Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Solid Waste Management – India’s Burning Issue

For the first time in the history of India, the year 2012 saw several public protests against improper solid waste management all across India – from the northernmost state Jammu and Kashmir to the southernmost Tamil Nadu. A fight for the right to clean environment and environmental justice led the people to large scale demonstrations, including an indefinite hunger strike and blocking roads leading to local waste handling facilities. Improper waste management has also caused a Dengue Fever outbreak and threatens other epidemics. In recent years, waste management has been the only other unifying factor leading to public demonstrations all across India, after corruption and fuel prices. Public agitation resulted in some judicial action and the government’s remedial response, but the waste management problems are still unsolved and might lead to a crisis if this continues for too long without any long term planning and policy reforms.

Hunger Strike in Kerala

The President of Vilappilsala Village Panchayat went on a hunger strike recently, against her counterpart, the Mayor of Thiruvananthapuram. Thiruvananthapuram is the state capital of Kerala, and Vilappilsala is a village 22 km away. Since July 2000, about 80% of the waste generated in Thiruvananthapuram is being transported to a waste composting plant and a dumpsite in Vilappilsala village. Since the same month, respiratory illnesses reported in Vilappil Primary Health Center increased by 10 times from an average of 450 to 5,000 cases per month. People who used to regularly swim in the village’s aquifer started contracting infections; swarms of flies have ever since been pervasive; and a stigma of filth affected households throughout the community. This was a source of frustration as locals who, as Indians, prize the opportunity to feed and host guests, found them unwilling to even drink a glass of water in their homes. Currently, there is not a single household which has not experienced respiratory illnesses due to the waste processing plant and the adjoining dumpsite.

On the other hand, Thiruvananthapuram’s residents had to sneak out at night with plastic bags full of trash to dispose them behind bushes, on streets or in water bodies, and had to openly burn heaps of trash every morning for months. This was because the waste generated was not being collected by the City as it could not force open the composting plant and dumpsite against large scale protests by Vilappilsala’s residents. This is why in August – 2012, about 2,500 police personnel had to accompany trucks to the waste treatment plant as they were being blocked by local residents lying down on the road, and by some, including the village’s President, by going on an indefinite hunger strike.

Municipal Commissioner Replaced in Karnataka

In response to a similar situation in Bengaluru, the state capital of Karnataka, where the streets were rotting with piles of garbage for months, the municipal commissioner of the city was replaced to specifically address the waste management situation. Against the will of local residents, a landfill which was closed following the orders issued by the state’s pollution control board in response to public agitation had to be reopened soon after its closure as the city could not find a new landfill site.

Mavallipura landfill in Bangalore

Population density and the scale of increasing urban sprawl in India make finding new landfill sites around cities nearly impossible due to the sheer lack of space for Locally Unwanted Land Uses (LULUs) like waste management.

Dengue Outbreak in West Bengal

Even if partially because of improper waste management, Kolkata, state capital of West Bengal and the third biggest city in India experienced a Dengue Fever outbreak with 550 confirmed cases and 60 deaths. This outbreak coincides with a 600% increase in dengue cases in India and 71% increase in malarial cases in Mumbai in the last five years. Accumulation of rain water in non biodegradable waste littered around a city act as a major breeding environment for mosquitoes, thus increasing the density of mosquito population and making the transmission of mosquito related diseases like dengue, yellow fever and malaria easier.

Rabies in Srinagar

Rabies due to stray dog bites already kills more than 20,000 people in India every year. Improper waste management has caused a 1:13 stray dog to human ratio in Srinagar (compared to 1 per 31 people in Mumbai and 1 per 100 in Chennai), where 54,000 people were bitten by stray dogs in a span of 3.5 years. Municipal waste on streets and at the dumpsite is an important source of food for stray dogs. The ultimate solution to controlling stray dogs is proper waste management. The public has been protesting about this stray dog menace for months now with no waste management solutions in sight, but only partial short term measures like dog sterilization.

Challenges in Hazardous Medical Waste Management

medical-waste-managementMedical waste management is a concern of healthcare facilities all over the world; about 10-20% of the facility’s budget every year is spent on waste disposal. According to the WHO, about 85% of the total amount of generated waste is non hazardous but the remaining 15% is considered infectious, toxic or radioactive. While non-hazardous medical waste poses less problems, the risks and challenges of hazardous medical waste management must be considered carefully, since incineration or open burning of hazardous medical waste can result in emissions of dangerous pollutants such as dioxins and furans.

For this reason, measures must be taken to ensure safe disposal of hazardous medical waste waste in order to prevent negative impact on the environment or biological hazards, especially in developing countries.

Health Risks

Biologically hazardous waste can be a source of infection due to the harmful microorganisms it contains; the most exposed are hospital patients, hospital staff, health workers. However, the situation is potentially harmful for the general public as well. The risks include chemical burns, air pollution, radiation burns and toxic exposure to harmful pharmaceutical products and substances, such as mercury or dioxins, especially during the process of waste incineration.

Other risks can also derive from the incorrect disposal of needles and syringes; worldwide, it is estimated that, every year, about 16 billion infections are administered. Unfortunately, not all needles are safely eliminated, creating risk of infection but also the possibility of unintentional reuse. Even though this risk has decreased in recent years, unsafe infections are still responsible for many new cases of HIV, hepatitis B and hepatitis C.

Environmental Impacts

Incorrect disposal of untreated healthcare waste can contaminate drinking and ground water in landfill, and also release dangerous chemical substances in the environment. Deficient waste incineration can also release hazardous pollutants in the air, and generate dioxins and furans, substances which have been linked to cancer and other adverse health conditions. Heavy metals, if incinerated, can lead to the diffusion of toxic metals in the environment.

The Way Forward

There is still a long way to go in order to ensure safe disposal of hazardous healthcare waste. A joint WHO/UNICEF assessment conducted in 2015 found that only 58% of analyzed facilities over 24 countries had appropriate medical waste disposal systems in place.

Strategies to improve healthcare waste segregation is an essential step in medical waste management

In the workplace, it is important to raise awareness and promote self-practices. Training in the areas of infection control and clinical waste management is important in order to maintain a clean, safe environment for patients and staff alike. Specialized industrial cleaning can also be effective in reducing risk of infection.

It is also essential to develop safe methods and technologies of treating hazardous medical waste, as opposed to waste incineration, which has already been shown to be ineffective and dangerous. Alternatives to incineration, such as microwaving or autoclaving, greatly reduce the release of hazardous emissions.

Finally, developing global strategies and systems to improve healthcare waste segregation is another essential step; since only about 15% of clinical waste is hazardous, treatment and disposal costs could be reduced significantly with proper segregation practices. Furthermore, these practices also reduce risks of infections for those workers who handle clinical waste.

Is Tire Recycling Dangerous?

Not too long ago, mountains of old tires were to be found in virtually every town and city’s landfill, and toxic tire fires that would sometimes take months to subside were a common occurrence. Today, these tire piles are a rarity, and thankfully, so are the fires that used to go with them.

scrap-tires-pyrolysis

We have largely to thank the combined initiatives of scientists, entrepreneurs, and legislators from banishing unsightly these unsightly tire piles from the landscape. Today you’re more likely to see old tires in your yoga mat or the asphalt you drive on than in ugly piles that you can see from the distance.

However, there have been questions about the widespread use of tire chips, especially in playgrounds, as mulch, and as repurposed water containers for agriculture and livestock.

These concerns are quite understandable, as we are in direct contact with tire chips when they are used in the first two applications. When used for agriculture and livestock, there seems to be a distinct and logical risk that any toxins that are released in those applications may eventually end up in our bodies.

Recycled tire products are safe for consumers

Provided that you are not the one processing the tires yourself (more on that later), there is an extremely low toxicity risk in tire chips. A typical tire chip is made from old tires, which means that they have already off-gassed much of their volatile organic compounds (VOC’s).  New tires emit a good amount of VOC’s, which you can readily detect because of the unique new tire smell.

Many of these compounds have been linked to cancer. However, decades of research and uncontrolled use of old tires in different applications through the 20th century seem to strongly indicate that unless you are actually involved in producing or processing tires, your risks are quite low due to the low dosage of chemicals a typical consumer can expect. It’s the doses that makes a chemical toxic, and in the case of old tires where most tire chips are derived, the risk is negligible.

However, working in an environment where you can actually smell the “new tire scent” constantly can be a significant risk. By analogy, a bartender will be fine if they have a drink with one customer. But if they drink with every single customer that comes by every night, they’re in serious trouble.

Recycling large volumes of tires can be problematic

Unless you constantly work with tires, the risk is quite minimal. You can and should feel free to recycle or repurpose any tires you have around your house or yard into furniture, tire swings, planters, or pet beds. However, if you’re thinking of recycling dozens of tires a week, you should reconsider, as the particulate dust from carving up or shredding old tires can also be a risk over time if you don’t have the right equipment or safety gear.

Improper tire recycling can also heighten your exposure to dangerous chemicals in the tires, especially when they are subjected to the heat of a grinder or shredder that is not specifically meant for tire recycling. This can expose you to high levels of carcinogenic VOCs without you realizing it.

If you need to safely dispose of a high volume of tires, or tires that are difficult to recycle, such as those on tractors and OTR vehicles, be sure to contact a professional recycler like Western Tire Recyclers.

Pet Waste Management in UK – Prospects and Challenges

pet-wastesPet waste is a growing public health and environmental risk. According to a report commissioned by the Pet Food Manufacturers’ Association, 13 million UK households (45%) keep pets of some kind.  Cats and dogs are each kept by 8.5 million households (these numbers are not additive, as some will of course keep both).

Can those of us who want both the joys of animal companionship and waste minimisation, find ways to cut down, or better manage, the huge amount of pet waste generated in the UK every year? With so many cats and dogs in the UK, pet waste must represent a significant mass of organic matter within the residual waste stream.

Does this waste represent a floater in the residual waste stream by necessity—due to inherently unpleasant and possibly dangerous characteristics of the waste—or is it only there out of convention and squeamishness?

I’ve written before about the relationship between waste management and squeamishness, and talking about faeces really brings the point home. There are some undoubtedly nasty pathogens present in pet faeces, notably the parasites Toxocariasis and Toxoplasmosis. But might these be safely killed off by the temperatures reached in anaerobic digestion (AD). If so, provided any litter and bags were made of organic matter, might pet waste be collected along with food waste?

I began by contacting a local authority waste officer, but was told that no one had asked this question before, and that I might be better off talking to AD plant operators. This I did, but most seemed similarly baffled by my query.  However, one mentioned that AD digestate goes through a pasteurisation process, where it is heated to a temperature of 70oC for one hour, in order to make it safe for land application. I also attempted to contact some technical specialists in the field, but to no avail.

There are some theoretical indications that this pasteurisation should be sufficient. Hanna Mizgajska-Wiktor and Shoji Uga’s  essay Exposure and Environmental Contamination states: “Anaerobic waste treatment kills Toxocara spp. eggs at temperatures in excess of 45oC”, well below the 70oC mentioned by my operator. The susceptibility of Toxoplasma to heat is less clear, although numerous internet sources suggest this can be killed in meat by cooking at 66oC. So far, then, I haven’t confirmed or falsified my initial inkling, and so the collection of pet waste in the municipal organic stream remains a theoretical possibility.

Motivated dog owners  can already turn their pet’s waste into a resource within their own home. The website London Worms explains how you can turn your dog’s poo into rich and useful vermicompost, although it warns that the results will only be suitable for use on non-edible plants.

Foul Pay

Household pet droppings may still be largely fated for disposal, but even when binned this waste is at least moving through proper waste management channels.  Unfortunately, not all pet poo is binned, and we have real data measuring public perceptions of the disamenity resulting from dog fouling. For most, the presence of this unwelcome waste in our streets, parks and footpaths is of much higher concern than its diversion from landfill.

A 2011 Defra-funded study on local residents’ willingness-to-pay — via an increase in council tax — for improvements across a range of environmental factors found that dog fouling was the third most important issue out of the presented range (with litter and fly-tipping taking first and second place). Surveys were conducted in inner-city, suburban and rural/semi-rural areas around London, Manchester and Coventry.

In order to move from the current level of dog fouling to the best possible scenario, it was found that inner-city residents would on average be willing to pay £8.87 per month, suburban residents £7.79 per month, and rural residents £2.72. Combining these figures with population statistics allows us to place a disamenity value on dog fouling. National statistics only allow for an urban-rural split, but based on a 2012 Defra rurality study which found that 18.9% of the population lives in rural areas, we can calculate that across England we would collectively be willing to pay £462m per year to achieve best case scenario improvements in dog fouling.

This somewhat crude calculation gives an indication of the perceived disamenity of dog fouling. Presenting the matter in terms such as these may allow economically minded policy makers a means of engaging with this important street scene issue and evaluating the costs and benefits of interventions.

Food for Thought

Let’s wash our hands of poo (with plenty of soap and warm water) and look to the other end of the pet waste problem. According to a report published by WRAP, the UK uses around 75,000 tonnes of primary packaging annually. This holds 1,263,000 tonnes of wet and dry cat and dog food, of which 9,000 uneaten tonnes are thrown away. Although this wasted food constitutes less than 1% of the total sold (if only we were as careful with food for human consumption) the estimated cost to the consumer is still £21m a year.

WRAP examined a number of designs intended to cut to down on the amounts of both pet food and packaging thrown away. A major problem with packaging design is the need to account for portion sizes, which vary from animal to animal and change depending on age and level of activity. Single serve packaging may actually lead to regular food wastage if the portion provided is too big for a particular pet; indeed, this is a problem I am experiencing with my own cat, whose appetite seems to fluctuate wildly. Re-sealable packaging that allows owners to dish out meals in accordance with the changing appetites of their pets is therefore preferable.

The material that packaging is made of is also significant: for example, relatively heavy tins are recyclable, whereas lightweight plasticised plastic foil packets are not. Pet food and its packaging can be pushed up the waste hierarchy by simply choosing a recyclable and resealable container which will allow them to adequately provide for the appetite of their pet. However, these issues are likely to be given less weight compared with health, convenience and cost in the minds of most householders. The onus has to be on manufacturers to develop packaging which is both low cost and easily recyclable.

Love pets, hate waste?

People love animals, but are rather less keen to engage with pets as an environmental issue. Leaving aside questions of whether it is sustainable for so many of us to have pets at all, there are clearly ways in which we can reduce their impact. The convenience of single serving pouches of pet food seems to win out over more recyclable and waste-avoiding alternatives, although pet owners might be willing to change their choices if presented with a better option.

While worrying about recovery options for cat poo might seem somewhat academic, it may be easier to tackle than dog fouling. It might even help to tackle the common psycho-social root of both issues. Cultural distaste perhaps lies behind the lack of information available on dealing with household pet waste, and the persistence of dog fouling as a street scene issue. Things were very different in Victorian London when “pure finders” earned a living by seeking out doggie doo to supply the tanning trade. But for us this kind of waste is a disagreeable fact of life which we deal with as simply and with as little thought as possible. But as a nation of animal lovers, it’s our responsibility to engage with the waste management issues our pets present.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Waste Management in Food Processing Industry

Food processing industry around the world is making serious efforts to minimize by-products, compost organic waste, recycle processing and packaging materials, and save energy and water. The three R’s of waste management – Reduce, Reuse and Recycle – can help food manufacturers in reducing the amount of waste sent to landfill and reusing waste.

EPA’s Food Recovery Hierarchy

EPA’s Food Recovery Hierarchy is an excellent resource to follow for food processors and beverage producers as it provides the guidance to start a program that will provide the most benefits for the environment, society and the food manufacturer.

Notably, landfill is the least favored disposal option for waste generated in food and beverage producers worldwide. There are sustainable, effective and profitable waste management options including:

  • making animal feed,
  • composting to create nutrient-rich fertilizer,
  • anaerobic digestion to produce energy-rich biogas,
  • recycling/reusing waste for utilization by other industries,
  • feeding surplus food to needy people

Waste Management Options

Food manufacturers has a unique problem – excess product usually has a relatively short shelf life while most of the waste is organic in nature. Food waste created during the production process can be turned into animal feed and sold to goat farms, chicken farms etc. As far as WWTP sludge is concerned, top food manufacturers are recycling/reusing it through land application, anaerobic digestion and composting alternatives.

Organic waste at any food processing plant can be composted in a modern in-vessel composting and the resultant fertilizer can be used for in-house landscaping or sold as organic fertilizer as attractive prices.

Another plausible way of managing organic waste at the food manufacturing plant is to biologically degrade it in an anaerobic digester leading to the formation of energy-rich biogas and digestate. Biogas can be used as a heating fuel in the plant itself or converted into electricity by using a CHP unit while digestate can be used as a soil conditioner. Biogas can also be converted into biomethane or bio-CNG for its use as vehicle fuel.

Items such as cardboard, clean plastic, metal and paper are all commodities that can be sold to recyclers Lots of cardboard boxes are used by food manufacturers for supplies which can be broken down into flat pieces and sold to recyclers.

Cardboard boxes can also be reused to temporarily store chip packages before putting them into retail distribution boxes. Packaging can be separated in-house and recovered using “jet shredder” waste technologies which separate film, carton and foodstuffs, all of which can then be recycled separately.

Organizing a Zero-Landfill Program

How do you develop a plan to create a zero-landfill or zero waste program in food and beverage producing company? The best way to begin is to start at a small-level and doing what you can. Perfect those programs and set goals each year to improve. Creation of a core team is an essential step in order to explore different ways to reduce waste, energy and utilities.

Measuring different waste streams and setting a benchmark is the initial step in the zero-landfill program. Once the data has been collected, we should break these numbers down into categories, according to the EPA’s Food Recovery Challenge and identify the potential opportunities.

For example, inorganic materials can be categorized based on their end lives (reuse, recycle or landfill).  The food and beverage industry should perform a waste sort exercise (or dumpster dive) to identify its key streams.

Nestlé USA – A Case Study

In April 2015, Nestlé USA announced all 23 of its facilities were landfill free. As part of its sustainability effort, Nestlé USA is continually looking for new ways to reuse, recycle and recover energy, such as composting, recycling, energy production and the provision of safe products for animal feed, when disposing of manufacturing by-products.

Employees also work to minimize by-products and engage in recycling programs and partnerships with credible waste vendors that dispose of manufacturing by-products in line with Nestlé’s environmental sustainability guidelines and standards. All Nestlé facilities employ ISO 14001-certified environmental management systems to minimize their environmental impact.

Utilization of Date Palm Biomass

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date palm residues an excellent biomass resource in date-palm producing nations.

Date palm biomass is an excellent resource for charcoal production in Middle East

A wide range of physico-chemical, thermal and biochemical technologies exists for sustainable utilization of date palm biomass. Apart from charcoal production and energy conversion (using technologies like combustion and gasification), below are few ways for utilization of date palm wastes:

Conversion into fuel pellets or briquettes

Biomass pellets are a popular type of alternative fuel (analogous to coal), generally made from wood wastes and agricultural biomass. The biomass pelletization process consists of multiple steps including pre-treatment, pelletization and post-treatment of biomass wastes. Biomass pellets can be used as a coal replacement in power plant, industries and other application.

Conversion into energy-rich products

Biomass pyrolysis is the thermal decomposition of date palm biomass occurring in the absence of oxygen. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Bio-oil can be upgraded to either a special engine fuel or through gasification processes to a syngas which can then be processed into biofuels. Bio-oil is particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store.

Conversion into biofertilizer

Composting is the most popular method for biological decomposition of organic wastes. Date palm waste has around 80% organic content which makes it very well-suited for the composting process. Commercial-scale composting of date palm wastes can be carried out by using the traditional windrow method or a more advanced method like vermicomposting.

Waste Management Progress in Nigeria’s Delta State

waste-nigeriaWaste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Sustainable Solid Waste Management: Need of the Hour

The primary aim of sustainable solid waste management is to address concerns related to public health, environmental pollution, land use, resource management and socio-economic impacts associated with improper disposal of waste. “This growing mountain of garbage and trash represents not only an attitude of indifference toward valuable natural resources, but also a serious economic and public health problem”. These words from the former US President Jimmy Carter is enough to understand the social, economical and environmental impact of mismanaged waste disposal and an urgent call for help to look for innovative, smart, sustainable and effective waste disposal techniques.

According to UNEP, around 3 billion tons of waste is generated every year, with industrial waste being the largest contributor, especially from China, EU and USA. There has been a steady increase in the quantity of e-wastes and hazardous waste materials. The UNEP study observed a drastic shift from high organic to higher plastic and paper corresponding to increase in the standards of living and also made an interesting correlation between the higher GDP and the quantity of municipal waste collections.

In developing and under-developed countries, the use of open dumps to dispose of the solid waste from different sectors is staggeringly high compared to the developed and high income countries that are more dependent on recycling and use of sanitary landfills that are isolated from the surrounding environment until it is safe.

There are serious concerns on the increasing cost of waste disposal, especially in developing countries. It is estimated that around $200 billion are being spent on waste management in the OECD countries for both municipal and industrial waste.

For developing countries, at least 20-50% of its annual budget is devoted to waste management schemes and strategy that has been reported insufficient and inefficient at the same time. In these countries, use of unscientific and at times unethical and outdated waste management practices have led to various environmental repercussions and economic backlashes. Even the relatively small proportion of waste recycling and other waste minimization and re-use techniques for waste disposal is alarming.

The increasing cost of waste disposal is a cause of major concern in developing nations

As sustainable solid waste management evolves through waste awareness among general public, efforts within the industry, and waste management becoming not just an environmental concern but a political and strategic apprehension too, there are realistic chances of advancements and scientific innovations.

Innovation will then give birth to revolutionary and self-sustaining ideas within the industry, which earlier focused on basic waste management, will now grow towards maximum utilization and sustainable management of waste.

In the last couple of decades, sustainable solid waste management has become a matter of political significance with robust policies, strategies and agendas devised to address the issue. The good thing is that the industry has responded with innovative, cost-effective and customized solutions to manage solid wastes in an environmental-friendly manner.

Addressing India’s Waste Management Problems

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well-known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term waste management financing program, sorts of which are required to tackle issues like solid waste management.

Are Cities Hands-tied or is Change Possible?

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites.  Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into electricity or fuel oil or gas, or into recycled products. While such conversion is technologically possible with infinite energy and financial sources, that is not the reality.

Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.