WTE Prospects in the Middle East

A combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the Middle East.


It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of.

In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

Waste to Energy Around the World

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.


Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear:

  • reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels),
  • freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites),
  • encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and,
  • most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

Waste-to-Energy in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the Middle East.

Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which is expected to be operational by 2017 and which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open in 2015.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

Biogas from Slaughterhouse Wastes

Slaughterhouse waste (or abattoir waste) disposal has been a major environmental challenge in all parts of the world. The chemical properties of slaughterhouse wastes are similar to that of municipal sewage, however the former is highly concentrated wastewater with 45% soluble and 55% suspended organic composition. Blood has a very high COD of around 375,000 mg/L and is one of the major dissolved pollutants in slaughterhouse wastewater.


In most of the developing countries, there is no organized strategy for disposal of solid as well as liquid wastes generated in abattoirs. The solid slaughterhouse waste is collected and dumped in landfills or open areas while the liquid waste is sent to municipal sewerage system or water bodies, thus endangering public health as well as terrestrial and aquatic life. Wastewater from slaughterhouses is known to cause an increase in the BOD, COD, total solids, pH, temperature and turbidity, and may even cause deoxygenation of water bodies.

Anaerobic Digestion of Slaughterhouse Wastes

There are several methods for beneficial use of slaughterhouse wastes including biogas generation, fertilizer production and utilization as animal feed. Anaerobic digestion is one of the best options for slaughterhouse waste management which will lead to production of energy-rich biogas, reduction in GHGs emissions and effective pollution control in abattoirs.

Anaerobic digestion can achieve a high degree of COD and BOD removal from slaughterhouse effluent at a significantly lower cost than comparable aerobic systems. The biogas potential of slaughterhouse waste is higher than animal manure, and reported to be in the range of 120-160 m3 biogas per ton of wastes. However the C:N ratio of slaughterhouse waste is quite low (4:1) which demands its co-digestion with high C:N substrates like animal manure, food waste, crop residues, poultry litter etc.

Slaughterhouse effluent has high COD, high BOD, and high moisture content which make it well-suited to anaerobic digestion process. Slaughterhouse wastewater also contains high concentrations of suspended organic solids including pieces of fat, grease, hair, feathers, manure, grit, and undigested feed which will contribute the slowly biodegradable of organic matter. Amongst anaerobic treatment processes, the up-flow anaerobic sludge blanket (UASB) process is widely used in developing countries for biogas production from abattoir wastes.

Slaughterhouse waste is a protein-rich substrate and may result in sulfide formation during anaerobic degradation. The increased concentration of sulfides in the digester can lead to higher concentrations of hydrogen sulfide in the biogas which may inhibit methanogens. In addition to sulfides, ammonia is also formed during the anaerobic digestion process which may increase the pH in the digester (>8.0) which can be growth limiting for some VFA-consuming methanogens.

Energy from Biomass Wastes in MENA

The high volatility in oil prices in the recent past and the resulting turbulence in energy markets has compelled many MENA countries, especially the non-oil producers, to look for alternate sources of energy, for both economic and environmental reasons. The significance of renewable energy has been increasing rapidly worldwide due to its potential to mitigate climate change, to foster sustainable development in poor communities, and augment energy security and supply.

The MENA region is well-poised for biomass waste-to-energy development, with its rich feedstock base in the form of municipal solid wastes, crop residues and agro-industrial wastes. The high rate of population growth, urbanization and economic expansion in the Middle East is not only accelerating consumption rates but also accelerating the generation of a wide variety of waste.

Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita waste generation. The gross urban waste generation quantity from Arab countries is estimated at more than 80 million tons annually. Open dumping is the most prevalent mode of municipal solid waste disposal in most countries.


Many Middle East nations lack legislative framework and regulations to deal with urban wastes.

Biomass wastes-to-energy technologies hold the potential to create renewable energy from biomass waste in the MENA region. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal, which can be better managed for safe disposal in a controlled manner. Energy from biomass wastes can contribute substantially to GHG mitigation in the Middle East through both reductions of fossil carbon emissions and long-term storage of carbon in biomass wastes.

Biomass waste-to-energy systems options offer significant, cost-effective and perpetual opportunities for greenhouse gas emission reductions. Additional benefits offered are employment creation in rural areas, reduction of a country’s dependency on imported energy carriers (and the related improvement of the balance of trade), better waste control, and potentially benign effects with regard to biodiversity, desertification, recreational value, etc.

In summary, waste-to-energy can significantly contribute to sustainable development both in developed and less developed countries. Waste-to-energy is not only a solution to reduce the volume of waste that is and provide a supplemental energy source, but also yields a number of social benefits that cannot easily be quantified.

Biomass wastes in MENA can be efficiently converted into energy and fuels by biochemical and thermal conversion technologies, such as anaerobic digestion, gasification and pyrolysis. Waste-to-energy technologies hold the potential to create renewable energy from waste matter.

The implementation of waste-to-energy technologies as a method for safe disposal of solid and liquid biomass wastes, and as an attractive option to generate heat, power and fuels, can significantly reduce environmental impacts of wastes in the MENA region. In fact, energy recovery from MSW is rapidly gaining worldwide recognition as the fourth ‘R’ in sustainable waste management system – Reuse, Reduce, Recycle and Recover.

A transition from conventional waste management system to one based on sustainable practices is necessary to address environmental concerns and to foster sustainable development in the region.

Energy Potential of Palm Kernel Shells

The Palm Oil industry in Southeast Asia and Africa generates large quantity of biomass wastes whose disposal is a challenging task. Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres. Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%.


Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content. PKS can be readily co-fired with coal in grate fired -and fluidized bed boilers as well as cement kilns in order to diversify the fuel mix.

The primary use of palm kernel shells is as a boiler fuel supplementing the fibre which is used as primary fuel. In recent years kernel shells are sold as alternative fuel around the world. Besides selling shells in bulk, there are companies that produce fuel briquettes from shells which may include partial carbonisation of the material to improve the combustion characteristics.

As a raw material for fuel briquettes, palm shells are reported to have the same calorific characteristics as coconut shells. The relatively smaller size makes it easier to carbonise for mass production, and its resulting palm shell charcoal can be pressed into a heat efficient biomass briquette.

Palm kernel shells have been traditionally used as solid fuels for steam boilers in palm oil mills across Southeast Asia. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill. Most palm oil mills in the region are self-sufficient in terms of energy by making use of kernel shells and mesocarp fibers in cogeneration.

In recent years, the demand for palm kernel shells has increased considerably in Europe, Asia-Pacific, China etc resulting in price close to that of coal. Nowadays, cement industries and power producers are increasingly using palm kernel shells to replace coal. In grate-fired boiler systems, fluidized-bed boiler systems and cement kilns, palm kernel shells are an excellent fuel.

Cofiring of PKS yields added value for power plants and cement kilns, because the fuel significantly reduces carbon emissions – this added value can be expressed in the form of renewable energy certificates, carbon credits, etc. However, there is a great scope for introduction of high-efficiency cogeneration systems in the industry which will result in substantial supply of excess power to the public grid and supply of surplus PKS to other nations. Palm kernel shell is already extensively in demand domestically by local industries for meeting process heating requirements, thus creating supply shortages in the market.

Palm oil mills around the world may seize an opportunity to supply electricity for its surrounding plantation areas using palm kernel shells, empty fruit branches and palm oil mill effluent which have not been fully exploited yet. This new business will be beneficial for all parties, increase the profitability and sustainability for palm oil industry, reduce greenhouse gas emissions and increase the electrification ratio in surrounding plantation regions.

Thermal Conversion of Tannery Wastes

Tanneries generate considerable quantities of sludge, shavings, trimmings, hair, buffing dusts and other general wastes and can consist of up to 70% of hide weight processed. Thermal conversion technologies by virtue of chemically reducing conditions, provides a viable alternative thermal treatment for tannery wastes, especially for chrome containing materials, and generates a chrome (III) containing ash. This ash has significant commercial value as it can be reconstituted.


All of the wastes generated by the tannery can be gasified following pre-treatment methods such as maceration, drying and subsequent densification or briquetting. A combined drying and gasification process could eliminate solid waste, whilst providing a combustible gas as a tax-exempt renewable energy source, which the tannery can directly reuse. Gasification trials have illustrated that up to 70% of the intrinsic energy value of the wastes currently disposed can be recovered as “synthesis gas” energy.

Gasification technology has the potential to provide significant cost benefits in terms of power generation and waste disposal, and increase sustainability within the leather industry. The gasification process converts any carbon-containing material into a combustible gas comprised primarily of carbon monoxide, hydrogen and methane, which can be used as a fuel to generate electricity and heat.

A wide range of tannery wastes can be macerated, flash dried, densified and gasified to generate a clean syngas for reuse in boilers or other Combined Heat and Power systems. As a result up to 70% of the intrinsic energy value of the waste can be recovered as syngas, with up to 60% of this being surplus to process drying requirements so can be recovered for on-site boiler or thermal energy recovery uses.

A proprietary technology has been in commercial operation at a tanyard on the West Coast of Norway since mid 2001. The process employs gasification-and-plasma-cracking and offer the capability of turning the tannery waste problem to a valorising source that may add values to the plant owner in terms of excessive energy and ferrochrome, a harmless alloy that is widely used by the metallurgical industry. The process leaves no ashes but a non-leaching slag that is useful for civil engineering works, and, hence, no residues for landfill disposal

Use of Sewage Sludge in Cement Industry

Cities around the world produce huge quantity of municipal wastewater (or sewage) which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. Sewage generation is bound to increase at rapid rates due to increase in number and size of urban habitats and growing industrialization.


An attractive disposal method for sewage sludge is to use it as alternative fuel source in cement industry. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management. Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln.

Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

The use of sewage sludge as alternative fuel in clinker production is one of the most sustainable option for sludge waste management. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The sludge minerals will be bound in the clinker after the burning process. The calorific value of sewage sludge depends on the organic content and on the moisture content of the sludge. Dried sewage sludge with high organic content possesses a high calorific value.  Waste coming out of sewage sludge treatment processes has a minor role as raw material substitute, due to their chemical composition.

The dried municipal sewage sludge has organic material content (ca. 40 – 45 wt %), therefore the use of this alternative fuel in clinker production will save fossil CO2 emissions. According to IPCC default of solid biomass fuel, the dried sewage sludge CO2 emission factor is 110 kg CO2/GJ without consideration of biogenic content. The usage of municipal sewage sludge as fuel supports the saving of fossil fuel emission.

Sludge is usually treated before disposal to reduce water content, fermentation propensity and pathogens by making use of treatment processes like thickening, dewatering, stabilisation, disinfection and thermal drying. The sludge may undergo one or several treatments resulting in a dry solid alternative fuel of a low to medium energy content that can be used in cement industry.

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Biofuels from MSW – An Introduction

Nowadays, biofuels are in high demand for transportation, industrial heating and electricity generation. Different technologies are being tested for using MSW as feedstock for producing biofuels. This article will provide brief description of biochemical and thermochemical conversion routes for the production of biofuels from municipal solid wastes.


Biochemical conversion

The waste is collected and milled, particles are shredded to reduce the size of 0.2-1.22 mm. MSW is pretreated to improve the accessibility of enzymes and make use of the enzymes in the bacteria for biological degradation on solid waste. The mixture of biomass is mixed with sulfuric acid and sodium hydroxide and autoclaved. After steam treatment, the mixture is filtered and washed with deionized water. The pre-treated mixture is then dried and drained overnight. The pre-treatment process improves the formation of sugars by enzymatic hydrolysis, avoids the loss of carbohydrate and avoids the formation of by-products inhibitory.

After pre-treatment (pre-hydrolysis), the mixture undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. The common enzymes used for starch-based substrates are amylase, pullulanase, isomylase and glucoamylase. Whereas for lignocellulose based substrates cellulases and glucosidases.

Finally, the mixture is fermented; sugars are converted to ethanol by using microorganisms such as, bacteria, yeast or fungi. The cellulosic and starch hydrolysates ethanolic fermentation were fermented by M. indicus at 37 °C for 72 h. The fungus uses the hexoses and pentoses sugars with a high concentration of inhibitors (i.e. furfural, hydroxymethyl furfural, and acetic acid).

The composition of MSW feedstock effects the yield of the subsequent processes. A high composition of food and vegetable waste is more desirable, as these wastes are easily degradable and result in high yields compared to paper and cardboard.

Thermochemical conversion

Gasification process is carried out by treating carbon-based material with either oxygen or steam to produce a gaseous fuel which requires high temperature and pressure. It can be described as partial oxidation of the waste. At first waste is reduced in size and dried to reduce the amount of energy used in the gasifier.


Layout of a Typical Biomass Gasification Plant


The carbonaceous material oxidizes (combines with oxygen) to produce syngas (carbon monoxide and hydrogen) along with carbon dioxide, methane, water vapor, char, slag, and trace gases (depending on the composition of the feedstock). The syngas is then cleaned to remove any sulfur or acid gases and trace metals (depending on the composition of the feedstock).

The main uses of syngas are direct burning on site to provide heat or energy (by using boilers, gas turbines or steam driven engines) and refined to liquid fuels such as gasoline or ethanol.

Syngas can then be converted into biofuels and chemicals via catalytic processes such as the Fischer-Tropsch process. The Fischer-Tropsch process is a series of catalytic chemical reactions that convert syngas into liquid hydrocarbons by applying heat and pressure. Hydrocracking, hydro-treating, and hydro-isomerization can also be part of the “upgrading” process to maximize quantities of different products.

Waste Management in Qatar

Waste management is one of the most serious environmental challenges faced by the tiny Gulf nation of Qatar. mainly on account of high population growth rate, urbanization, industrial growth and economic expansion. The country has one of the highest per capita waste generation rates worldwide of 1.8 kg per day.

Qatar produces more than 2.5 million tons of municipal solid waste each year. Solid waste stream is mainly comprised of organic materials (around 60 percent) while the rest of the waste steam is made up of recyclables like glass, paper, metals and plastics.


Municipalities are responsible for solid waste collection in Qatar both directly, using their own logistics, and indirectly through private sector contract. Waste collection and transport is carried out by a large fleet of trucks that collect MSW from thousands of collection points scattered across the country.

The predominant method of solid waste disposal in Qatar is landfilling. The collected is discharged at various transfer stations from where it is sent to the landfill. There are three landfills in Qatar; Umm Al-Afai for bulky and domestic waste, Rawda Rashed for construction and demolition waste, and Al-Krana for sewage wastes. However, the method of waste disposal by landfill is not a practical solution for a country like Qatar where land availability is limited.

Solid Waste Management Strategy

According to Qatar National Development Strategy 2011-2016, the country will adopt a multi-faceted strategy to contain the levels of waste generated by households, commercial sites and industry – and to promote recycling initiatives. Qatar intends to adopt integrated waste hierarchy of prevention, reduction, reuse, recycling, energy recovery, and as a last option, landfill disposal.

A comprehensive solid waste management plan is being implemented which will coordinate responsibilities, activities and planning for managing wastes from households, industry and commercial establishments, and construction industry. The target is to recycle 38 percent of solid waste, up from the current 8 percent, and reduce domestic per capita waste generation.

Five waste transfer stations have been setup in South Doha, West Doha, Industrial Area, Dukhan and Al-Khor to reduce the quantity of waste going to Umm Al-Afai landfill. These transfer stations are equipped with material recovery facility for separating recyclables such as glass, paper, aluminium and plastic.

Domestic Solid Waste Management Centre

One of the most promising developments has been the creation of Domestic Solid Waste Management Centre (DSWMC) at Mesaieed. This centre is designed to maximize recovery of resources and energy from waste by installing state-of-the-art technologies for separation, pre-processing, mechanical and organic recycling, and waste-to-energy and composting technologies.

At its full capacity, it treats 1550 tons of waste per day, and is expected to generate enough power for in-house requirements, and supply a surplus of 34.4 MW to the national grid.

Future Outlook

While commendable steps are being undertaken to handle solid waste, the Government should also strive to enforce strict waste management legislation and create mass awareness about 4Rs of waste management viz. Reduce, Reuse, Recycle and Recovery. Legislation are necessary to ensure compliance, failure of which will attract a penalty with spot checks by the Government body entrusted with its implementation.

Improvement in curbside collection mechanism and establishment of material recovery facilities and recycling centres may also encourage public participation in waste management initiatives. When the Qatar National Development Strategy 2011-2016 was conceived, the solid waste management facility plant at Mesaieed was a laudable solution, but its capacity has been overwhelmed by the time the project was completed. Qatar needs a handful of such centers to tackle the burgeoning garbage disposal problem.

Everything You Should Know About MSW-to-Energy

You know the saying: One person’s trash is another’s treasure. When it comes to recovering energy from municipal solid waste — commonly called garbage or trash— that treasure can be especially useful. Instead of taking up space in a landfill, we can process our trash to produce energy to power our homes, businesses and public buildings.

In 2015, the United States got about 14 billion kilowatt-hours of electricity from burning municipal solid waste, or MSW. Seventy-one waste-to-energy plants and four additional power plants burned around 29 million tons of MSW in the U.S. that year. However, just 13 percent of the country’s waste becomes energy. Around 35 percent is recycled or composted, and the rest ends up in landfills.


Recovering Energy Through Incineration

The predominant technology for MSW-to-energy plants is incineration, which involves burning the trash at high temperatures. Similarly to how some facilities use coal or natural gas as fuel sources, power plants can also burn MSW as fuel to heat water, which creates steam, turns a turbine and produces electricity.

Several methods and technologies can play a role in burning trash to create electricity. The most common type of incineration plant is what’s called a mass-burn facility. These units burn the trash in one large chamber. The facility might sort the MSW before sending it to the combustion chamber to remove non-combustible materials and recyclables.

These mass-burn incineration systems use excess air to facilitate mixing, and ensure air gets to all the waste. Many of these units also burn the fuel on a sloped, moving grate to mix the waste even further. These steps are vital because solid waste is inconsistent, and its content varies. Some facilities also shred the MSW before moving it to the combustion chamber.

Gasification Plants

Another method for converting trash into electricity is gasification. This type of waste-to-energy plant doesn’t burn MSW directly, but instead uses it as feedstock for reactions that produce a fuel gas known as synthesis gas, or syngas. This gas typically contains carbon monoxide, carbon dioxide, methane, hydrogen and water vapor.

Approaches to gasification vary, but typically include high temperatures, high-pressure environments, very little oxygen and shredding MSW before the process begins. Common MSW gasification methods include:

  • Pyrolysis, which involves little to no oxygen, partial pressure and temperatures between approximately 600 and 800 degrees Celsius.
  • Air-fed systems, which use air instead of pure oxygen and temperatures between 800 and 1,800 degrees Celsius.
  • Plasma or plasma arc gasification, which uses plasma torches to increase temperatures to 2,000 to 2,800 degrees Celsius.

Syngas can be burned to create electricity, but it can also be a component in the production of transportation fuels, fertilizers and chemicals. Proponents of gasification report that it is a more efficient waste-to-energy method than incineration, and can produce around 1,000 kilowatt-hours of electricity from one ton of MSW. Incineration, on average, produces 550 kilowatt-hours.

Challenges of MSW-to-Energy

Turning trash into energy seems like an ideal solution. We have a lot of trash to deal with, and we need to produce energy. MSW-to-energy plants solve both of those problems. However, a relatively small amount of waste becomes energy, especially in the U.S.

Typical layout of MSW-to-Energy Plant

This lack may be due largely to the upfront costs of building a waste-to-energy plant. It is much cheaper in the short term to send trash straight to a landfill. Some people believe these energy production processes are just too complicated and expensive. Gasification, especially, has a reputation for being too complex.

Environmental concerns also play a role, since burning waste can release greenhouse gases. Although modern technologies can make burning waste a cleaner process, its proponents still complain it is too dirty.

Despite these challenges, as trash piles up and we continue to look for new sources of energy, waste-to-energy plants may begin to play a more integral role in our energy production and waste management processes. If we handle it responsibly and efficiently, it could become a very viable solution to several of the issues our society faces.

How Can You Produce Your Own Biogas?

The idea of biogas is anything but new. People have been experimenting with making biogas for many generations. Biogas is made by converting organic waste into energy. It’s a huge win for the environment because it utilizes what is otherwise considered waste, but it’s a big win for pocketbooks too.

Organic waste includes the byproducts of human food production (think potato peels, carrot peels, the tops of turnips, etc) but it also includes manure. Any manure is fair game, think about cows, pigs, chickens, rabbits, goats — virtually any farm animal produces mounds of this each day.

This manure produces very high levels of methane gas which is horrible for the environment. By using this manure to create biogas, we remove the danger of creating heat-trapping gases in our atmosphere that raises the temperature of the entire planet. Using it for biogas production can also help to reduce global warming.

How Do We Produce Biogas?

Biogas is produced from the breakdown of organic waste in an environment that is void of oxygen. We call this environment anaerobic and the process is process is called anaerobic digestion. Two products are created from this process. One is digestate. Digestate can be used for fertilizer and even as livestock bedding.  The other product is biogas. Biogas can be used for heating, electricity production and as a clean vehicle fuel.

It’s essentially like composting all of the materials, but in an environment without oxygen and in the temperature range of around 35 to 40 degrees Celsius and pH of around 7. This is optimal to produce biogas. Biogas can be converted into an upgraded form of gas by removal of carbon dioxide that can be used like natural gas. It can be used as-is as an engine fuel. It can be used as fuel in a vehicle, sometimes without modification.

How Can You Produce Your Own Biogas?

Just imagine being on your own off-grid property, running a hundred head of cattle, growing your own food and canning it. You’ve got meat covered, your food is stocked and you are prepared for just about anything. But what about fuel? Imagine what a game-changer it could be if you were able to produce your own fuel from the waste from your cattle and your garden scraps or food residuals! You can!

The Biogas Digester makes it possible, and fairly easy, for you to start producing your own biogas. Buy a ready-made biodigester for around $700-$1000 dollars and start producing your own biogas to meet your fuel requirements. They are containers designed to do the work for you and help you collect the fruits of your composted and digested waste.

Build your own! China has approximately 30 million Biodigesters in use in its rural areas. Rural Chinese areas are far removed from cities that have gas stations. It simply isn’t accessible as it is in the US. Many rural people have learned to make their own biodigesters to fill their fuel needs.


You need a tank that is sealed with an access hole on one side for adding organic waste. You have another access to an outlet. That is where you collect the liquid run-off that can be used for fuel.

The bottom of the main unit is the digestion chamber. From that is an outlet where the digestate can be collected and used as fertilizer. The main chamber typically has a domed top to allow for the room that will be necessary for the expansion of the gases formed inside. By being sealed, the unit creates that all-important anaerobic environment.

Useful Links

A tank that demonstrates the size and simplicity of a tank that can be purchased and used in the backyard.


This is a very in-depth article with directions for creating your own biodigester from Science Direct – https://www.sciencedirect.com/topics/engineering/biogas-digester