Recycling of Lead-Acid Batteries in Developing Countries

Lead-acid batteries (also known as LABs) are a common item in our daily lives. Once the lead of the battery is timed out, we have no option but to dump it because it has no use for us anymore, but the copper plates in the battery remain reusable which can be used for recycling. There are some disagreements about the benefits of recycling battery, say alkaline battery, over simple disposal because the mercury in the battery no longer exists and the disposal material is abundant and non-toxic. But for automotive batteries the scenario is different in terms of benefits. The recycling of this type of battery holds both economic and environmental benefits.

The reusable material from the used battery is removed and recycled which reduces the needs for raw materials which is originally imported from abroad. It creates a balance payment and cost. In addition to this there can be considerable environmental impact during mining processes such as emission from smelting of sulfide ore, copper, nickel, and cobalt and this can be eliminated if recycling can be introduced.

Dangers of Lead-Acid Batteries

LABs generally consist of both sulphuric acid and large amount of lead which is not only corrosive but also a good carrier for soluble lead and lead particles. Lead is highly toxic metal which causes a wide range of adverse health effect especially on young children. If one gets expose excessively to lead it can cause damage to brain and kidney, impair hearing, and can led to various other associated problems. On an average an automobile manufactured contain about 12kg of lead, in which about 96% of lead is used in lead acid battery and remaining 4% is used in other applications like wheel balance weight, protective coating and variation dampers.

Both lead and cadmium are harmful for human health and environment. This toxic substances seeps into the soil, groundwater and surface water through landfill and also releases toxins into the air when they are burnt in municipal waste incinerators. Moreover cadmium can be easily absorbed by the pant root and get into the fruits, vegetables, and waters are consumed by animals and human beings, they can fall to prey to a host of ill effects. Studies have shown that nausea, excessive salivation, abdominal pain, liver and kidney damage, skin irritation, headaches, asthma, nervousness, decreased IQ in children, and sometimes even cancer can result from exposure to such metals for a sufficient period of time.

Need for Effective Control Measures

In a battery recycling plant, effective control measures need to be implemented, both to protect the health of workers and to prevent pollution of the environment. Good plant design, with reduction of the potential for the emission of contaminating substances is of utmost importance and the newer smelting processes are inherently much cleaner than traditional blast furnaces.

Pollution abatement technologies, including the treatment of exhaust gases and liquid effluents, need to be installed. Those mostly exposed to releases within the plants are the workforce. Control measures such as maintaining minimum standards of air quality within the works, medical surveillance of employees, use of protective equipment, and provision of conditions of good hygiene in general, is necessary to avoid occupational lead exposure. However, few government/non-governmental steps have been taken yet; rather this practice is a traditional trading system as prevail in the society.

Positive and Negative Impacts

In developing countries such as Bangladesh, recycling or reusing of used lead-acid batteries has both positive and negative impact on environment. Positive impact is that, if battery is recycled in proper and in sustainable manner it saves environment from toxic material of battery, otherwise battery waste is dumped into the landfills. Negative impact is that if recycling is not done in sustainable manner emits gases produced from battery recycling has adverse impacts on environment and human being.

In a battery recycling plant, effective control measures are required to safeguard public health and environment.

Direct recycling process should be banned as it has adverse impact on environment. As it is an illegal process, shopkeepers perform this process in hidden way. Government should impose the law and regulation strictly in this occurrence. This information can be used for advertising material highlighting the environmental benefits of recycling or reusing encourages the purchasing of old lead acid battery. It will accelerate the selling rate of old battery.

Importance of Awareness

Necessary steps should be taken to increase awareness about environmental impacts of used lead acid batteries. Proper instruction should be provided among the general mass. It will also increase reusing of old battery. Battery regeneration is a unique process specially designed to revive the lost capacity of batteries and give priority to choose secondary battery. Battery Reuse Centre can be developed for effective reuse and recycle.

The aim to divert reusable battery, donated by the public, which often could have been destined for landfill and instead provides a much needed source of low-cost battery to those in need. The battery reuse service encourages volunteer involvement and trainee placements in all aspects of its operation. Awareness program (posters, pamphlets, TV & radio commercials, road-shows, website, exhibitions, talks), infrastructure, information center, tax rebates for manufacturers should be taken to increase recycling or reusing of old battery.

Sustainable Waste Collection and Management in the Construction Industry

Construction is booming worldwide driven by population growth, urbanization and increased need for dwellings, business sites and commercial spaces with volume output expected to grow by 85% to $15.5 trillion by 2030. Unfortunately, it also means that there is a serious challenge to implement sustainable waste management in the construction industry. It is not only the duty of waste management contractors and companies to ensure sustainable collection and management of construction wastes responsibly but also individuals who are doing their own DIY projects at home. Without a concerted effort to collect, recycle and dispose waste properly, there is real danger to the environment that will eventually spill over to people, vegetation, and wildlife.

Role of education and behavior change

On a global scale, over half of the world’s population have no access to a steady collection of trash. Illegal dumpsites hold over 40% of the world’s waste. It’s not only the lack of facilities but also inadequate information that is contributing to waste-related pollution all over the world.

Sustainable waste collection begins by educating people about reducing, reusing and recycling efforts or the 3R approach. From education and information campaigns to changes in behavior and attitudes, when people know and are aware of the benefits of reducing, segregating, collection, reusing and recycling, they become a collective and conscious effort.

Right materials and equipment

The availability of bins, collection containers, and recycling centers also has a great influence on how much a person and their communities recycle and reuse or dispose of construction waste properly. For people who are able to hire a 20 yard dumpster in West Chester, Lancaster, Norrington, Reading or any other town in the world, it is easier and convenient to remove construction and renovation waste knowing that the company will dispose of it properly by bringing it to approved landfills.

What is also important is for clients, contractors and recycling specialists to put their heads together to minimize construction waste according to Oyenuga and Bhamidimarri.

General awareness to reduce dumping is increasing as about 35% of construction and demolition waste (CDW) goes to landfills. Construction rubbish can contain lots of toxic materials such as lead, asbestos, and other dangerous substances that can find their way into the soil, groundwater, and the air that we breathe.

The construction industry has also recognized that reusing components and materials in making or erecting structures is sustainable and saves money. Most of the parts of construction consist of wood, sticks, steel, and concrete. Rubble can be compacted and reused. Demolition is carefully considered if renovation can be carried out.

The Way Forward

Waste generated from construction need not be a nuisance to the environment. With the right education to increase awareness to reduce/recycle/reuse, provision of collection and recycling points and the newer and better techniques to reuse construction materials, sustainable management of construction waste can become a reality.

Recycling of Lead-Acid Batteries: Perspectives

lead-acid-battery-recyclingLead-acid batteries are used on a mass-scale in all parts of the world for energy storage. Lead-acid batteries contain sulphuric acid and large amounts of lead. The acid is extremely corrosive and is also a good carrier for soluble lead and lead particulate. Lead is a highly toxic metal that produces a range of adverse health impacts particularly among young children.

Exposure to excessive levels of lead can cause damage to brain and kidney, impair hearing; and lead to numerous other associated problems. On average, each automobile manufactured contains approximately 12 kilograms of lead. Around 96% lead is used in the common lead-acid battery, while the remaining 4% in other applications including wheel balance weights, protective coatings and vibration dampers.

Recycling Perspectives

Recycling of Lead-Acid Batteries is a profitable business, albeit dangerous, in developing countries. Many developing countries buy used lead-acid batteries (also known as ULABs) from industrialized countries (and Middle East) in bulk in order to extract lead. ULAB recycling occurs in almost every city in the developing world where ULAB recycling and smelting operations are often located in densely populated urban areas with hardly any pollution control and safety measures for workers.

Usually ULAB recycling operations release lead-contaminated waste into the environment and natural ecosystems.  Infact, Blacksmith Institute estimates that over 12 million people are affected by lead contamination from processing of Used Lead Acid Batteries in the developing world, with South America, South Asia and Africa being the most affected regions.

Associated Problems

The problems associated with recycling of ULABs are well-documented and recognized by the industry and the Basel Convention Secretariat. As much of the informal ULAB recycling is small-scale and difficult to regulate or control, progress is possible only through cleanup, outreach, policy, and education.

For example, Blacksmith’s Lead Poisoning and Car Batteries Project is currently active in eight countries, including Senegal, the Dominican Republic, India, and the Philippines. The Project aims to end widespread lead poisoning from the improper recycling of ULABs, and consists of several different strategies and programs, with the most important priority being the health of children in the surrounding communities.

Lead poisoning, from improper recycling of used batteries, impacts tens of millions of people worldwide.

Lead poisoning, from improper recycling of used batteries, impacts tens of millions of people worldwide.

There is no effective means of tracking shipments of used lead-acid batteries from foreign exporters to recycling plants in developing world which makes it difficult to trace ULABs going to unauthorized or inadequate facilities.

The Way Forward

An effective method to reduce the hazards posed by trans-boundary movements of ULABs is to encourage companies that generate used lead batteries to voluntarily stop exporting lead batteries to developing countries. These types of voluntary restrictions on transboundary shipments can help pressure companies involved in recycling lead batteries in developing to improve their environmental performance. It may also help encourage policy makers to close the gaps in both regulations and enforcement capacity.

Another interesting way is to encourage regeneration of lead-acid batteries which can prolong its life significantly. The advantage of battery regeneration over regular recycling is the reduced carbon footprint incurred by mitigating the collecting, packing, shipping and smelting of millions of tonnes of batteries and their cases. Most importantly, it takes about 25kWh of energy to remake a 15Kg, 12V 70Ah battery and just 2.1KWh to regenerate it electronically.