Financing of Solid Waste Management Projects

Financing of solid waste management projects can be pretty overwhelming for the city government, especially if the government see it as a critical part of the service they should render to the citizen and if the citizen also hold it as a basis for measuring the performance of the government and using it as one of the conditions for re-election.

The increasing cost of waste disposal is a cause of major concern in developing nations

Solid waste management entails different aspects. Generally speaking, waste management consists of pre-collection, collection, transportation, storage, treatment, and disposal. The modern hierarchy of waste management includes prevention, minimization, reuse, recycling, energy recovery, and disposal.

All these aspects require proper funding in rendering a good waste management service to the society. As citizens, we hardly give any thought to the different aspects and what it takes to ensure it is carried out efficiently and effectively.

Financing Options for Solid Waste Management

There are four different options for financing of solid waste management projects. The option chosen will be dependent on various factors. The chief factor will be “what is the end goal of providing waste management service to citizen” and this is to be determined by the city government. Therefore, we say finance option is directly related to waste management goal of a city or State.

Public Financing

This primarily involves funding of waste management service entirely by the government through budgetary allocation. The government determines how it will generate the cash for service and this can be through taxation or redistribution of funds generated from other sources like sales of city natural resources or combination of various sources of funds.

In developing countries, this is generally inefficient due to the corruption within the government and lack of proper waste management capabilities in most instances. The government might decide to charge a service fee or not.

Private Financing

This involves infusing funds from the private sector into waste management service and also overseeing day-to-day running of the service. However, the hired company will charge a service fee which will be determined by calculating the amount of invested funds, operating cost, and profit envisaged. This will be spread over a period of time.

This financing option can deliver optimal result in providing waste management service but the private sector needs to be checked in order not to set a high fee that will end up scaring citizens which might lead to citizen abhorring the service.

Public-Private Partnership (PPP)

This is a special type of arrangement which brings together the government and private sector in providing funds and management capabilities for the delivery of waste management service.

All things being equal, this arrangement is best because the government will be able to regulate and have a say in how the service should be delivered especially as it relates to the setting of service fees which might be difficult in the solely private financing option. The PPP can equally be extended to be a Joint Venture (usually termed as Institutional PPP).

Donors and Grants

This funding mechanism is dependent on the interest of the donor organization. While it is a good way to develop a city’s waste management infrastructure, attracting and utilizing grants is solely reliant on what the donor considers as important. Hence, it might be difficult for a city government to dictate how the funds should be distributed among the various aspect of waste management.

Waste management projects based on public-private partnership (PPP) model has more chances of success in developing countries

However, this type of financing can be combined with a PPP arrangement to cater for a specific waste management aspect that is in tandem with the interest of the donor and can be part of the city government contribution to the PPP.

Conclusion

In conclusion, waste management financing is quite dynamic just like many other services and infrastructure provided by a city government and the best option for financing the provision of waste management service can only be made after appropriate due diligence and consultation with relevant stakeholders has been made and observed.

Proactive Prevention of Common Hazardous Waste Violations

In 2019, the EPA levied fines totaling  $170,000 against three Southern California-based companies, namely, Coat Product, Inc., International Aerospace Coatings, Inc., and Goodwest Rubber Linings, Inc. These companies allegedly violated the federal Resource Conservation Recovery Act (RCRA) that oversees the proper management of hazardous waste.

Hazardous waste regulations compliance is complex, and businesses of all sizes find them significantly stringent to follow and comply with. If found guilty, the organizations are liable to pay huge fines that can financially wipe out small and mid-size organizations. This article can help businesses stay proactive about preventing hazardous waste violations.

hazardous-waste-violations

Types of Hazardous Waste

Hazardous waste is any solid waste that is listed as a known hazardous waste or exhibits any characteristic among ignitability, corrosivity, reactivity, or toxicity. A known hazardous waste is categorized into four lists named F, K, P, and U lists.

 The hazardous waste regulations differ based on the quantity of waste generated by your business.

  • Large Quantity Generators – Businesses that monthly generate more than 1000 kg of hazardous waste or more than 100 kg of acute spill residue or soil, or more than 1 kg of acute hazardous waste.
  • Small Quantity Generators – Businesses that monthly generate hazardous waste between 100 kg and 1000 kg.
  • Very Small Quantity Generators – Businesses that monthly generate up to 100 kg of hazardous waste, or up to 100 kg of acute spill residue or soil, or up to 1 kg of acute hazardous waste.

After knowing your class of hazardous waste generators, let’s understand some of the common hazardous waste violations.

Common Hazardous Waste Violations

1. Lack of Proper Labelling

Proper labeling is critical for notifying government waste haulers, safety personnel, and your employees regarding the accumulated chemical, specifically in the event of an emergency and how long it has been accumulating onsite.

2. Improper Disposal

Businesses dispose of hazardous waste by illegally dumping it due to various reasons, including lack of time and efforts, avoid disposal fees, lack of knowledge about what constitutes hazardous waste, or understaffed or untrained workforce with lack of waste management procedures knowledge.

3. Improper or No Determination of the Waste

Many times, the generators fail to properly determine the waste by testing it or knowing its stream that can attract hefty fines.

4. Improper Management of Expired Waste

Expired chemicals can be extremely volatile and considered hazardous waste. These materials can be dangerous as they are no longer in their original containers and can become less stable or have decomposed due to aging. They are subject to hazardous waste generator requirements as well as the regulatory timeframes in which they can be disposed of or stored.

5. No or Inadequate Waste Manifests

Adequate paperwork is also critical when it comes to hazardous waste. After storing and labeling hazardous waste, you, as a generator, are mandated to complete the Hazardous Waste Manifest that outlines the type and quality of waste. Further, you need to mail its copy to the appropriate regulatory agencies such as EPA and DOT (Department of Transportation).

6. No or Inadequate Training for Employees

Inadequate employee training can lead to improper hazardous waste handling procedures that might result in treacherous spills, toxic chemical reactions, and spreading fire. Also, failing to wear protective gear can expose your employees to radioactive materials, fumes, and other hidden risks that can cost their lives. Not following proper updated standards for employee communication and training can result in hefty fines.

7. Lack of Contingency Plan

A generator should have a written Hazardous Waste Contingency Plan that can be implemented immediately during an emergency, including explosions, fires, and sudden unplanned release of hazardous waste. It’s designed to minimize hazards to the environment and human health during emergencies. Failing to have a contingency plan can result in significant fines.

hazardous-waste

8. Improper Management of Mercury

Mercury and its products are incredibly toxic and can cause chronic and acute poisoning and severe illness if mishandled. Improper management of mercury attracts hefty fines as it can lead to spills and evaporation, risking human lives and the environment.

9. Open Containers

Not closing the containers containing hazardous waste is among the common violations and can be a cause of accidents and physical injuries that can be avoided with a few precautions.

10. No or Infrequent Weekly Inspections

All hazardous waste generators are compelled to perform a weekly inspection of their hazardous waste container storage areas. It’s also a common violation that can be easily avoided by the implementation of standard procedures and compliance maintenance.

How to Prevent Hazardous Waste Violations

Hazardous waste violations and the associated hefty fines can be avoided by implementing standard procedures and giving due diligence during generating, storing, transporting, and disposing of hazardous waste.

  • Follow rigorous labeling of containers with hazardous waste including name and address of your facility, accumulation start date, source or identity of waste, characteristic of waste, mentioning what makes it hazardous, and physical state of the waste.
  • Keep in mind proper licensing and know your waste generator requirements.
  • Understand the “cradle to grave” requirements by RCRA.
  • Comply with hazardous waste management training requirements by providing on-the-job as well as classroom training to your employees on hazardous waste management, storage, and disposal procedures.
  • Contract with a reputed and properly licensed hazardous waste company that will provide proof of proper disposal along with adequate documentation. Closed top mini frac tanks can be ideal for hazardous waste disposal as they ensure safe transportation of chemicals and other volatile substances.
  • Properly determine your waste streams with the Hazardous Waste Identification process.
    • Check if it is solid waste.
    • Check if it’s particularly excluded from RCRA.
    • Check if it’s listed as hazardous waste.
    • Check if it exhibits hazardous waste characteristics.
  • Conduct regular audits. Keep track of expired chemicals to dispose of them properly. Have a centralized purchasing and inventory process for effective organization and inventory management of chemicals.
  • Fill out and double-check the Uniform Hazardous Waste Manifest correctly.
  • Create an adequate contingency plan based on your company’s waste generator status. The plan should include contact information of emergency coordinator, emergency equipment location, emergency phone numbers, and more.
  • Conduct regular audits and weekly inspections of the storage area and containers and keep them closed at all times. Maintain a log record. Ensure that the storage area is free from debris and other materials, container tops are free from spillage, containers are in good condition and free from spills and leaks, and the ground is clean and dry. Make sure that the waste is stored in compatible containers.

Stay in the Know About EPA Regulations

Besides knowing the common hazardous waste violations and how to avoid them, here are some of the critical EPA laws and regulations you should know if you are dealing with hazardous waste.

  • Resource Conservation Recovery Act (RCRA) – The act is aimed to protect human health and the environment from waste disposal hazards.
  • Clean Air Act (CAA) – Its goal is to enhance and protect the country’s air quality.
  • Clean Water Act (CWA) – It intends to prevent, reduce, and eliminate pollution in groundwater and navigable waters.
  • Toxic Substance Control Act (TCSA) – It aims to protect human health and the environment from potentially hazardous chemicals by restricting their manufacture, processing, and use.

Hazardous waste violations are taken extremely seriously, and the associated fines can spell financial doom for small and mid-sized companies. However, well-thought procedures, a disciplined, proactive approach, and routine inspections can help you stay compliant.

Solid Waste Management in Kuwait

Kuwait, being one of the richest countries, is among the highest per capita waste generators in the world. Each year more than 2 million tons of solid waste is generated in the tiny Arab nation. High standards of living and rapid economic growth has been a major factor behind very high per capita waste generation of 1.4 to 1.5 kg per day.

Kuwait_Waste_Management

Waste Disposal Method

The prevalent solid waste management method in Kuwait is landfill burial. Despite being a small country, Kuwait has astonishingly high number of landfills. There are 18 landfills, of which 14 sites are closed and 4 sites are still in operation. These landfills act as dumpsites, rather than engineered landfills.

Menace of Landfills

Infact, landfill sites in Kuwait are notorious for causing severe public health and environmental issues. Besides piling up huge amounts of garbage, landfill sites generate huge amount of toxic gases (methane, carbon dioxide etc) and plagued by spontaneous fires. Due to fast paced urban development, residential areas have expanded to the edges of landfill sites thus causing grave danger to public health.

The total land area of Kuwait is around 17,820 sq. km, out of which more than 18 sq. km is occupied by landfills. Area of the landfill sites ranges from tens to hundreds of hectares with waste deposition depth varying from 3 to 30 meters.

All kind of wastes, including municipal wastes, food wastes, industrial wastes, construction and demolition debris etc are dumped at these sites. Infact, about 90 percent of the domestic waste is sent to landfills which imply that more landfills will be required to tackle rapidly increasing volumes of solid wastes.

Most of the landfill sites have been closed for more than 20 years due to operational problems and proximity to new residential, commercial and industrial areas. These sites include Sulaibiyah, Kabed, Al Qurain, Shuaiba, Jleeb AI Shuyoukh, West Yarmouk, AI Wafra among others. Migration of leachate beyond landfill site boundaries is a frequent problem noticed across Kuwait. Groundwater contamination has emerged as a serious problem because groundwater occurs at shallow depths throughout the country.

The major landfill sites operated by municipality for solid waste disposal are Jleeb AI Shuyoukh, Sulaibiyah and Al-Qurain. The Qurain landfill, with area of 1 sq. km, was used for dumping of municipal solid waste and construction materials from 1975 until 1985 with total volume of dumped waste being 5 million m3.

The Sulaibiyah landfill site received more than 500 tons of waste per day from 1980 to 2000 with area spanning 3 sq. km. Jleeb AI Shuyoukh, largest landfill site in Kuwait with area exceeding 6 sq. km, received 2500 tons per day of household and industrial waste between 1970 and 1993. Around 20 million m3 of wastes was dumped in this facility during its operational period.

Over the years, most of the dumpsites in Kuwait have been surrounded by residential and commercial areas due to urban development over the years. Uncontrolled dumpsites were managed by poorly-trained staff resulting in transformation of dumpsites in breeding grounds for pathogens, toxic gases and spontaneous fires.

Most of the landfill sites have been forced to close, much before achieving their capacities, because of improper disposal methods and concerns related to public health and environment. Due to fast-paced industrial development and urban expansion, some of the landfills are located on the edges of residential, as is the case of Jleeb Al-Shuyoukh and Al-Qurain sites, endangering the lives of hundreds of thousands of people.

Composting with Worms

Vermicomposting is a type of composting in which certain species of earthworms are used to enhance the process of organic waste conversion and produce a better end-product. It is a mesophilic process utilizing microorganisms and earthworms. Earthworms feeds the organic waste materials and passes it through their digestive system and gives out in a granular form (cocoons) which is known as vermicompost.

Worm

Simply speaking, vermicompost is earthworm excrement, called castings, which can improve biological, chemical, and physical properties of the soil. The chemical secretions in the earthworm’s digestive tract help break down soil and organic matter, so the castings contain more nutrients that are immediately available to plants.

Production of Vermicompost

A wide range of agricultural residues, such as straw, husk, leaves, stalks, weeds etc can be converted into vermicompost. Other potential feedstock for vermicompost production are livestock wastes, poultry litter, dairy wastes, food processing wastes, organic fraction of MSW, bagasse, digestate from biogas plants etc.

Earthworms consume organic wastes and reduce the volume by 40–60 percent. Each earthworm weighs about 0.5 to 0.6 gram, eats waste equivalent to its body weight and produces cast equivalent to about 50 percent of the waste it consumes in a day. The moisture content of castings ranges between 32 and 66 percent and the pH is around 7. The level of nutrients in compost depends upon the source of the raw material and the species of earthworm.

Types of Earthworms

There are nearly 3600 types of earthworms which are divided into burrowing and non-burrowing types. Red earthworm species, like Eisenia foetida, and are most efficient in compost making. The non-burrowing earthworms eat 10 percent soil and 90 percent organic waste materials; these convert the organic waste into vermicompost faster than the burrowing earthworms.

They can tolerate temperatures ranging from 0 to 40°C but the regeneration capacity is more at 25 to 30°C and 40–45 percent moisture level in the pile. The burrowing types of earthworms come onto the soil surface only at night. These make holes in the soil up to a depth of 3.5 m and produce 5.6 kg casts by ingesting 90 percent soil and 10 percent organic waste.

Types of Vermicomposting

The types of vermicomposting depend upon the amount of production and composting structures. Small-scale vermicomposting is done to meet personal requirements and farmers/gardeners can harvest 5-10 tons of vermicompost annually.

On the other hand, large-scale vermicomposting is done at commercial scale by recycling large quantities of organic waste in modern facilities with the production of more than hundreds of tons annually.

Benefits of Vermicompost

The worm castings contain higher percentage of both macro and micronutrients than the garden compost. Apart from other nutrients, a fine worm cast is rich in NPK which are in readily available form and are released within a month of application. Vermicompost enhances plant growth, suppresses disease in plants, increases porosity and microbial activity in soil, and improves water retention and aeration.

Vermicompost also benefits the environment by reducing the need for chemical fertilizers and decreasing the amount of waste going to landfills. Vermicompost production is trending up worldwide and it is finding increasing use especially in Western countries, Asia-Pacific and Southeast Asia.

Vermicompost Tea

A relatively new product from vermicomposting is vermicompost tea which is a liquid fertilizer produced by extracting organic matter, microorganisms, and nutrients from vermicompost. Unlike vermicompost and compost, this tea may be applied directly to plant foliage, reportedly to enhance disease suppression. Vermicompost tea also may be applied to the soil as a supplement between compost applications to increase biological activity.

Potential Market

Vermicompost may be sold in bulk or bagged with a variety of compost and soil blends. Markets include home improvement centers, nurseries, landscape contractors, greenhouses, garden supply stores, grocery chains, flower shops, discount houses, indoor gardens, and the general public.

The Problem of Shipping Wastes

Shipping wastes, long a neglected topic, has started to attract worldwide attention, thanks to the mysterious and tragic disappearance of flight MH370. During the search for MH370, a succession of items floating in the sea were identified as possible wreckage, but later confirmed to be simply pieces of marine litter. Whilst it was large pieces of debris that complicated the search, marine debris of all sizes causes problems for users of marine resources. In the most polluted areas, around 300,000 items of debris can be found in each square kilometre.

garbage-ocean

Up to 80% of ocean debris originates from land based sources, including beach litter, litter transported by rivers, and discharges of untreated municipal sewage, while ocean based sources (merchant shipping, ferries, cruise liners, fishing and military vessels) account for the remainder. Whilst typically this may be only 20% of marine litter, in areas of high shipping activity such as the North Sea it rises closer to 40%.

Wastes from commercial vessels seems like an area that could be effectively tackled with regulation. However, it is difficult for individual nations or regions to take action when ships operate in international waters and the debris in our oceans is constantly on the move.

So how is it addressed through international legislation?

Law of the Seas

In fact, a good many laws are already in place. The key piece of legislation preventing ‘the disposal of garbage at sea’ is Annex V of the International Convention for the Prevention of Marine Pollution from Ships (MARPOL). Amongst the numerous other relevant laws are the London Convention and Protocol, the Basel Convention, UNCLOS, and the Convention on Biological Diversity.

In addition, many more laws exist at regional and national levels. In the EU, laws directly related to marine debris include the Marine Strategy Framework Directive and the Directive on Port Reception Facilities. Laws indirectly related to marine debris include the Common Fisheries Policy, the Water Framework Directive, the Waste Framework Directive, the Habitats Directive…. The list goes on.

Fathoming the Legislation

Despite the profusion of legislation, the scale of the current and potential problems caused by marine debris, it is clear that implementation and enforcement is lagging behind. Why so?

Ratification

As yet, not all coastal or flag states have ratified international instruments such as MARPOL Annex V. This means that ships registered with a non-ratified state under a‘flag of convenience’ may legally continue to discharge garbage in international waters. However, even if the current suite of international legislation was universally ratified, this would serve to expose the remaining gaps in the framework.

Discharge provisions

MARPOL Annex V includes specific requirements regarding the discharge of different types of waste and location of discharges. For instance, ground food waste can be discharged up to 3 nautical miles from land, but if it is not ground it may only be discharged at a distance of 12 nautical miles or more. Although the discharge of ‘all other garbage including plastics’ is prohibited, compliance relies upon good waste management practices on board vessels.

If waste streams are contaminated, this may result in plastics and other debris being discharged into the sea. The current approach may have been developed to accommodate shipping activity, but in practice it is somewhat confusing and it would perhaps make more sense to issue a blanket ban on discharges.

Scope

Another gap within MARPOL Annex V is the scope of the requirements for ‘garbage management plans’ and ‘garbage record books’. Vessels of 100 gross tonnes or more are required to have a garbage management plan, while vessels of 400 gross tonnes or more are required to have a garbage record book. Smaller vessels are not obliged to comply with the requirements.

Less than 1% of vessels in the world fishing fleet have a gross tonnage of over 100 tonnes, the majority has no obligation to implement and maintain a plan or book; with no planning or record keeping, the risk of illegal disposal is increased. Small fishing vessels may not be considered ‘commercial’ shipping vessels at all – thereby avoiding legislation – but they still contribute towards the problem of marine debris. Most notably, abandoned, lost or otherwise discarded fishing gear has a considerable impact on marine species through ‘ghost fishing’.

Port waste reception facilities

MARPOL Annex V requires the government of each ratified nation to provide facilities at ports for the reception of ship generated residues and garbage that cannot be discharged into the sea. The facilities must be adequate to meet the needs of ships using the port, without causing undue delay to ships. However, MARPOL does not prescribe any set standards or provide for certification. The term ‘adequate’ is instead defined in a qualitative (rather than quantitative) manner in Marine Environment Protection Committee (MEPC) resolution 83 (44).

Furthermore, MARPOL does not set any requirements regarding how waste delivered to port reception facilities should be managed. Only the non-mandatory MEPC resolution 83 (44) requires that facilities should allow for the ultimate disposal of ships’ wastes to take place in an environmentally appropriate way.

Cruise ships

Cruise ships operate in every ocean worldwide, often in pristine coastal waters and sensitive marine ecosystems. Operators provide amenities to their passengers similar to those of luxury resort hotels, generating up to 14 tonnes of waste per day. Worldwide, the cruise industry has experienced a compound annual passenger growth rate of 7% since 1990, and the number of passengers carried is expected to increase from approximately 21 million in 2013 to 23.7 million in 2017.

The majority of current legislation on pollution and ship waste was developed prior to the rapid growth of the cruise market; as a consequence, there is no international legislation addressing the particular issues surrounding pollution and waste management on these vessels.

Although there is not yet data to support this, intuitively the amount of waste produced by ships would be linked to the number of people on board, rather than the vessel’s gross tonnage (which determines whether MARPOL rules apply). If the industry grows as forecasted, cruise ships may be responsible for a significant proportion of waste generated by ships, particularly if unmanned are the future.

To address this, onboard waste management systems that implement zero disposal of solid waste at sea are needed for cruise ships, together with a requirement that they only dispose of their waste at ports with reception facilities adequate to handle the type and volume of waste produced.

Taking the Helm

Where international and regional legislation is found lacking a number of voluntary mechanisms have been devised, indicating an appetite to improve the current waste disposal practices of the shipping industry.

  • The indirect fee system aims to remove the disincentive for ships to dispose of waste at port rather than at sea by including the cost of waste disposal services in the port fees paid by visiting ships, irrespective of whether ships use the facilities
  • The Clean Shipping Index is an easy to use, transparent tool which can be used by cargo owners to evaluate the environmental performance of their sea transport providers. The information is entered on a ship-by-ship basis but is also added to a total carrier fleet score for an overall ranking. Questions on waste relate to garbage handling and crew awareness, and scores can only be obtained for measures that go beyond existing regulations.
  • One commercial container operator (Matson Navigation) has introduced a zero solid waste discharge policy. The ‘greentainer’ programme uses containers specifically designed for storing solid waste. Since 1994, this programme has prevented over 10,000 tonnes of garbage being disposed of at sea.

Currently, international legislation does not properly support a closed loop system for waste management onboard ships. Despite legislative progress and improvements in practice, the monitoring of waste from shipping remains problematic. ‘Policing the seas’ to verify what a ship discharges and where, and whether this follows recommended best practice, remains one of the most challenging aspects of waste management practice at sea, but critical to making the legal framework effective.

The United Nations Environment Programme neatly summarised the issue in 2005:“… marine litter is not a problem which can be solved only by means of legislation, law enforcement and technical solutions. It is a social problem which requires efforts to change behaviours, attitudes, management approaches and multi-sectoral involvement.” 

The limitations of international legislation governing the case of marine litter disposed of at sea do need to be addressed; but unless legislation is accompanied by environmental education for seafarers, and improved monitoring, our attempts to tackle this source of marine litter will remain all at sea.

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

33 Foot Whale Dies From Eating Rubbish

This is a true and very sad rubbish clearance story. While this particular incident is certainly a case of “a picture is worth a thousand words” (or more!), we hope that our words give ammunition to those who are working toward positive change to keep our waste removal out of our oceans.

garbage-ocean

A Gruesome Ghastly Sight

Usually, the sight of a majestic sperm whale is such a magical moment, most people try to freeze frame the image in their mind. In fact, many people stop breathing momentarily they are so excited to see such a magnificent creature! However, this was not the reaction people had on February 27 when a thirty-three foot, totally emaciated, sperm whale washed up dead on Cabo de Palos Beach in southwestern Spain. It was not at all a wondrous sight… it was a gruesome ghastly sight… one of those images that people would prefer to block from their mind but can’t no matter how hard they try!

The sight of this gigantic creature, lying there dead, the life sucked out of it from eating our rubbish clearance, is heartbreaking to everyone who has viewed the scene either in person or via picture. It sent shock waves across the environmental community. Many shared images of the ghostly dead sperm whale on social media. All who saw it seemed utterly horrified, many vowing to do something about it. The mantra seemed to be “Shame on us for allowing this to happen!”

The deceased sperm whale, a juvenile male, weighed in at 6.5 metric tonnes (14,330 pounds, 5900 kilograms). While this may seem massive to a human weighting a mere 175 pounds, it is about seven times less than what male sperm whales usually weigh. He weighed so much less than a juvenile male sperm whale is supposed to weigh, the idiomatic expression, “he was skin and bones,” would not even begin to cover his physical state. It was quite obvious from the pictures that he literally starved to death.

Cause of such a grueling death

Experts at the El Valle Wildlife Recovery Centre  determined that his stomach and intestines were filled with twenty-nine kilograms (sixty-four pounds) of garbage! These included discarded cans, netting, ropes, and plastic bags. With all this rubbish compacting his digestive system, he could not digest real food and he starved to death. In addition, he had a severe stomach infection, most likely because one of the rubbish clearance items he swallowed ripped a tear in his stomach lining.

The pain and torture this young sperm whale must have endured before he finally died and washed ashore to shame humanity must have been extensive. How unjust it is to this creature to not only die but actually die in a way that was very likely slow and tremendously painful.

What do we as humans owe his species for the sin of his death? Should his death be the impetus to do more to rid our oceans of rubbish removal? Should we plaster this image of this whales lifeless emaciated body on anti-litter posters even though it makes us feel awkward and ashamed to see it?

Sperm Whale – A Magnificent Creature

Sperm whales have been forever immortalized in the great novel, Moby Dick, so they will live for eternity on in the human psyche even if they go extinct. However, unlike the dinosaurs that roamed our planet before our time, and went extinct long before we made our great migration out of Africa into the fertile crescent, sperm whales have shared our planet for all of human history.

Many members of our species have come eye to eye with this beast and we must answer for our crimes of littering that has been proven to be the direct cause of this whales death, and in fact, threatens his entire species.

The International Union for Conservation of Nature (IUCN) classifies the conservation status of sperm whales as “vulnerable” which is only one small step away from becoming endangered — and some experts actually argue that sperm whales are already endangered. While it is impossible to do an accurate census of sperm whales, scientists estimate there about 200,000 of these whales left. Keep in mind, there used to be many millions of them in our oceans but they were a favorite of whaling expeditions who hunted them for their valuable blubber, meat, and even their bones.

Sperm whales are now protected under international law so most countries no longer hunt them. However, the Japanese still have a taste for sperm whale and several are harvested for supposed “scientific research” every year. The whale meat from these scientific specimens does get sold in Japanese markets. However, even given this loophole in the law that protects sperm whales, the direct human harvesting of sperm whales pales in comparison to how threatening our rubbish clearance is to the endurance of this species.

Time for Introspection

The sperm whale that washed up dead on Cabo de Palos Beach is only one of many who have died due to eating rubbish clearance. Plastic bags are the biggest culprit but all rubbish in our oceans poses a dire threat to sperm whales and other marine mammals. What we do about our rubbish clearance problem over the next few decades will likely determine the fate of this entire species and many other marine mammals.

The stomach and intestines of sperm whale was filled with 29 kg of garbage

It is important to note how intelligent sperm whales are though to be. Sperm whales have the biggest brains in the animal kingdom, weighing in at five times that of the human brain, with an imposing volume of eight thousand cubic centimeters! They’re also known to express obvious emotions. What would they say to use if we could somehow crack the sperm whale language code? Would they beg us to remove our rubbish from their habitat? Would they appeal to our better angels?

Identifying the Enemies

Sperm whales eat mostly “garden variety” squid, less than a foot in length, but in an ironic twist, their worst enemy is thought to be the giant squid. These colossal squid are usually between ten to thirteen metres (33 to 43 feet). Serrated sucker scars from these ginormous squid are often found on sperm whale bodies. While sperm whales may eat these giant squid, they put up a good fight at minimum and may even be able to kill, or at least harm significantly, a sperm whale at times.

However, the rubbish clearance that we as humans fill our oceans with cause more damage to sperm whales than all the giant squid in the world. We must face the hard reality that our rubbish clearance is directly responsible for the death of sperm whales, and many other marine mammals, and many other animal species for that matter. We must own up to that fact and start seriously working toward finding solutions.

If you have pictures of sperm whales, please send them to Clearabee’s Facebook page in honor of the most recent sperm whale death at the hands of our rubbish clearance. Clearabee is the leading on demand rubbish clearance company in the UK.

Waste Disposal Methods: Perspectives for Africa

Waste disposal methods vary from city to city, state to state and region to region. It equally depends on the kind and type of waste generated. In determining the disposal method that a city or nation should adopt, some factors like type, kind, quantity, frequency, and forms of waste need to be considered.

For the purpose of this article, we will look at the three common waste disposal methods in Africa and the kind of waste they accept.

Open Dumping/Burning

This is the crudest means of disposing of waste and it is mostly practiced in rural areas, semi-urban settlements, and undeveloped urban areas. For open dumping or open burning, every type and form of waste (including household waste, hazardous wastes, tires, batteries, chemicals) is dumped in an open area within a community or outside different homes in a community and same being set on fire after a number of days or when the waste generator or community feels it should be burnt.

There is no gainsaying that the negative health and environmental impact of such practice are huge only if the propagators know better.

Controlled Dumping

This is apparent in most States in Nigeria, if not all and some cities in Africa like Mozambique, Ghana, Kenya, Cameroon, to mention but a few. It is a method of disposing of all kinds of waste in a designated area of land by waste collectors and it is usually controlled by the State or City Government.

Opening burning of trash is a common practice across Africa

Controlled dumps are commonly found in urban areas and because they are managed by the government, some dumps do have certain features of a landfill like tenure of usage, basic record keeping, waste covering, etc. Many cities in Nigeria confuse the practice of controlled dumping as landfilling but this not so because a landfill involves engineering design, planning, and operation.

Sanitary Landfill

A sanitary landfill is arguably the most desired waste management option in reducing or eliminating public health hazards and environmental pollution. The landfill is the final disposal site for all forms and types of waste after the recyclable materials must have been separated for other usages and other biodegradables have been extracted from the waste for use as compost, heat, or energy; or after incineration. These extractions can be done at household level or Material Recovery Facilities (MRFs) operated by the government or private individuals.

As desirable as a landfill is, so many factors need to be put into consideration in its siting and operation plus it requires a huge investment in construction and operation. Some of these factors include but not limited to distance from the residential area, proximity to water bodies, water-table level of the area the landfill is to be sited, earth material availability, and access road.

Solid Waste Management in Morocco

Solid waste management is one of the major environmental problems threatening the Kingdom of Morocco. More than 5 million tons of solid waste is generated across the country with annual waste generation growth rate touching 3 percent. The proper disposal of municipal solid waste in Morocco is exemplified by major deficiencies such as lack of proper infrastructure and suitable funding in areas outside of major cities.

solid_waste_morocco

According to the World Bank, it was reported that before a recent reform in 2008 “only 70 percent of urban wastes was collected and less than 10 percent of collected waste was being disposed of in an environmentally and socially acceptable manner. There were 300 uncontrolled dumpsites, and about 3,500 waste-pickers, of which 10 percent were children, were living on and around these open dumpsites.”

It is not uncommon to see trash burning as a means of solid waste disposal in Morocco.  Currently, the municipal waste stream, including hazardous wastes, is disposed of in a reckless and unsustainable manner which has major effects on public health and the environment.  The lack of waste management infrastructure leads to burning of trash as a form of inexpensive waste disposal.  Unfortunately, the major health effects of burning trash are either widely unknown or grossly under-estimated to the vast majority of the population in Morocco.

The good news about the future of Morocco’s MSW management is that the World Bank has allocated $271.3 million to the Moroccan government to develop a municipal waste management plan.  The plan’s details include restoring around 80 landfill sites, improving trash pickup services, and increasing recycling by 20%, all by the year 2020. While this reform is expected to do wonders for the urban population one can only hope the benefits of this reform trickle down to the 43% of the Moroccan population living in rural areas, like those who are living in my village.

Needless to say, even with Morocco’s movement toward a safer and more environmentally friendly MSW management system there is still an enormous population of people including children and the elderly who this reform will overlook.  Until more is done, including funding initiatives and an increase in education, these people will continue to be exposed to hazardous living conditions because of unsuitable funding, infrastructure, policies and education.

Environmental Costs of Glitter

While there are no clear estimates of the amount of glitter sold each year, its distinctive ability to disperse makes it a disproportionate contributor to environmental problems. Glitter particles are easily transferred through the air or by touch, clinging to skin and clothes. Its ability to spread is so notorious that there are companies that will ‘ship your enemies glitter’ that is guaranteed to infest every corner of their home.

Glitter has even been used in forensic science to show that a suspect has been at a crime scene. This characteristic, and the plastics it contains, makes it something of an environmental peril. It causes problems for paper recyclers: glitter on cards and gift wrap can foul up the reprocessing equipment, and even contaminate the recycled pulp.

A Growing Problem

Most glitter is cut from multi-layered sheets, combining plastic, colouring, and a reflective material such as aluminium, titanium dioxide, iron oxide, or bismuth oxychloride. It therefore contributes to the more than 12.2 millions of tonnes of plastic that enters the ocean each year – not least when people wear it and then wash it off. Worse still, glitter is a microplastic, and there are growing concerns about these tiny pieces of material entering the marine food chain and harming marine life.

The polyethylene terephthalate (PET) that is often used in glitter is thought to leach out endocrine-disrupting chemicals, which, when eaten by marine creatures, can adversely affect development, reproduction, neurology and the immune system. PET can also attract and absorb persistent organic pollutants and pathogens, adding an extra layer of contamination.

When molluscs, sea snails, marine worms, and plankton eat pathogen or pollutant-carrying particles of glitter, they can concentrate the toxins; and this concentration effect can continue as they in turn are eaten by creatures further up the food chain, all the way to our dinner plates.

Time for Action

As consciousness of the environmental damage caused by glitter increases, some are taking drastic action. In November 2017 Tops Days Nurseries a group of English nurseries banned glitter for its contribution to the plastic pollution problem. But our attraction to sparkly things is literally age old, and won’t be given up easily.

Research has demonstrated that humans are attracted to shiny, sparkly things, which is thought to stem from our evolutionary instinct to seek out shimmering bodies of water. As early as 30,000 years ago, mica flakes were used to give cave paintings a glittering appearance, while the ancient Egyptians produced glittering cosmetics from the iridescent shells of beetles as well as finely ground green malachite crystal. Green glitter fans might well wonder if environmentally friendly glitter is available, and there is in fact a growing market of products that claim eco credentials.

Shining examples

British scientist Stephen Cotton helped develop ‘eco-glitter’ made from eucalyptus tree extract and aluminium. This appears to be sold by companies like EcoStarDust, whose short list of materials included only ‘non-GMO eucalyptus trees’. Their website explains if you leave your glitter in a warm, moist and oxygenated environment then it will begin to biodegrade, with the rate depending on the mixture of these factors. However, it is not clear that a product that may release aluminium into the environment deserves a green vote of confidence.

Wild Glitter another company also explains their sparkles are made from natural plant based materials but they don’t a lot of detail about how they’re made and what happens to them once used. Other brands, such as EcoGlitterFunBioGlitz and Festival Face, offer biodegradable glitter made from a certified compostable film.

Awareness about the environmental damage caused by glitter is steadily increasing

However, it is difficult for a consumer to be sure, without a good deal of research, that such products will break down quickly and harmlessly in the natural environment – or whether they require specific industrial composting processes.

Other manufacturers are turning instead to natural ingredients that add shine and sparkle; environmentally conscious cosmetic brand LUSH uses ground nut shells and aduki beans in its products. They also started using inert mica to create sparkly things, like the cave painters from millennia ago. Unfortunately, this meant trading an environmental problem for a human rights one: difficulties with the natural mica supply chain made it impossible to guarantee that the process was free from child labour, prompting a forthcoming switch to synthetic mica.

Parting Shot

There’s a lot of grey area when it comes to choosing greener glitter, and little objective evidence available regarding the environmental impacts of the different alternatives. I’ve seen little sign, for example, of a glitter product that claims to be compatible with paper and card recycling processes. But it’s crystal clear that, with enormous variety of options available, it should be possible do without glitter made from PET – even at Christmas.

 

Note: The article has been republished with the permission of our collaborative partner Isonomia. The original version of the article can be found at this link

Properties and Uses of POME

Palm Oil processing gives rise to highly polluting wastewater, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent.

POME

On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand 27 kg, chemical oxygen demand 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg. POME has a very high BOD and COD, which is 100 times more than the municipal sewage.

POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Biogas Potential of POME

POME is always regarded as a highly polluting wastewater generated from palm oil mills. However, reutilization of POME to generate renewable energies in commercial scale has great potential. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 mper ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many palm oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

Palm oil mills, being one of the largest industries in Malaysia and Indonesia, effluents from these mills can be anaerobically converted into biogas which in turn can be used to generate power through CHP systems such as gas turbines or gas-fired engines. A cost effective way to recover biogas from POME is to replace the existing ponding/lagoon system with a closed digester system which can be achieved by installing floating plastic membranes on the open ponds.

As per conservative estimates, potential POME produced from all Palm Oil Mills in Indonesia and Malaysia is more than 50 million m3 each year which is equivalent to power generation capacity of more than 800 GW.

New Trends

Recovery of organic-based product is a new approach in managing POME which is aimed at getting by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry.  It is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source.

POME has emerged as an alternative option as a chemical remediation to grow microalgae for biomass production and simultaneously act as part of wastewater treatment process. POME contains hemicelluloses and lignocelluloses material (complex carbohydrate polymers) which result in high COD value (15,000–100,000 mg/L).

POME-Biogas

Utilizing POME as nutrients source to culture microalgae is not a new scenario, especially in Malaysia. Most palm oil millers favor the culture of microalgae as a tertiary treatment before POME is discharged due to practically low cost and high efficiency. Therefore, most of the nutrients such as nitrate and ortho-phosphate that are not removed during anaerobic digestion will be further treated in a microalgae pond. Consequently, the cultured microalgae will be used as a diet supplement for live feed culture.

In recent years, POME is also gaining prominence as a feedstock for biodiesel production, especially in the European Union. The use of POME as a feedstock in biodiesel plants requires that the plant has an esterification unit in the back-end to prepare the feedstock and to breakdown the FFA. In recent years, biomethane production from POME is also getting traction in Indonesia and Malaysia.