Biomass from Wood Processing Industries

Wood processing industries primarily include sawmilling, plywood, wood panel, furniture, building component, flooring, particle board, moulding, jointing and craft industries. Biomass from wood processing industries is generally concentrated at the processing factories, e.g. plywood mills and sawmills. The amount of waste generated from wood processing industries varies from one type industry to another depending on the form of raw material and finished product.

Biomass from Wood Processing

The waste resulted from a wood processing is influenced by the diameter of logs being processed, type of saw, specification of product required and skill of workers. Generally, the waste from wood industries such as saw millings and plywood, veneer and others are sawdust, off-cuts, trims and shavings.

Sawdust arise from cutting, sizing, re-sawing, edging, while trims and shaving are the consequence of trimming and smoothing of wood. In general, processing of 1,000 kilos of wood in the furniture industries will lead to wood waste generation of almost half (45 %), i.e. 450 kilos of wood. Similarly, when processing 1,000 kilos of wood in sawmill, the waste will amount to more than half (52 %), i.e. 520 kilo of wood.

The biomass wastes generated from wood processing industries include sawdust, off-cuts and bark. Recycling of wood wastes is not done by all wood industries, particularly small to medium scale wood industries. The off-cuts and cutting are sold or being used as fuel for wood drying process. Bark and sawdust are usually burned.

Recycling of Wood Wastes

The use of wood wastes is usually practised in large and modern establishment; however, it is commonly only used to generate steam for process drying. The mechanical energy demand such as for cutting, sawing, shaving and pressing is mostly provided by diesel generating set and/or electricity grid. The electricity demand for such an industry is substantially high.

Recycling of wood wastes is not done by all wood industries, particularly by smallholders. These wastes are normally used as fuel for brick making and partly also for cooking. At medium or large establishments some of the wastes, like: dry sawdust and chips, are being used as fuel for wood drying process. Bark and waste sawdust are simply burned or dumped.

Importance of Heating Value

The heating or calorific value is a key factor when evaluating the applicability of a combustible material as a fuel. The heating value of wood and wood waste depends on the species, parts of the tree that are being used (core, bark, stem, wood, branch wood, etc.) and the moisture content of the wood. The upper limit of the heating or calorific value of 100% dry wood on a weight basis is relatively constant, around 20 MJ/kg.

In practice, the moisture content of wood during logging is about 50%. Depending on transportation and storing methods and conditions it may rise to 65% or fall to some 30% at the mill site. The moisture content of the wood waste in an industry depends on the stage where the waste is extracted and whether wood has been dried before this stage.

Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.


Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

Biomass Cogeneration Systems

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through biomass cogeneration systems (also known as combined heat and power or CHP system). Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, but may also include chemical and physical.

The simplest way is to burn the biomass in a furnace, exploiting the heat generated to produce steam in a boiler, which is then used to drive a steam turbine. Advanced biomass conversion technologies include biomass integrated gasification combined cycle (BIGCC) systems, cofiring (with coal or gas), pyrolysis and second generation biofuels.

Biomass Cogeneration Systems

A typical biomass cogeneration (or biomass cogen) system provides:

  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.

Biomass cogeneration systems consist of a number of individual components—prime mover (heat engine), generator, heat recovery, and electrical interconnection—configured into an integrated whole. The type of equipment that drives the overall system (i.e., the prime mover) typically identifies the CHP unit.

Prime Movers

Prime movers for biomass cogeneration units include reciprocating engines, combustion or gas turbines, steam turbines, microturbines, and fuel cells. These prime movers are capable of burning a variety of fuels, including natural gas, coal, oil, and alternative fuels to produce shaft power or mechanical energy.

Key Components

A biomass-fueled cogeneration facility is an integrated power system comprised of three major components:

  • Biomass receiving and feedstock preparation.
  • Energy conversion – Conversion of the biomass into steam for direct combustion systems or into biogas for the gasification systems.
  • Power and heat production – Conversion of the steam or syngas or biogas into electric power and process steam or hot water

Feedstock for Biomass Cogeneration Plants

The lowest cost forms of biomass for cogeneration plants are residues. Residues are the organic byproducts of food, fiber, and forest production, such as sawdust, rice husks, wheat straw, corn stalks, and sugarcane bagasse. Forest residues and wood wastes represent a large potential resource for energy production and include forest residues, forest thinnings, and primary mill residues.


Energy crops are perennial grasses and trees grown through traditional agricultural practices that are produced primarily to be used as feedstocks for energy generation, e.g. hybrid poplars, hybrid willows, and switchgrass. Animal manure can be digested anaerobically to produce biogas in large agricultural farms and dairies.

To turn a biomass resource into productive heat and/or electricity requires a number of steps and considerations, most notably evaluating the availability of suitable biomass resources; determining the economics of collection, storage, and transportation; and evaluating available technology options for converting biomass into useful heat or electricity.

Guide to Effective Waste Management

waste-mountainThe best way of dealing with waste, both economically and environmentally, is to avoid creating it in the first place. For effective waste management, waste minimization, reuse, recycle and energy recovery are more sustainable than conventional landfill or dumpsite disposal technique.

Waste Minimization

Waste minimization is the process of reducing the amount of waste produced by a person or a society. Waste minimization is about the way in which the products and services we all rely on are designed, made, bought and sold, used, consumed and disposed of.

Waste Reuse

Reuse means using an item more than once. This includes conventional reuse where the item is used again for the same function and new-life reuse where it is used for a new function. For example, concrete  is a type of construction waste which can be recycled and used as a base for roads; inert material may be used as a layer that covers the dumped waste on landfill at the end of the day.

Waste Recycling

Recycling of waste involves reprocessing the particular waste materials so that it can be used as raw materials in another process. This is also known as material recovery. A well-known process for recycling waste is composting, where biodegradable wastes are biologically decomposed leading to the formation of nutrient-rich compost.


As far as waste-to-energy is concerned, major processes involved are mass-burn incineration, RDF incineration, anaerobic digestion, gasification and pyrolysis. Gasification and pyrolysis involves super-heating of municipal solid waste in an oxygen-controlled environment to avoid combustion. The primary differences among them relate to heat source, oxygen level, and temperature, from as low as about 300°C for pyrolysis to as high as 11 000°C for plasma gasification. The residual gases like carbon dioxide, hydrogen, methane etc are released after a sophisticated gas cleaning mechanism.

MSW incineration produce significant amounts of a waste called bottom ash, of which about 40% must be landfilled. The remaining 60% can be further treated to separate metals, which are sold, from inert materials, which are often used as road base.

The above mentioned techniques are trending in many countries and region. As of 2014, Tokyo (Japan) has nineteen advanced and sophisticated waste incinerator plants making it one of the cleanest cities. From the legislature standpoint, the country has implemented strict emission parameters in incinerator plants and waste transportation.

The European Union also has a similar legislature framework as they too faced similar challenges with regards to waste management. Some of these policies include – maximizing recycling and re-use, reducing landfill, ensuring the guidelines are followed by the member states.

Singapore has also turned to converting household waste into clean fuel, which both reduced the volume going into landfills and produced electricity. Now its four waste-to-energy plants account for almost 3% of the country’s electricity needs, and recycling rates are at an all-time high of 60%. By comparison, the U.S. sent 53% of its solid waste to landfills in 2013, recycled only 34% of waste and converted 13% into electricity, according to the US Environmental Protection Agency.

Trends in Waste Collection

Since the municipal solid waste can be a mixture of all possible wastes and not just ones belonging to the same category and recommended process, recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated municipal solid waste.

Automated vacuum waste collection systems that are located underground are also actively used in various parts of the world like Abu Dhabi, Barcelona, Leon, Mecca and New York etc. The utilization of the subsurface space can provide the setting for the development of infrastructure which is capable of addressing in a more efficient manner the limitations of existing waste management schemes.

AI-based waste management systems can help in route optimization and waste disposal

This technique also minimizes operational costs, noise and provides more flexibility. There are various new innovations like IoT-enabled garbage cans, electric garbage trucks, waste sorting robots and mechanisms etc are also being developed and deployed at various sites.


Waste management is a huge and ever growing industry that has to be analyzed and updated at every point based on the new emergence of threats and technology. With government educating the normal people and creating awareness among different sector of the society, setting sufficient budgets and assisting companies and facilities for planning, research and waste management processes  can help to relax the issues to an extent if not eradicating it completely. These actions not only help in protecting environment, but also help in employment generation and boosting up the economy.

Biomass Energy Potential in Pakistan

Being an agricultural economy, biomass energy potential in Pakistan is highly promising. Pakistan is experiencing a severe energy crisis these days which is resulting in adverse long term economic and social problems. The electricity and gas shortages have directly impacted the common man, industry and commercial activities.

The high cost of energy mix is the main underlying reason behind the power crisis. The main fuel for the local power industry is natural gas however due to the continued depletion of this source and demands elsewhere the power generation companies are now dependent on furnace oil which is relatively expensive.

The way out of this crisis is to look for fuel sources which are cheap and abundantly available within the country. This description and requirement is fulfilled by biomass resources which have been largely ignored in the past and are also available in sufficient quantities to tackle the energy crisis prevailing in the country.

Biomass Energy in Pakistan

The potential to produce power from biomass resources is very promising in Pakistan. Being an agrarian economy, more than 60% of the population is involved in agricultural activities in the country. As per World Bank statistics, around 26,280,000 hectares of land is under cultivation in Pakistan. The major sources of biomass energy are crop residues, animal manure and municipal solid wastes

Agricultural Residues

Wheat straw, rice husk, rice straw, cane trash, bagasse, cotton sticks are some of the major crop residues in Pakistan. Sugar cane is a major crop in the country and grown on a wide scale throughout Pakistan. During 2010-2011, the area under sugarcane cultivation was 1,029,000 hectares which is 4% of the total cropped area.

Sugarcane trash which constitutes 10% of the sugar cane is currently burned in the fields. During the year 2010-11, around 63,920,000 metric tons of sugarcane was grown in Pakistan which resulted in trash generation of around 5,752,800 metric tons. As per conservation estimates, the bioenergy potential of cane trash is around 9,475 GWh per year.

Cotton is another major cash crop in Pakistan and is the main source of raw material to the local textile industry. Cotton is grown on around 11% of the total cropped area in the country. The major residue from cotton crop is cotton sticks which is he material left after cotton picking and constitute as much as 3 times of the cotton produced.

Majority of the cotton sticks are used as domestic fuel in rural areas so only one-fourth of the total may be considered as biomass energy resource. The production of cotton sticks during 2010-2011 was approximately 1,474,693 metric tons which is equivalent to power generation potential of around 3,071 GWh.

Cotton sticks constitute as much as 3 times of the cotton produced.

Animal Manure

Pakistan is the world’s fourth largest producer of milk. The cattle and dairy population is around 67,294,000 while the animal manure generation is estimated at 368,434,650 metric tons. Biogas generation from animal manure is a very good proposition for Pakistan as the country has the potential to produce electrical energy equivalent to 23,654 GWh

Municipal Solid Waste

The generation or solid wastes in 9 major urban centers is around 7.12 million tons per annum which is increasing by 2.5% per year due to rapid increase in population and high rate of industrialization. The average calorific value of MSW in Pakistan is 6.89 MJ/kg which implies power generation potential of around 13,900 GWh per annum.

Biomethane Utilization Pathways

biomethane-transportBiogas can be used in raw (without removal of CO2) or in upgraded form. The main function of upgrading biogas is the removal of CO2 (to increase the energy content) and H2S (to reduce risk of corrosion). After upgrading, biogas possesses identical gas quality properties as  natural gas, and can thus be used as natural gas replacement. The main pathways for biomethane utilization are as follows:

  • Production of heat and/or steam
  • Electricity production / combined heat and power production (CHP)
  • Natural gas replacement (gas grid injection)
  • Compressed natural gas (CNG) & diesel replacement – (bio-CNG for transport fuel usage)
  • Liquid natural gas (LNG) replacement – (bio-LNG for transport fuel usage)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

Although biogas is perfectly suitable to be utilized in boilers (as an environmental friendlier source for heat and steam production), this option is rather obsolete due to the abundance of alternative sources from solid waste origin.

Most Palm Oil Mills are already self-reliant with respect to heat and steam production due to the combustion of their solid waste streams (such as EFB and PKS). Consequently, conversion to electricity (by means of a CHP unit) or utilization as natural gas, CNG or LNG replacement, would be a more sensible solution.

The biogas masterplan as drafted by the Asia Pacific Biogas Alliance foresees a distribution in which 30% of the biomethane is used for power generation, 40% for grid injection and 30% as compressed/liquefied fuel for transportation purpose (Asian Pacific Biogas Alliance, 2015).

For each project, the most optimal option has to be evaluated on a case to case basis. Main decision-making factors will be local energy prices and requirements, available infrastructure (for gas and electricity), incentives and funding.

For the locations where local demand is exceeded, and no electricity or gas infrastructure is available within a reasonable distance (<5-10 km, due to investment cost and power loss), production of CNG could offer a good solution.

Moreover, during the utilization of biogas within a CHP unit only 40-50% of the energetic content of the gas is converted into electricity. The rest of the energy is transformed into heat. For those locations where an abundance of heat is available, such as Palm Oil Mills, this effectively means that 50-60% of the energetic content of the biogas is not utilized. Converting the biogas into biomethane (of gas grid or CNG quality) through upgrading, would facilitate the transportation and commercialisation of over 95%  of the energetic content of the biogas.

Within the CNG utilization route, the raw biogas will be upgraded to a methane content of >96%, compressed to 250 bar and stored in racks with gas bottles. The buffered gas (bottles) will be suitable for transportation by truck or ship. For transportation over large distances (>200km), it will be advised to further reduce the gas volume by converting the gas to LNG (trough liquefaction).

Overall the effects and benefits from anaerobic digestion of POME and utilization of biomethane can be summarized as follows:

  • Reduction of emissions i.e. GHG methane and CO2
  • Reduced land use for POME treatment
  • Enhanced self-sufficiency trough availability of on-site diesel replacement (CNG)
  • Expansion of economic activities/generation of additional revenues
    • Sales of surplus electricity (local or to the grid)
    • Sales of biomethane (injection into the natural gas grid)
    • Replacement of on-site diesel usage by CNG
    • Sales of bottled CNG
  • Reducing global and local environmental impact (through fuel replacement)
  • Reducing dependence on fossil fuel, and enhances fuel diversity and security of energy supply
  • Enhancement of local infrastructure and employment
    • Through electrical and gas supply
    • Through Fuel (CNG) supply

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the second article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first article can be viewed at this link

Biomass Energy Scenario in Southeast Asia

The rapid economic growth and industrialization in Southeast Asian region is characterized by a significant gap between energy supply and demand. The energy demand in the region is expected to grow rapidly in the coming years which will have a profound impact on the global energy market. In addition, the region has many locations with high population density, which makes public health vulnerable to the pollution caused by fossil fuels.

Another important rationale for transition from fossil-fuel-based energy systems to renewable ones arises out of observed and projected impacts of climate change. Due to the rising share of greenhouse gas emissions from Asia, it is imperative on all Asian countries to promote sustainable energy to significantly reduce GHGs emissions and foster sustainable energy trends. Rising proportion of greenhouse gas emissions is causing large-scale ecological degradation, particularly in coastal and forest ecosystems, which may further deteriorate environmental sustainability in the region.

The reliance on conventional energy sources can be substantially reduced as the Southeast Asian region is one of the leading producers of biomass resources in the world. Southeast Asia, with its abundant biomass resources, holds a strategic position in the global biomass energy atlas.

There is immense potential of biomass energy in ASEAN countries due to plentiful supply of diverse forms of wastes such as agricultural residues, agro-industrial wastes, woody biomass, animal wastes, municipal solid waste, etc. Southeast Asia is a big producer of wood and agricultural products which, when processed in industries, produces large amounts of biomass residues.


Palm kernel shells is an abundant biomass resource in Southeast Asia

According to conservative estimates, the amount of biomass residues generated from sugar, rice and palm oil mills is more than 200-230 million tons per year which corresponds to cogeneration potential of 16-19 GW. Woody biomass is a good energy resource due to presence of large number of forests and wood processing industries in the region.

The prospects of biogas power generation are also high in the region due to the presence of well-established food processing, agricultural and dairy industries. Another important biomass resource is contributed by municipal solid wastes in heavily populated urban areas.

In addition, there are increasing efforts from the public and private sectors to develop biomass energy systems for efficient biofuel production, e.g. biodiesel and bioethanol. The rapid economic growth and industrialization in Southeast Asia has accelerated the drive to implement the latest biomass energy technologies in order to tap the unharnessed potential of biomass resources, thereby making a significant contribution to the regional energy mix.

Food Waste Management

The waste management hierarchy suggests that reduce, reuse and recycling should always be given preference in a typical waste management system. However, these options cannot be applied uniformly for all kinds of wastes. For examples, food waste is quite difficult to deal with using the conventional 3R strategy.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer.

There are numerous places which are the sources of large amounts of food waste and hence a proper food waste management strategy needs to be devised for them to make sure that either they are disposed off in a safe manner or utilized efficiently. These places include hotels, restaurants, malls, residential societies, college/school/office canteens, religious mass cooking places, communal kitchens, airline caterers, food and meat processing industries and vegetable markets which generate food residuals of considerable quantum on a daily basis.


The anaerobic digestion technology is highly apt in dealing with the chronic problem of food waste management in urban societies. Although the technology is commercially viable in the longer run, the high initial capital cost is a major hurdle towards its proliferation.

The onus is on the governments to create awareness and promote such technologies in a sustainable manner. At the same time, entrepreneurs, non-governmental organizations and environmental agencies should also take inspiration from successful food waste-to-energy projects in Western countries and try to set up such facilities in cities and towns.

Bioenergy in the Middle East

The Middle East region offers tremendous renewable energy potential in the form of solar, wind and bioenergy which has remained unexplored to a great extent. The major biomass producing Middle East countries are Egypt, Algeria, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the Middle East. Since most of the region is arid/semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and agro-industrial wastes.

Municipal solid wastes represent the best bioenergy resource in the Middle East. The high rate of population growth, urbanization and economic expansion in the region is not only accelerating consumption rates but also accelerating the generation of municipal waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

The food processing industry in Middle East produces a large number of organic residues and by-products that can be used as source of bioenergy. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the Middle East.

Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia. There are many technologically-advanced dairy products, bakery and oil processing plants in the region.


Date palm biomass is found in large quantities across the Middle East

Agriculture plays an important role in the economies of most of the countries in the Middle East.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt. Cotton, dates, olives, wheat are some of the prominent crops in the Middle East

Large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas.

Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

The Middle Eastern countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of the Middle East countries. Many millions of live ruminants are imported into the Middle Eastern countries each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

Global Waste to Energy Market

Waste-to-Energy is the use of modern combustion and biochemical technologies to recover energy, usually in the form of electricity and steam, from urban wastes. These new technologies can reduce the volume of the original waste by 90%, depending upon composition and use of outputs. The main categories of waste-to-energy technologies are physical technologies, which process waste to make it more useful as fuel; thermal technologies, which can yield heat, fuel oil, or syngas from both organic and inorganic wastes; and biological technologies, in which bacterial fermentation is used to digest organic wastes to yield fuel.

The global market for waste-to-energy technologies was valued at US$6.2bn in 2012 which is  forecasted to increase to US$29.2bn by 2022. While the biological WTE segment is expected to grow more rapidly from US$1.4bn in 2008 to approximately US$2.5bn in 2014, the thermal WTE segment is estimated to constitute the vast bulk of the entire industry’s worth. This segment was valued at US$18.5bn in 2008 and is forecasted to expand to US$23.7bn in 2014.

The global market for waste to energy technologies has shown substantial growth over the last five years, increasing from $4.83 billion in 2006, to $7.08 billion in 2010 with continued market growth through the global economic downturn. Over the coming decade, growth trends are expected to continue, led by expansion in the US, European, Chinese, and Indian markets. By 2021, based on continued growth in Asian markets combined with the maturation of European waste management regulations and European and US climate mitigation strategies, the annual global market for waste to energy technologies will exceed $27 billion, for all technologies combined.

Asia-Pacific’s waste-to-energy market will post substantial growth by 2015, as more countries view the technology as a sustainable alternative to landfills for disposing waste while generating clean energy. In its new report, Frost & Sullivan said the industry could grow at a compound annual rate of 6.7 percent for thermal waste-to-energy and 9.7 percent for biological waste-to-energy from 2008 to 2015.

The WTE market in Europe is forecasted to expand at an exponential rate and will continue to do so for at least the next 10 years. The continent’s WTE capacity is projected to increase by around 13 million tonnes, with almost 100 new WTE facilities to come online by 2012. In 2008, the WTE market in Europe consisted of approximately 250 players due in large to the use of bulky and expensive centralized WTE facilities, scattered throughout Western Europe.