Preparing an Effective Industrial Waste Management Plan

Did you realize over 7 billion tons of industrial waste is produced in the United States each year? If you are the owner of an industrial business, having an adequate waste management plan is essential. Without a waste management plan, you run the risk of doing a lot of damage to the environment.

If you are new to the world of industrial waste management, you need to take your time when develop a plan of action. Consulting with waste management professionals is a great way to ensure the plan you develop is successful. Below are few crucial tips to  prepare an effective industrial waste management plan.

industrial-waste

Collaborating With the Right Waste Management Company

Unless your company has the ability to transport and dispose of industrial waste, you will need to work with a third-party. Most business owners fail to realize just how many different waste management companies there are on the market. Ideally, you want to find a company that offers services like industrial cleaning, hazardous material transportation and spill response.

If you need services like this for a competitive price, you need to go through PROS Services. By pairing with the right waste management company, you can avoid making mistakes when it comes to disposing of hazardous and non-hazardous materials.

Make Recycling a Focal Point of Your Strategy

Being a business owner in the modern age requires you to be more eco-conscious. One of the best ways for an industrial business to do their part for the environment is by recycling as much as possible. When running an industrial business, you will undoubtedly have a number of recyclable materials. Turning these materials over to companies that can actually do something with them is imperative.

waste-management-plan

Making a new recycling program work will require to get your entire team on board. Informing your team about the importance of recycling is the first step in making your program successful. You also need to implement easy and effective solutions when it comes to how your team will store the recyclable materials. By laying out the details of your plan, you can address any concerns your team may have.

Leave Flexibility in Your Plan

As waste management technology and requirements change, you will have to adapt your strategy. This is why leaving a high-degree of flexibility in your plan is so important. Accomplishing this will be easy if you do things like sign short-term contracts with the companies hired to dispose of your industrial waste. Staying on the cutting edge of industrial waste management technology can help you see when changes are coming and what you can do to embrace these changes.

Don’t Wait to Implement Your Plan

As you can see, having a way to properly dispose of industrial waste is important. This is why you need to avoid procrastinating when developing a plan of action. Allowing professionals to weigh in on the details of your waste management plan can help you avoid making mistakes.

Plastic Packaging Waste in the Philippines: An Analysis

I recently took a 5-month break from my work as an environmental consultant to volunteer with Marine Conservation Philippines (MCP) on the issue of marine litter. During the first few months of my stint there, we undertook an intense programme of beach cleans across sections of a small sample of local beaches. The idea was to find out what kinds of material were most prevalent, to inform the types of local initiative we could set up to try and tackle the issues.

Consistently, the vast majority of the debris we found strewn across the beaches across the Philippines was plastic; a significant amount of that was soft plastics which can’t be recycled – plastic bags, sweet and crisp packets, and single use soap and detergent sachets. There were some variations, though: at one beach, we kept picking up a staggering amount of styrofoam.

During our beach clean work and engagement with local communities, it became increasingly apparent that part of the problem was the variability of waste management across the municipality of Zamboanguita, in the Negros Oriental province of the Philippines.

Despite national legislation, some areas received no formal waste collections at all. With the help of the local Coastal Resources Manager, Tony Yocor, we began to engage with the local municipality’s Solid Waste Manager with the view to supporting appropriate an affordable waste management practices.

We focused on solutions that have been successful elsewhere in the Philippines and in other emerging markets, such as the local collection and waste sorting approach developed by Mother Earth Foundation. Unfortunately, as with most places in the world, influencing the authorities to act takes time, and whilst we started to make some progress, Tony and the staff at MCP are still working on trying to get the full range of local solutions we identified implemented.

Materials and markets

We did, however, build our own ‘MRF’ (more of a community recycling centre in UK terms) at MCP’s base to improve the management of the waste we collected. The main aim of the site is to allow as many recyclable materials as possible to be segregated so that they can be sold to the local junk shops. We also hope that this can act as a demonstration site for the types of simple solutions that can be set up locally to improve waste management.

But ultimately, if we are serious about tackling this issue of marine debris, we have to reduce the amount of litter we produce, and many countries are making progress on tackling commonly littered items. Restrictions on single use carrier bags are amongst the most prominent and widespread anti-littering measures around the world.

England’s 5p carrier bag levy was introduced in 2015 and, despite its limitations, is reducing bag usage and (it would seem) marine litter. Last year Kenya hit the headlines when it joined the growing list of countries adopting a rather stricter line: it banned plastic carrier bags entirely, with offenders risking heavy fines or even imprisonment.

Although bans and restrictions are becoming increasingly widespread, they have not yet reached the Philippines at a national level and it seems no coincidence that a large proportion of the items we found littered on our sample beaches around Zamboanguita were plastic bags. One beach, close to where the largest ‘ghetto’ market is held weekly, had a particularly high incidence of plastic bag litter, and the quantity increased noticeably on, and just after, market day. Use wholesale tote bags to promote sustainable living in the Philippines.

Without national instruments in place, we explored what could be done with the policy powers available to the local government. Working with the local Markets Officer and Coastal Resources Manager we put the wheels in motion to propose and implement a local ordinance to introduce a charge on plastic bags, initially at the market as a trial, with the potential for a wider roll-out if successful. It’s a model that could be reapplied elsewhere in the Philippines if national legislation isn’t forthcoming.

Sachet and sea?

Plastic bags are a challenge, but because they’re distributed locally it’s relatively easy to change practices. Other forms of single use packaging contribute just as much to the litter problem afflicting many South East Asian counties, but are harder to tackle because their source is more remote.

The Philippines, like many developing and emerging economies, is a ‘sachet economy’, with a huge range of products sold in one-portion, single-use sachets. You see them everywhere, from small ‘sari sari’ stalls to large shopping centres. The producers’ perspective is that this form of packaging represents a form of social responsibility, allowing them to provide safe, long-lasting, affordable products that meet people’s needs. However, they have a wider cost.

Sachet society: one of the most common forms of litter in the Philippines. Photo courtesy of Amy Slack.

I was involved in Break Free from Plastic Negros Oriental’s December beach clean and audit, and these sachets were the most common item we found. They accounted for a massive 25% of the items picked up from Dumaguete beach, beating plastic bags into second place (13%).

The waste management system in the Philippines simply isn’t geared up to dealing with this increasingly popular type of packaging – the composite materials of which they are made are impractical to recycle and so lack the economic value that engages the interest of the informal sector. So, what could be done to help?

The Best Foot Forward

There is no ‘silver bullet’ to instantly lay marine litter to rest. Even if there was a global ban on single use plastics today, it would take time for already littered material to blow or wash its way through the system.

However, introducing a compulsory extended producer responsibility (EPR) mechanism into policy could help end the blame game that currently impedes action: producers blame the general public for littering, the general public blame the government for inadequate waste systems, and government blames produces for manufacturing plastic packaging.

An EPR scheme would see government giving clear responsibilities to business, and ensuring that producers fund collection and reprocessing schemes to properly manage the waste from the products they sell in the Philippines. That would in turn incentivise producers to use more easily recyclable packaging, as the costs of managing this material would be lower.

The goal need not be to try to ape the waste management systems of the West, which may not be suitable in the circumstances. And in the Philippines, where labour is cheap and informal waste management thrives, it may take little more than giving a small value to packaging products to greatly reduce the amount of material that escapes into the environment.

Conclusion

Although countries like the Philippines currently struggle most to cope with the consequences of plastic packaging waste, with the right set of policies and determined volunteers to help organise local action, there is scope for them to catch up and overhaul the West in developing solutions that really do reduce litter.

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link

Waste Management in Global North and Global South

Waste management is highly context specific. Therefore it is important to distinguish between the conditions in the Global North and the Global South. Recent ILO figures suggest that 24 million people around the world are involved in the informal waste recycling sector, 80% of whom are waste pickers. Some estimates say that 1% of urban population in developing countries makes their primary household income through informal sector waste management activities.  In Latin America alone, 4-5 million waste pickers earn their livelihood by being a part of the global recyclables supply chain.

waste-management-latin-america

Municipal budgets in the Global South are often limited and only a small percentage of that budget is assigned to waste management as compared to other municipal services. In the Global North waste management is recognized as a necessary public good and there is a greater willingness to pay for this service. Solid waste management (e.g. waste collection, transportation and recycling) is generally more labour intensive than in North America and Europe.

Urbanization in the Global South is often haphazard and unplanned; creating pockets of high and low income neighbourhoods. This creates logistical issues for the waste management service provision limiting options for viable waste collection and transportation. It is often the informal sector that steps in to fill this service gap.

The maturity and strength of the legal framework differs between the Global South and Global North. In North America and Europe the legal framework of waste management actively promotes and provides incentives for waste reduction, reuse and recovery whereas, despite recent developments in some countries, in Latin America legal frameworks remain focused upon mixed waste collection, transportation and disposal.

Recycling rates in Argentina are at 11% of the total waste stream with 95% of this material is recovered by the informal sector. This situation is replicated in many other countries. The informal sector recovers between 50% (e.g. Mexico) and 90% (e.g. Nicaragua) of the waste recovered and in the different countries of the region. Resource recovery and recycling is driven by market conditions. Materials that have a value are diverted from landfill through an informal network of recyclers and waste collectors.

The composition of waste is also very different in the Global South where organic waste is a much larger percentage of the waste stream. Because of the high percentage of organics in the waste stream in many cities in the Global South, innovations in decentralised composting and small scale biogas have been seen across the Global South (particularly in India) and can be used effectively by the informal sector, making a zero waste future a real possibility.

Role of Informal Recycling Sector

The informal sector can be highly effective at collecting and diverting garbage from landfill. When empowered with a facilitating legal framework, and collectively organized, the informal sector can be a key part of a sustainable resource recovery system. Using people power to increase recycling and diversion rates decreases the need for expensive, fixed, high technology solutions.

Understanding that the context for waste management is different between the Global North and Global South, and even in different areas within a city or region, means that no two situations will be the same. However, if there is one principle to follow it may well be to consider the context and look for the simplest solution. The greenest cities of the future may well be those that use flexible, adaptable solutions and maximize the work that the informal sector is already doing.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise.

Plastic Wastes and Role of EPR

In just a few decades plastics have become omnipresent in our society. But, unfortunately, the consequences of their use last far beyond their useful lifetime. Everyone is aware of their overwhelming dispersion in our landscapes. The situation in the oceans is not better [1]. As a reaction, a few thoughts spring to my mind.

First of all, it is clear that the industry is assuming very little responsibility, and that Public Administrations are complicit with this. Extended Producer Pesponsibility (abbreviated as EPR) only affects –and only partially– those plastics used as light packaging, in vehicles, in tyres or as part of electric and electronic equipment, not any of the others. Also, recycling levels are not sufficiently high, as a result of poor separate collection systems and inefficient treatment facilities. As a consequence, society has to face not only the problems created by those materials which are not recycled, but also has to assume a high share of the costs of managing them as waste.

Secondly, it illustrates the importance of the quality of the materials that we aim to recycle, and thus the importance of separate waste collection; for all materials, but particularly for biowaste. Although most composting and anaerobic digestion facilities have the capacity to separate some of the impurities (of which around 40% can be plastics), this separation is far from perfect.

Two recent studies confirm that the quality of compost is influenced by the presence of impurities in biowaste [2] and that, in turn, the presence of impurities is influenced by several factors [3], among which particularly the type of separate collection scheme, door to door separate collection models being those presenting better results.

Thirdly, it makes clear the urgency to adopt measures that address the root of the problem. High quality separate collection and sound waste treatment are necessary, and allow enormous room for improvement, but they are end-of-pipe solutions. It is also important to promote greener consumption patterns through environmental awareness campaigns, but this is not enough either.

We have to address the problem where it is created. And this requires measures of higher impact, such as taxes on certain products (e.g. disposable ones) or on certain materials, compulsory consideration of eco-design criteria, generalisation of the extended producer responsibility or prohibition of certain plastics (e.g. oxo-degradable ones) or of certain uses (e.g. microplastic beads in cosmetics).

glitter-plastic-pollution

One can think that these measures are a bit too hard, but honestly, after wandering around beaches and mountains, and finding plastics absolutely everywhere, I am bit disappointed with the outcome of soft solutions.

On 16th January 2018 the European Strategy for Plastics in a Circular Economy was adopted [4]. A number of measures will need to be applied by the European Union (listed in Annex I of the Strategy), by Member States and by the industry (Annex II), but also by Regional Governments and Local Authorities. No doubt that implementing the Strategy will bring about significant advances, but only time will say if it is sufficient to address the huge challenge we face.

The European Union has also recently adopted the much-awaited Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment [5], which introduces several bans and restrictions on different uses and materials. This is indeed a huge step, which needs to be followed by others, both in Europe, but also elsewhere, as this is truly a global challenge.

Note: An earlier version of this article was published in February 2018: https://mailchi.mp/db1fd794d528/sent-11-april-2018

References

[1] See for example: https://tinyurl.com/yxra3cod

[2] Campos Rodrigues, L., Puig Ventosa, I., López, M., Martínez, X. (2016) Anàlisi de la incidència dels impropis de la FORM sobre la qualitat del compost de les plantes de compostatge de Catalunya https://tinyurl.com/y37ncton

[3] Puig-Ventosa, I., Freire-González, J., Jofra-Sora, M. (2013) Determining factors for the presence of impurities in selectively collected biowaste, Waste Management and Research, 31: 510-517.

[4] The strategy and several accompanying documents can be found in this portal: http://ec.europa.eu/environment/waste/plastic_waste.htm

[5] Directive 2019/904 of the European Parliament and of the Council of 5 June 2019 on the reduction of the impact of certain plastic products on the environment.

How to Manage COVID-19 Trash?

We might be living amid a pandemic, but that hasn’t slowed down global waste production. If anything, we’re producing more waste now than we were at the beginning of the year with the addition of disposable gloves, masks and other personal protective equipment. What changes do we need to make to manage COVID-19-related waste?

covid19-waste-management

Handling More Waste

Before the pandemic, most cities maintained recycling programs. Commercial waste generally outweighed residential waste, and there was plenty of space in the local landfills for the garbage we throw away. Now, it might not be long before cities are looking for new places to store their trash as landfills overflow. Residential waste production increased by anywhere from 20%-30% in the months since the pandemic started.

Much of this is due to the simple fact that people are spending more time at home. They’re getting takeout — which comes with a plethora of single-use plastics — and they’re ordering their necessities online, which means more packaging to throw away. Add to this the risk that the coronavirus may live on surfaces for days or weeks at a time, and COVID cleaning becomes more challenging by the day.

Managing the Risks

Despite fears of COVID-19 persisting on surfaces, the Occupational Safety and Health Administration (OSHA) believes waste workers are only at a moderate risk as a result of their occupation. Additionally, waste workers only merit a medium risk rating if they’re working directly with healthcare waste for patients with confirmed cases of COVID-19. This information hasn’t stopped cities and counties across the country from closing down or even entirely shuttering their local recycling programs, though.

medical-waste-management

 

Managing these risks also reduces any liability that the waste management company might encounter if someone in their employ gets sick from handling contaminated waste. Usually, liability complaints get restricted to chemicals and other hazardous wastes, but until we definitively understand how COVID-19 spreads, it extends to this situation as well.

Lighting a Fire

Some countries, where COVID trash is piling up with no signs of stopping, have begun considering alternative means to manage the waste. Spain, which only has three sanitary waste processing plants in the Catalonia region, has seen medical waste production increase by 300%-350% in the worst-impacted regions of the country since the beginning of the pandemic. Instead of trying to push those processing plants to their limits, Spanish officials are exploring other alternatives.

Incineration is becoming an option in hard-hit regions like Catalonia. While stabilization plants can only manage 50 tons of waste a day, the incinerators eliminated upwards of 700 tons of garbage between the start of the pandemic and mid-April. While incinerators aren’t generally employed for waste-to-energy initiatives anymore, burning the trash rather than letting it fester in a landfill may be one of the only ways to make the best of a bad situation.

Starting Now

Very few people alive today have ever lived through a global pandemic. For the most part, we’re making things up as we go. The shift from commercial to residential waste was expected as more people started staying home to slow the spread of the virus. While we might have anticipated it, we definitely weren’t prepared for it, and we may find that overflowing landfills are tomorrow’s problem.

covid19-trash

Starting now, we need to start looking at COVID-19 trash as a whole. That includes the problems it might create and the best ways to manage it without backpedaling and losing all the sustainability progress we’ve made over the last couple decades. COVID-19 will likely be a part of our lives for many months to come, so we’ll have to adapt if we want to survive and thrive.

Recycling Outlook for Latin America

Latin America has one of the highest rates of urbanization in the world (80% urban population). By 2050, 90% of Latin America’s population will live in urban areas. This high rate of urbanization coupled with the global economic crisis has resulted in a waste management crisis. Municipalities find themselves unable to keep up with providing services and infrastructure to the urban populations.

recycling-latin-america

Some cities in Latin America are facing this challenge by integrating the informal sector recyclers who are already active in their cities into the municipal solid waste management systems. In many cities, these “recicladores”, “cartoneros” or “catadores” (a few of the many names used for these workers in the region) are responsible for up to 90% of the recyclable waste recovered from the waste stream. Their work reduces municipal waste transportation costs, increases landfill lifetimes and supports the recycling chain throughout the region.

State of the Affairs

Every location presents its own challenges–there is no one-size-fits-all solution for integrated solid waste management systems–but relevant lessons can be drawn from both failed attempts and successful examples of informal sector integration in recycling systems in Latin America.

There are often two very different contexts within cities. In low-income neighborhoods waste collection services are often not provided and individuals and families accumulate and then sell their recyclables for additional income. In contrast, residents in high income neighborhoods do receive a waste collection service and their motivation for recycling is often related to greater levels of environmental awareness. It is important to consider these differences when designing waste management solutions.

Imported systems, and even locally derived systems based on examples from the Global North, generally focus on only one waste management scenario, making it difficult to manage the multiple competing scenarios in many cities in Latin America. There is often a bias towards the automation of waste management services, with the application of the high technology solutions used in the Global North.

Regardless of the practicality or scientific evidence against certain high tech solutions, these are often sought after, thought to raise the bar of the city, to make it appear more sophisticated and modern. This leads to a misconception that working with informal sector is a step backwards in terms of urban development and modernization.

Waste management projects based on public-private partnership (PPP) model has more chances of success in developing countries

Conflicts between private waste management companies, the municipality and informal recyclers are common. The waste management companies do not want pickers on the landfill and wastepickers then go to the municipality for help. However, municipalities usually have very little experience to support the integration of formal and informal waste sectors.

There are opportunities for new systems to emerge within this conflict. For example, during a similar conflict in Mexicali, Mundo Sustentable, with the help of Danone, intervened to help a private company work with the informal waste sector and improve recycling rates.

The Way Forward

In Latin America, there is a great opportunity to increase recycling rates by using labour-intensive solutions, which create jobs and support the development of a better urban environment in the cities. Municipal governments should be an integral part of these processes as they are usually responsible for solid waste management at local level. The key to catalyzing informal recycling sector integration will be the development and dissemination of successful examples.

Informal recyclers provide important a range of services to municipalities (such as waste collection and recovery in communities that would not otherwise have access to them), as well as cost savings (for example, the extension of landfill life and reduced transport costs), yet are rarely compensated for these benefits. Informal recyclers further form the foundation of an entire recycling supply chain, which ultimately benefits formal businesses, and often aliment entire local economies.

Challenges to Overcome

Municipal governments are often hesitant to work with informal actors, who are frequently seen as an unknown quantity. Yet often in the process of working and developing relations with informal recycler groups, their concerns diminish and they may actually exhibit enthusiasm. Likewise, the recyclers may gain in confidence and professionalism in their experience of formalization.

One major challenge facing efforts to integrate the informal sector in developing countries is the desire of some local governments to adopt technological solutions that appear more “modern.” In much of Latin America, however, low-cost, low-tech solutions tend to be more viable and sustainable.

The main difference between Latin America and the countries of the Global North is that solid waste management is a labor intensive system. It is made up of workers and hence has an important social component. The ILO estimated there is 24 million of people working in the global recycling supply chain, but those at the bottom of the pyramid, the wastepickers, make up 80%. They remain the lowest paid even though they make an enormous contribution to their cities.

It is important to understand that highly sophisticated, high technology systems are not required for effective resource recovery. In many cities in Latin America between 80-90% of everything that is recycled is recovered by the informal recycling sector.

Despite the fact that there is little or no public investment in waste management or recycling infrastructure, cities with an active informal sector reach twice the rate of fully formalized municipal solid waste management systems. As an example, the recycling rate is 60% in Cairo, while in Rotterdam (and other cities in the Global North) recycling levels only reach 30%, even with a high public investment in the system (UN Habitat, 2010).

When designing infrastructure and waste management systems we must consider not only the waste management and resource recovery needs but also the social side of the system. In order to be effective, efforts to upgrade waste management services should go hand in hand with efforts to formalise and integrate the informal sector.

Bogota – A Success Story

An example of a recent success story is that after 27 years of struggle, the waste pickers in Bogota, Colombia have managed to change the government’s outlook on their work and their existence. They are now included in the system and are paid per tonne of waste collected, just like any other private sector collection and waste management company would be. They have become recognized as public service providers, acknowledged for their contribution to the environment and public health of the city.

The key challenge is to be much more creative and understand that in order to improve the working conditions of waste pickers and in order to increase recycling rates, we don’t need high technology. We need a systemic approach and this can be very simple sometimes infrastructure as simple as a roof [on a sorting area] can be effective in improving working conditions.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise.

Here’s What Continues To Ail Solid Waste Recycling Plants In 2023

In the heart of today’s most pressing environmental concerns, the urgency of waste recycling stands out. Yet, even as we confront this crucial part of our global environmental challenge, several conundrums emerge within solid waste recycling plants.

Recurring issues are hampering their progress and efficiency. Overcoming these hurdles is not just a herculean task, but an absolute necessity for preserving our planet for future generations to come.

Let’s delve further into untangling these complex problems.

problems with plastic recycling plants

1. The Urgency of Waste Recycling

Churning out convenience in short bursts, modern consumer culture has led to an upsurge in solid waste generation worldwide. These wastes are loaded with a mix of recyclable materials such as plastic, paper, and glass, alongside hazardous contaminants and perishable trash.

The need for effective management demands robust recycling plants that can meet the challenge of separating and converting this waste into reusable substances.

This urgent necessity forms the backdrop for all the trials faced by solid waste recycling plants today.

2. Talent Shortage in the Waste Recycling Industry

The manpower makeup of waste recycling plants is as varied as the waste they process. Notably, a considerable talent crunch continues to hurt the industry.

The demand for specialists spans across roles, from high-level plant managers to ground workers like forklift operators. Yet, the dearth of adequately trained staff persists.

Companies can reverse this trend by investing heavily in quality education and skills training programs. For instance, providing staff with OSHA-compliant forklift operator training materials would be a smart move towards bridging this gap.

Additionally, promoting career opportunities within the sector would increase awareness and draw a potential talent pool to fill these vacancies.

3. Issues Related to Sorting and Separation

The intricate task of sorting and separating forms the core element of waste recycling. When materials reach the plant mixed together, skilled workers or advanced machines must distinguish recyclable substances from non-recyclable ones.

Here are some common obstacles in this regard:

  • Cross-contamination of sorted materials
  • Inability to segregate waste due to extensive material diversity
  • Dependence on manual sorting despite technological advancements

These challenges require an effective system that is integrated and interlinked, addressing these issues simultaneously for a better functioning facility.

Companies that are yet to adopt modern technologies like optical sorting systems, magnetic separation, air classifiers, and robotic sorting often resort to manual sorting, which is costlier and much slower.

4. Recycling Technology: Initially Costlier and Requires Proper Planning

Adopting advanced technology in recycling plants can be a mixed blessing. While innovative devices like optical sorters, air classifiers, and robotic arms can significantly enhance separation accuracy and efficiency, there are significant up-front costs associated with these technologies.

Additionally, training existing workers to operate this new machinery or hiring specialized personnel can further elevate operational expenses.

Indeed, advancing technologically is crucial for waste recycling plant efficiency but it requires careful planning and management of resources.

household hazardous wastes

5. Handling Hazardous Material

A persistent challenge for waste recycling plants is handling hazardous materials. This runs the gamut from toxic metals in electronic waste to harmful chemicals in paint and aerosol cans.

The dilemma here is two-fold: protecting workers’ health and safety while ensuring the destructive substances don’t slip through the recycling process only to end up polluting our environment.

Some common measures for handling harmful waste include:

  • Use of proper protective equipment
  • Regular employee training
  • Safe disposal methods for unrecyclable hazardous waste
  • Regular monitoring for adherence to safety procedures
  • Investing in safer handling technologies

Practicing these safety measures can drastically mitigate the risk of accidents and reduce environmental contamination.

6. Scaling Woes Amid the Climate Change Debate

The climate change debate just took a significantly sharper tone with the Africa Climate Summit of 4th-8th September 2023 in Nairobi, Kenya. The event served as a poignant reminder about the importance and perks of maintaining a green planet. To some extent, it unveiled some of the scaling issues gnawing solid waste recycling plants globally.

Cop28:

Moreover, as expectations mount for more pronounced solutions during the upcoming Convention on Climate Change (COP28) Scheduled for November 30 to December 12, 2023, in UAE’s Expo City Dubai, one thing is apparent. The role of effective recycling has never been more critical in this climate change discourse.

Carbon Emissions:

Yes, all eyes are and should be on green energy and reducing carbon emissions. But if your guess is as good as anyone’s, increasing capacity for handling higher volumes of solid waste will hopefully be on the agenda.

After all, solid waste is a conspicuous menace that not only pollutes the environment in the form of landfills but also causes disruptions in sea life. From dolphins to seals, Laysan albatrosses, and gulls, dozens of marine ecosystem-dependent animals risk decimation from constantly swallowing plastic and other human-caused sea debris.

ways to calm climate crisis anxiety

What Exactly is Climate Change?

In simple terms, climate change refers to significant shifts in global or regional climate patterns. It’s largely driven by human activities, particularly the burning of fossil fuels, deforestation, and other acts that lead to an overall increase in average global temperatures.

 Over the past few decades, sea levels have been rising and ice caps melting, with habitats for animals like polar bears and life-supporting ocean corals being threatened.

These changes prompt more extreme weather events and profound shifts in wildlife’s natural habitats.

Where Solid Waste Management Comes In

Indeed, addressing climate change effectively requires the conscientious management of solid waste, as reducing, reusing, and recycling these materials plays an essential role in mitigating greenhouse gas emissions.

Pursuing Sustainability Amid Countless Hurdles

In conclusion, confronting the challenges of solid waste recycling plants is no small feat. Aiming for a greener planet emphasizes the need to overcome these obstacles on a war footing.

We’re witnessing some heartening strides globally as technology advances and new-friendly policies take shape. However, the journey ahead remains steep.

As we mobilize for a sustainable earth, it’s clear that ameliorating these recycling challenges is not just an industrial issue—it’s every individual’s business.

Together, we can turn our waste into wealth while keeping our planet healthy for future generations.

WTE Prospects in the Middle East

A combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the Middle East.

wastetoenergy-plant-qatar

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of.

In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

Waste to Energy Around the World

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

WTE_Plant_Belgium

Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear:

  • reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels),
  • freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites),
  • encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and,
  • most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

Waste-to-Energy in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the Middle East.

Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open soon.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

5 Key Tips for a Successful Waste Recycling Strategy

In an era marked by environmental awareness, crafting an effective waste recycling strategy is essential for individuals, communities, and businesses alike. Adopting sustainable practices not only reduces the strain on landfills but also contributes to the conservation of earth’s precious resources. This article presents five crucial tips that can pave the way for a successful waste recycling strategy, promoting a greener future for the planet.

Four recycle bins of different colors

To transition to a zero-waste lifestyle, you should always recycle.

1. Source Segregation: Streamlining the Recycling Process

At the heart of any recycling strategy lies source segregation, the practice of sorting waste materials at the point of disposal. By categorizing waste into distinct streams, such as paper, plastics, glass, and organic matter, you streamline the recycling process and ensure that each material is processed optimally. This step minimizes contamination and maximizes the value derived from recycled materials, making it a cornerstone of an effective waste management plan.

2. Public Awareness and Education: Fostering a Recycling Culture

Raising public awareness is pivotal in driving successful waste recycling. Communities and businesses must invest in educational campaigns to inform individuals about the importance of recycling and proper disposal techniques. Collaborating with schools and local organizations can amplify these efforts. By emphasizing the tangible benefits of recycling and illustrating how small actions can collectively make a significant impact, a recycling culture can flourish.

3. Technology Integration: Enhancing Efficiency and Monitoring

Incorporating technology into waste-recycling strategies can yield impressive results. Smart bins equipped with sensors can monitor fill levels, optimizing waste collection routes and reducing unnecessary pickups. Additionally, data-driven insights can aid in fine-tuning recycling programs over time. A partnership with an electricity provider can help power these technological advancements sustainably, ensuring that monitoring systems are efficient and environmentally friendly.

smart waste management

AI-based waste management systems can help in route optimization and waste disposal

4. Circular Economy Collaboration: From Waste to Resource

Fostering partnerships with businesses that embrace the circular economy model is a strategic move. This model emphasizes minimizing waste and reusing materials, transforming them into valuable resources. By collaborating with forward-thinking industries, waste recycling programs can benefit from innovative upcycling and repurposing solutions. Such collaborations not only divert waste from landfills but also promote a more sustainable approach to resource management.

Through these partnerships, the circular economy principles are not just integrated into the waste recycling strategy, but they become a driving force for innovation and creativity. By tapping into the expertise of businesses committed to reimagining material usage, recycling programs can uncover new avenues for product design, material sourcing, and waste reduction.

environmental benefits of circular manufacturing

This proactive engagement with industry leaders further solidifies the waste recycling strategy’s impact, driving positive change across sectors and inspiring a broader shift toward a circular, waste-conscious economy.

5. Continuous Evaluation and Adaptation: A Dynamic Approach

A successful waste recycling strategy isn’t static; it evolves over time. Regular evaluation of the program’s effectiveness is vital. Metrics such as waste diversion rates, reductions in contamination, and resource savings should guide refinements to the strategy. Stakeholder feedback can provide valuable insights for adapting the strategy to changing needs and advancements. This dynamic approach ensures that the strategy remains effective in addressing the evolving landscape of waste management challenges and opportunities.

Bottom Line

Crafting and implementing an effective waste recycling strategy demands commitment, collaboration, and innovation. By embracing source segregation, raising awareness, leveraging technology, fostering circular economy partnerships, and maintaining adaptability, communities and businesses can pave the way for a greener, more sustainable future. Each step taken toward waste recycling is a step toward preserving the planet’s resources for generations to come.

Biogas from Slaughterhouse Wastes

Slaughterhouse waste (or abattoir waste) disposal has been a major environmental challenge in all parts of the world. The chemical properties of slaughterhouse wastes are similar to that of municipal sewage, however the former is highly concentrated wastewater with 45% soluble and 55% suspended organic composition. Blood has a very high COD of around 375,000 mg/L and is one of the major dissolved pollutants in slaughterhouse wastewater.

slaughterhouse-waste

In most of the developing countries, there is no organized strategy for disposal of solid as well as liquid wastes generated in abattoirs. The solid slaughterhouse waste is collected and dumped in landfills or open areas while the liquid waste is sent to municipal sewerage system or water bodies, thus endangering public health as well as terrestrial and aquatic life. Wastewater from slaughterhouses is known to cause an increase in the BOD, COD, total solids, pH, temperature and turbidity, and may even cause deoxygenation of water bodies.

Anaerobic Digestion of Slaughterhouse Wastes

There are several methods for beneficial use of slaughterhouse wastes including biogas generation, fertilizer production and utilization as animal feed. Anaerobic digestion is one of the best options for slaughterhouse waste management which will lead to production of energy-rich biogas, reduction in GHGs emissions and effective pollution control in abattoirs.

Anaerobic digestion can achieve a high degree of COD and BOD removal from slaughterhouse effluent at a significantly lower cost than comparable aerobic systems. The biogas potential of slaughterhouse waste is higher than animal manure, and reported to be in the range of 120-160 m3 biogas per ton of wastes. However the C:N ratio of slaughterhouse waste is quite low (4:1) which demands its co-digestion with high C:N substrates like animal manure, food waste, crop residues, poultry litter etc.

Slaughterhouse effluent has high COD, high BOD, and high moisture content which make it well-suited to anaerobic digestion process. Slaughterhouse wastewater also contains high concentrations of suspended organic solids including pieces of fat, grease, hair, feathers, manure, grit, and undigested feed which will contribute the slowly biodegradable of organic matter. Amongst anaerobic treatment processes, the up-flow anaerobic sludge blanket (UASB) process is widely used in developing countries for biogas production from abattoir wastes.

Slaughterhouse waste is a protein-rich substrate and may result in sulfide formation during anaerobic degradation. The increased concentration of sulfides in the digester can lead to higher concentrations of hydrogen sulfide in the biogas which may inhibit methanogens. In addition to sulfides, ammonia is also formed during the anaerobic digestion process which may increase the pH in the digester (>8.0) which can be growth limiting for some VFA-consuming methanogens.