatively small-scale, flexible to different inputs and modular development. The quantity of power produced per tonne of waste by gasification process is larger than when applying the incineration method.

The most important reason for the growing popularity of gasification of municipal solid wastes has been the increasing technical, environmental and public dissatisfaction with the performance of conventional incinerators.

Plasma Gasification

Plasma gasification uses extremely high temperatures in an oxygen-starved environment to completely decompose input waste material into very simple molecules in a process similar to pyrolysis. The heat source is a plasma discharge torch, a device that produces a very high temperature plasma gas. It is carried out under oxygen-starved conditions and the main products are vitrified slag, syngas and molten metal.

plasma-gasification

Vitrified slag may be used as an aggregate in construction; the syngas may be used in energy recovery systems or as a chemical feedstock; and the molten metal may have a commercial value depending on quality and market availability. The technology has been in use for steel-making and is used to melt ash to meet limits on dioxin/furan content. There are several commercial-scale plants already in operation in Japan for treating MSW and auto shredder residue.

Advantages of MSW Gasification

There are numerous MSW gasification facilities operating or under construction around the world. Gasification of solid wastes has several advantages over traditional combustion processes for MSW treatment. It takes place in a low oxygen environment that limits the formation of dioxins and of large quantities of SOx and NOx. Furthermore, it requires just a fraction of the stoichiometric amount of oxygen necessary for combustion. As a result, the volume of process gas is low, requiring smaller and less expensive gas cleaning equipment.

The lower gas volume also means a higher partial pressure of contaminants in the off-gas, which favours more complete adsorption and particulate capture. Finally, gasification generates a fuel gas that can be integrated with combined cycle turbines, reciprocating engines and, potentially, with fuel cells that convert fuel energy to electricity more efficiently than conventional steam boilers.

Disadvantages of Gasification

The gas resulting from gasification of municipal wastes contains various tars, particulates, halogens, heavy metals and alkaline compounds depending on the fuel composition and the particular gasification process. This can result in agglomeration in the gasification vessel, which can lead to clogging of fluidised beds and increased tar formation. In general, no slagging occurs with fuels having ash content below 5%. MSW has a relatively high ash content of 10-12%.

Recycling and Waste-to-Energy Prospects in Saudi Arabia

The Kingdom of Saudi Arabia produces around 15 million tons of municipal solid waste (MSW) each year with average daily rate of 1.4 kg per person. With the current growing population (3.4% yearly rate), urbanization (1.5% yearly rate) and economic development (3.5% yearly GDP rate), the generation rate of MSW will become double (30 million tons per year) by 2033. The major ingredients of Saudi Arabian MSW are food waste (40-51 %), paper (12-28 %), cardboard (7 %), plastics (5-17 %), glass (3-5 %), wood (2-8 %), textile (2-6 %), metals (2-8 %) etc. depending on the population density and urban activities of that area.

recycling-Saudi-Arabia

In Saudi Arabia, MSW is collected and sent to landfills or dumpsites after partial segregation and recycling. The major portion of collected waste is ends up in landfills untreated. The landfill requirement is very high, about 28 million m3 per year. The problems of leachate, waste sludge, and methane and odor emissions are occurring in the landfills and its surrounding areas due to mostly non-sanitary or un-engineered landfills. However, in many cities the plans of new sanitary landfills are in place, or even they are being built by municipalities with capturing facilities of methane and leachate.

Recycling Prospects in Saudi Arabia

The recycling of metals and cardboard is the main waste recycling practice in Saudi Arabia, which covers 10-15% of the total waste. This recycling practice is mostly carried out by informal sector. The waste pickers or waste scavengers take the recyclables from the waste bins and containers throughout the cities. The waste recycling rate often becomes high (upto 30% of total waste) by waste scavengers in some areas of same cities. The recycling is further carried out at some landfill sites, which covers upto 40% of total waste by the involvement of formal and informal sectors.

Saudi_Arabia_Waste

The recycled products are glass bottles, aluminum cans, steel cans, plastic bottles, paper, cardboard, waste tire, etc. depending on the area, available facilities and involved stakeholders. It is estimated that 45 thousand TJ of energy can be saved by recycling only glass and metals from MSW stream. This estimation is based on the energy conservation concept, which means xyz amount of energy would be used to produce the same amount of recyclable material.

Waste-to-Energy Potential in Saudi Arabia

The possibilities of converting municipal wastes to renewable energy are plentiful. The choice of conversion technology depends on the type and quantity of waste (waste characterization), capital and operational cost, labor skill requirements, end-uses of products, geographical location and infrastructure. Several waste to energy technologies such as pyrolysis, anaerobic digestion (AD), trans-esterification, fermentation, gasification, incineration, etc. have been developed. Waste-to-energy provides the cost-effective and eco-friendly solutions to both energy demand and MSW disposal problems in Saudi Arabia.

As per conservative estimates, electricity potential of 3 TWh per year can be generated, if all of the KSA food waste is utilized in biogas plants. Similarly, 1 and 1.6 TWh per year electricity can be generated if all the plastics and other mixed waste (i.e. paper, cardboard, wood, textile, leather, etc.) of KSA are processed in the pyrolysis, and refuse derived fuel (RDF) technologies respectively.

Conclusion

Waste management issues in Saudi Arabia are not only related to water, but also to land, air and the marine resources. The sustainable integrated solid waste management is still at the infancy level. There have been many studies in identifying the waste related environmental issues in KSA. The current SWM activities of KSA require a sustainable and integrated approach with implementation of waste segregation at source, waste recycling, WTE and value-added product (VAP) recovery. By 2032, Saudi government is aiming to generate about half of its energy requirements (about 72 GW) from renewable sources such as solar, nuclear, wind, geothermal and waste-to-energy systems.

Cofiring of Biomass

Cofiring of biomass involves utilizing existing power generating plants that are fired with fossil fuel (generally coal), and displacing a small proportion of the fossil fuel with renewable biomass fuels. Cofiring of biomass with coal and other fossil fuels can provide a short-term, low-risk, low-cost option for producing renewable energy while simultaneously reducing the use of fossil fuels.

Biomass can typically provide between 3 and 15 percent of the input energy into the power plant. Cofiring of biomass has the major advantage of avoiding the construction of new, dedicated, biomass power plant. An existing power station is modified to accept the biomass resource and utilize it to produce a minor proportion of its electricity.

Cofiring of biomass may be implemented using different types and percentages of biomass in a range of combustion and gasification technologies. Most forms of biomass are suitable for cofiring. These include dedicated energy crops, urban wood waste and agricultural residues such as rice straw and rice husk.

The fuel preparation requirements, issues associated with combustion such as corrosion and fouling of boiler tubes, and characteristics of residual ash dictate the cofiring configuration appropriate for a particular plant and biomass resource. These configurations may be categorized into direct, indirect and parallel firing.

1. Direct Cofiring

This is the most common form of biomass cofiring involving direct cofiring of the biomass fuel and the primary fuel (generally coal) in the combustion chamber of the boiler. The cheapest and simplest form of direct cofiring for a pulverized coal power plant is through mixing prepared biomass and coal in the coal yard or on the coal conveyor belt, before the combined fuel is fed into the power station boiler.

2. Indirect Cofiring

If the biomass fuel has different attributes to the normal fossil fuel, then it may be prudent to partially segregate the biomass fuel rather than risk damage to the complete station.

For indirect cofiring, the ash of the biomass resource and the main fuel are kept separate from one another as the thermal conversion is partially carried out in separate processing plants. As indirect co-firing requires a separate biomass energy conversion plant, it has a relatively high investment cost compared with direct cofiring.

Parallel Firing

For parallel firing, totally separate combustion plants and boilers are used for the biomass resource and the coal-fired power plants. The steam produced is fed into the main power plant where it is upgraded to higher temperatures and pressures, to give resulting higher energy conversion efficiencies. This allows the use of problematic fuels with high alkali and chlorine contents (such as wheat straw) and the separation of the ashes.

Waste Management Progress in Nigeria’s Delta State

Waste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

waste-management-nigeria

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba waste management facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Biomethane Industry in Europe

Biomethane is a well-known and well-proven source of clean energy, and is witnessing increasing demand worldwide, especially in European countries. Between 2012 and 2016, more than 500 biomethane production plants were built across Europe which indicates a steep rise of 165 percent. The main reasons behind the growth of biomethane industry in Europe is increasing interest in industrial waste-derived biogas sector and public interest in biogas.  Another important reason has been the guaranteed access to gas grid for all biomethane suppliers.

Biomethane production in Europe has swiftly increased from 752 GWh in 2011 to 17,264 GWh in 2016 with Germany being the market leader with 195 biomethane production plants, followed by United Kingdom with 92 facilities. Biogas generation across Europe also witnessed a rapid growth of 59% during the year 2011 and 2016. In terms of plant capacities, the regional trend is to establish large-scale biomethane plants.

Sources of Biomethane in Europe

Landfill gas and AD plants (based on energy crops, agricultural residues, food waste, industrial waste and sewage sludge) are the major resources for biomethane production in Europe, with the predominant source being agricultural crops (such as maize) and dedicated energy crops (like miscanthus). In countries, like Germany, Austria and Denmark, energy crops, agricultural by-products, sewage sludge and animal manure are the major feedstock for biomethane production. On the other hand, France, UK, Spain and Italy rely more on landfill gas to generate biomethane.

A large number of biogas plants in Europe are located in agricultural areas having abundant availability of organic wastes, such as grass silage and green waste, which are cheaper than crops. Maize is the most cost-effective raw material for biomethane production. In many parts of Europe, the practice of co-digestion is practised whereby energy crops are used in combination with animal manure as a substrate. After agricultural biogas plants, sewage sludge is one of the most popular substrates for biomethane production in Europe.

Biomethane Utilization Trends in Europe

Biomethane has a wide range of applications in the clean energy sector. In Europe, the main uses of biomethane include the following:

  1. Production of heat and/or steam
  2. Power generation and combined heat and power production(CHP)
  3. Replacement for natural gas (gas grid injection)
  4. Replacement for compressed natural gas & diesel – (bio-CNG for use as transport fuel)
  5. Replacement for liquid natural gas – (bio-LNG for use as transport fuel)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

biomethane-transport

Biomethane is getting popularity as a clean vehicle fuel in Europe. For example, Germany has more than 900 CNG filling stations, with a fleet of around 100,000 gas-powered vehicles including cars, buses and trucks. Around 170 CNG filling stations in Germany sell a blend mixture of natural gas and biomethane while about 125 filling stations sell 100% biomethane from AD plants.

Barriers to Overcome

The fact that energy crops can put extra pressure on land availability for cultivation of food crops has led many European countries to initiate measures to reduce or restrict biogas production from energy crops. As far as waste-derived biomethane is concerned, most of the EU nations are phasing out landfill-based waste management systems which may lead to rapid decline in landfill gas production thus putting the onus of biomethane production largely on anaerobic digestion of food waste, sewage sludge, industrial waste and agricultural residues.

The high costs of biogas upgradation and natural gas grid connection is a major hurdle in the development of biomethane sector in Eastern European nations. The injection of biomethane is also limited by location of suitable biomethane production facilities, which should ideally be located close to the natural gas grid.  Several European nations have introduced industry standards for injecting biogas into the natural gas grid but these standards differ considerably with each other.

Another important issue is the insufficient number of biomethane filling stations and biomethane-powered vehicles in Europe. A large section of the population is still not aware about the benefits of biomethane as a vehicle fuel. Strong political backing and infrastructural support will provide greater thrust to biomethane industry in Europe.

Biomethane from Food Waste: A Window of Opportunity

For most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

food-waste-behavior

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Popular Feedstock for Biogas Plants

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Almost any organic material can be processed with anaerobic digestion.

Biogas_Plant

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment.  The popular feedstock for biogas production includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste.

Large quantity of waste, in both solid and liquid forms, is generated by the industrial sector like breweries, sugar mills, distilleries, food processing industries, tanneries, and paper and pulp industries. Poultry waste has the highest per ton energy potential of electricity per ton but livestock have the greatest potential for energy generation in the agricultural sector.

1. Agricultural Feedstock

2. Community-Based Feedstock

  • Organic fraction of MSW (OFMSW)
  • MSW
  • Sewage sludge
  • Grass clippings/garden waste
  • Food wastes
  • Institutional wastes etc.

 3. Industrial Feedstock

  • Food/beverage processing
  • Dairy
  • Starch industry
  • Sugar industry
  • Pharmaceutical industry
  • Cosmetic industry
  • Biochemical industry
  • Pulp and paper
  • Slaughterhouse/rendering plant etc.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment. Almost any organic material can be processed with anaerobic digestion process. This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. The exception to this is woody wastes that are largely unaffected by digestion as most anaerobic microorganisms are unable to degrade lignin.

Anaerobic digesters can also be fed with specially grown energy crops such as silage for dedicated biogas production. A wide range of crops, especially C-4 plants, demonstrate good biogas potentials. Corn is one of the most popular co-substrate in Germany while Sudan grass is grown as an energy crop for co-digestion in Austria. Crops like maize, sunflower, grass, beets etc., are finding increasing use in agricultural digesters as co-substrates as well as single substrate.

biogas-energy-crop

A wide range of organic substances are anaerobically easily degradable without major pretreatment. Among these are leachates, slops, sludges, oils, fats or whey. Some wastes can form inhibiting metabolites (e.g.NH3) during anaerobic digestion which require higher dilutions with substrates like manure or sewage sludge. A number of other waste materials often require pre-treatment steps (e.g. source separated municipal organic waste, food residuals, expired food, market wastes and crop residues).

Biomass Energy in Indonesia

It is estimated that Indonesia produces 146.7 million tons of biomass per year, equivalent to about 470 GJ/y. Sources of biomass energy in Indonesia are scattered all over the country, but the biggest biomass energy potential in concentrated scale can be found in the Island of Kalimantan, Sumatera, Irian Jaya and Sulawesi.

Empty_fruit_bunches

Studies estimate the electricity generation potential from the roughly 150 Mt of biomass residues produced per year to be about 50 GW or equivalent to roughly 470 GJ/year. These studies assume that the main source of biomass energy in Indonesia will be rice residues with a technical energy potential of 150 GJ/year.

Other potential biomass sources are rubber wood residues (120 GJ/year), sugar mill residues (78 GJ/year), palm oil residues (67 GJ/year), and less than 20 GJ/year in total from plywood and veneer residues, logging residues, sawn timber residues, coconut residues, and other agricultural wastes.

Sustainable and renewable natural resources such as biomass can supply potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, as well as skimmed coconut oil and straw from rice cultivation.

The major crop residues to be considered for power generation in Indonesia are palm oil, sugar processing and rice processing residues. Currently, 67 sugar mills are in operation in Indonesia and eight more are under construction or planned. The mills range in size of milling capacity from less than 1,000 tons of cane per day to 12,000 tons of cane per day. Current sugar processing in Indonesia produces 8 millions MT bagasse and 11.5 millions MT canes top and leaves.

There are 39 palm oil plantations and mills currently operating in Indonesia, and at least eight new plantations are under construction. Most palm oil mills generate combined heat and power from fibres and palm kernel shells, making the operations energy self–efficient. However, the use of palm oil residues can still be optimized in more energy efficient systems.

Other potential source of biomass energy can also come from municipal wastes. The quantity of city or municipal wastes in Indonesia is comparable with other big cities of the world. Most of these wastes are originated from household in the form of organic wastes from the kitchen. At present the wastes are either burned at each household or collected by the municipalities and later to be dumped into a designated dumping ground or landfill.

Although the government is providing facilities to collect and clean all these wastes, however, due to the increasing number of populations coupled with inadequate number of waste treatment facilities in addition to inadequate amount of allocated budget for waste management, most of big cities in Indonesia had been suffering from the increasing problem of waste disposals.

With Indonesia’s recovery from the Asian financial crisis of 1998, energy consumption has grown rapidly in past decade. The priority of the Indonesian energy policy is to reduce oil consumption and to use renewable energy. For power generation, it is important to increase electricity power in order to meet national demand and to change fossil fuel consumption by utilization of biomass wastes. The development of renewable energy is one of priority targets in Indonesia.

The current pressure for cost savings and competitiveness in Indonesia’s most important biomass-based industries, along with the continually growing power demands of the country signal opportunities for increased exploitation of biomass wastes for power generation.

What You Need to Know About Food Waste Management

Food waste is an untapped energy source that mostly ends up rotting in landfills, thereby releasing greenhouse gases into the atmosphere. Food waste is difficult to treat or recycle since it contains high levels of sodium salt and moisture, and is mixed with other waste during collection. Major generators of food wastes include hotels, restaurants, supermarkets, residential blocks, cafeterias, airline caterers, food processing industries, etc.

In United States, food waste is the third largest waste stream after paper and yard waste. Around 13 percent of the total municipal solid waste generated in the country is contributed by food scraps. According to USEPA, more than 35 million tons of food waste are thrown away into landfills or incinerators each year, which is around 40 percent of all food consumed in the country.

As far as United Kingdom is concerned, households throw away around 4.5 million tons of food each year. Food wastage in Canada causes 56.6 million tonnes of CO2-equivalent emissions. These statistics are an indication of tremendous amount of food waste generated all over the world.

food_waste

Food Waste Management Strategy

The proportion of food waste in municipal waste stream is gradually increasing and hence a proper food waste management strategy needs to be devised to ensure its eco-friendly and sustainable disposal. The two most common methods for food waste recycling are:

  • Composting: A treatment that breaks down biodegradable waste by naturally occurring micro-organisms with oxygen, in an enclosed vessel or tunnel;
  • Anaerobic digestion (AD): A treatment that breaks down biodegradable waste in the absence of oxygen, producing a renewable energy (biogas) that can be used to generate electricity and heat.

Currently, only about 3 percent of food waste is recycled throughout USA, mainly through composting. Composting provides an alternative to landfill disposal of food waste, however it requires large areas of land, produces volatile organic compounds and consumes energy. Consequently, there is an urgent need to explore better recycling alternatives.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

biogas-enrichment

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be used as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes, etc.

Food waste is one of the single largest constituent of municipal solid waste stream. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities. Rising energy prices and increasing environmental pollution makes it more important to harness renewable energy from food wastes.

Anaerobic digestion technology is widely available worldwide and successful projects are already in place in several European as well as Asian countries which makes it imperative on waste generators and environmental agencies in USA to strive for a sustainable food waste management system.