The Technology Revolutionizing Commercial Waste Management

Every single one of us can do something to improve our impact on the planet, but it is a given that businesses of all sizes have a bigger footprint than families – commercial accounts for 12% of total greenhouse gas emissions. A big factor of that is waste management. From the physical process of picking up garbage, to the methane-released process of decomposition, there are numerous factors that add up to create a large carbon footprint.

Between hiring green focused waste management solutions and recycling in a diligent fashion, there are a few technologies that are helping to break down the barrier between commercial waste management and an environmentally positive working environment.

Cleaning up commercial kitchens

A key form of commercial waste is food waste. Between the home and restaurant, it is estimated by the US Department of Agriculture that 133 billion pounds of food is wasted every year. Much will end up in the landfill. How is technology helping to tackle this huge source of environmental waste? Restaurants themselves are benefiting from lower priced and higher quality commercial kitchen cooking equipment, that helps to raise standards and reduce wastage.

Culinary appliances for varied cuisines also benefit from a new process being developed at the Netherland’s Wageningen University. A major driver of food waste is rejected wholesale delivery, much of which will be disposed of in landfill. The technology being developed in Holland aims to reduce wastage by analyzing food at the source, closer to where recycling will be achievable.

Route optimization

Have you ever received a parcel from an online retailer only to find the box greatly outsizes the contents? On the face of it, this is damaging to the environment. However, many retailers use complex box sorting algorithms. The result is that the best route is chosen on balance, considering the gas needed to make the journey, the amount of stock that can be delivered and the shortest route for the driver. This is an area of intense technological innovation.

The National Waste & Recycling Association reported in 2017 on how 2018 would see further advances, particularly with the integration of artificial intelligence and augmented reality into the route-finding process.

Balancing the landfill carbon footprint

It is well established that landfills are now being used to power wind turbines, geothermal style electricity and so on. They are being improved to minimize the leachate into groundwater systems and to prevent methane escaping into the atmosphere. However, further investigation is being pushed into the possibility of using landfill as a carbon sequester.

AI-based waste management systems can help in route optimization and waste disposal

Penn State University, Lawrence Berkeley and Texas University recently joined together to secure a $2.5m grant into looking into the function of carbon, post-sequestration. This will help to shed light on the carbon footprint and create a solid foundation on which future technology can thrive.

Businesses of all sizes have an impact on the carbon footprint of the world. The various processes that go into making a business profitable and have a positive impact on their local and wider communities need to be addressed. As with many walks of life, technology is helping to bridge the gap.

How To Tackle Vibrations Using A Coriolis Mass Flow Meter

Coriolis mass flow meters are acknowledged or well-known as an extremely precise and accurate flow measuring device. Plus, it offers plenty of benefits than other instruments. But take note that every measuring principle has its obstacles, and it is also true for the Coriolis principle.

For the most part, it can be difficult and hard to use Coriolis devices in most low flow applications in industries manufacturing large and heavy products. In these applications, you might have to face all types of vibrations.

Thus, the question is, how can you deal with these vibrations using the coriolis mass flow meter. For a little help, we will walk you through how to deal with all types of vibrations. So, take a read!

Coriolis Principle

This flow measuring device provides multiple benefits and advantages compared to other measuring instruments. First and foremost, coriolis flow meters calculate or gauge direct mass flow.

For many industries, it is a critical feature because it removes or eradicates inaccuracies induced by the fluid’s physical properties or characteristics. Aside from this, coriolis flow meters are extremely precise and accurate, have no mechanical parts in motion, have immense repeatability, a towering dynamic range, and many more.

The coriolis principle is simple yet very effective. Its operating principle is all around us in this world, such as the rotation of the earth and its impact on the weather. Coriolis flow meters have a tube powered by a fixed vibration. So, when a liquid or gas traverses through this tunnel or duct, the mass flow momentum will, more often than not, create a change or alteration in the vibration of the tube.

Then, the duct will contort culminating a phase shift. This shift can be calculated or computed deriving a linear output corresponding to the flow. As the coriolis principle calculates mass flow regardless of what’s inside the tube, it can be, for the most part, promptly implemented to any fluid traversing through it, gas or liquid.

While the thermal mass flow instruments are reliant on the fluid’s physical properties, thus, similar to the phase shift in frequency between outlet and inlet, it’s possible to calculate the actual natural frequency change.

This frequency change is incongruity to the fluid’s density, and it can derive a further signal output. It’s possible to calculate the volume flow rate having computed both the density and the mass flow rate.

How it Works

Coriolis mass flow meters calculate or gauges the mass via inertia. A dense gas or liquid moves or traverse through a tunnel or duct which is pulsated by a small actuator. This vibration generates a measurable contorting force on the duct corresponding to the mass. More advanced models of this flow measuring technology apply dual-curved tunnels for lower pressure drop and higher sensitivity.

Although considered or known as the most precise flow meters, coriolis mass flow meters are prone to errors or inaccuracies when bubbles are existing in the liquid. These bubbles can produce or generate splashing inside the tube, make noise, and modify or alter the energy required for tube vibration. Huge spaces boost the energy required for tube vibration in excess and can end up in complete failure.

Impact of Vibrations on Accuracy of Coriolis Flow Meters

In manufacturing, factory, commercial, business, trade applications, all types of vibrations with various sizes are eminently common. Coriolis mass flow meters calculate a mass flow through a vibrating sensor duct, which variation gets purposely out of phase when the gas or liquid traverses through.

This technique or approach is relatively susceptible to unnecessary vibrations with a recurrence close to the sensor tube’s resonance frequency or a towering concordant of this frequency. However, it depends on the design of the sensor tube.

The odds of the frequency of these unnecessary vibrations is greater than in an industrial environment. Manufacturers of coriolis mass flow meters do their best to minimize the effect of vibrations on the measurement using some technical solutions including pigtails, active and passive vibration compensation, mass inertia, different sensor shapes, dual-sensor tubes, and higher driving frequencies.

In other words, vibrations can affect the accuracy of the measurements of coriolis mass flow meters. However, only if the frequency of the vibrations is close to the concordant frequency.

Types of Vibrations

In industrial applications, vibrations can be produced by usage-based vibration sources, building-based vibration sources, and environmentally related vibration sources. These vibrations move or traverse through a medium such as the fluid itself, through pipes, in the air, or the floor. If any of these vibrations disrupt the frequency of the device, then the output could be incorrect.

Takeaway

It is helpful to determine the sources to lessen or reduce the effects of unwanted vibrations. Oftentimes, it’s possible to move the measuring device or instrument just a little bit, take advantage of huge mass blocks, use suspension alternatives, or use flexible tubes.

About the Author

Sylvia Hopkins is a writer and a blogger who specializes in email marketing campaigns and ghost blogging. She writes about flow measurement instrumentation, flow measurement application, and technology. When not working, Sylvia spends some quality time with her family and friends.

Which Option to Consider While Purchasing Forklift: Buy, Lease or Rent?

There are various options to consider when you want to acquire a forklift. As this is no cheap piece of equipment. Making a decision requires you to use a unique lens to decide on what’s best for your scale of operation. Are you torn between renting, leasing or buying? To help you through this challenging process, below, you will find points that will assist you in determining the best cause of action for your business:

 

  1. Renting a forklift

If you in a seasonal peak during your business period or in need of moving extra freight, renting is the choice you can take. When you choose to rent a forklift, you are sure to benefit from experimenting with different classes of forklifts to see which one increases productivity.

 However, rentals are somewhat expensive compared to leasing or buying. This is because you will have to cover maintenance costs as well as the time that the forklift will be idle while at the dealership between rental assignments.

During renting, remember that there will be building waste that needs attention. Having a Solutions on Waste, Recycling and Processing Recyclable Materials are an option to have in mind. You need to take care of transportation waste, construction waste sorting as well as recycling streams.

  1. Leasing a forklift

While you are contemplating leasing, you can set your number of years on which you intend to rent the machine. Having a short lease will allow you to work better if you want to become fluid. Leasing will provide you with less monthly payments when compared to renting or buying.

This option allows you to test-drive new models without making a permanent commitment to buying it. You will be at a position to make adjustments where you see fit in terms of decreasing the fleet size, changing product mix or modifying terms of the lease

  1. Buying a forklift

Does your business have a preference for owning all the capital equipment it has? Do you want to access a higher competitive credit line? Is your business stable, or you anticipate to use the material for more than 20 years? Do you have cash at hand to make a purchase immediately? If yes, the best course of action that you should proceed with it buying your forklift machine.

This way, you are sure to make a better return on investment because when you rent over a long period, rental fee tends to become higher as compared to monthly financial costs.

Buying a forklift will allow you to make your modifications than with a rental or leased equipment. You get customized options which suit your specific needs.

You can enjoy a tax deduction as purchased forklift are entitled to a reduced tax.

Conclusion

When deciding on what purchasing technique to use, be sure to analyze your business needs before making any rash decisions. Do not forget to offer your workers a Solutions on Waste, Recycling and Processing Recyclable Materials during your contraction tenure. This will go hand in hand with the ultimate choice you make in purchasing option that will work for your company.

Biogas from Slaughterhouse Wastes

slaughterhouse-wasteSlaughterhouse waste (or abattoir waste) disposal has been a major environmental challenge in all parts of the world. The chemical properties of slaughterhouse wastes are similar to that of municipal sewage, however the former is highly concentrated wastewater with 45% soluble and 55% suspended organic composition. Blood has a very high COD of around 375,000 mg/L and is one of the major dissolved pollutants in slaughterhouse wastewater.

In most of the developing countries, there is no organized strategy for disposal of solid as well as liquid wastes generated in abattoirs. The solid slaughterhouse waste is collected and dumped in landfills or open areas while the liquid waste is sent to municipal sewerage system or water bodies, thus endangering public health as well as terrestrial and aquatic life. Wastewater from slaughterhouses is known to cause an increase in the BOD, COD, total solids, pH, temperature and turbidity, and may even cause deoxygenation of water bodies.

Anaerobic Digestion of Slaughterhouse Wastes

There are several methods for beneficial use of slaughterhouse wastes including biogas generation, fertilizer production and utilization as animal feed. Anaerobic digestion is one of the best options for slaughterhouse waste management which will lead to production of energy-rich biogas, reduction in GHGs emissions and effective pollution control in abattoirs. Anaerobic digestion can achieve a high degree of COD and BOD removal from slaughterhouse effluent at a significantly lower cost than comparable aerobic systems. The biogas potential of slaughterhouse waste is higher than animal manure, and reported to be in the range of 120-160 m3 biogas per ton of wastes. However the C:N ratio of slaughterhouse waste is quite low (4:1) which demands its co-digestion with high C:N substrates like animal manure, food waste, crop residues, poultry litter etc.

Slaughterhouse effluent has high COD, high BOD, and high moisture content which make it well-suited to anaerobic digestion process. Slaughterhouse wastewater also contains high concentrations of suspended organic solids including pieces of fat, grease, hair, feathers, manure, grit, and undigested feed which will contribute the slowly biodegradable of organic matter. Amongst anaerobic treatment processes, the up-flow anaerobic sludge blanket (UASB) process is widely used in developing countries for biogas production from abattoir wastes.

Slaughterhouse waste is a protein-rich substrate and may result in sulfide formation during anaerobic degradation. The increased concentration of sulfides in the digester can lead to higher concentrations of hydrogen sulfide in the biogas which may inhibit methanogens. In addition to sulfides, ammonia is also formed during the anaerobic digestion process which may increase the pH in the digester (>8.0) which can be growth limiting for some VFA-consuming methanogens.

How to Find the Best Industrial Valve Suppliers in China

The increasing demand for industrial valve suppliers is apparent due to the rapid growth of different industries, such as power plants, oil and gas industry, wastewater treatment, to name a few, in China.

These suppliers are important to various industries in the country as they supply high-quality industrial equipment like gate valves, butterfly valves, ball valves, plug valves, ball valves, etc. Without these needed materials to support different installations of these industries, they will surely have a hard time with the production process.

Image source: http://semesters.in/tag/demineralization-plant/

On a client’s perspective, finding the best valve supplier can be a real challenge, especially if you’re new to the industry.

So, if you are searching for your potential industrial valve supplier in the country, don’t fret. You are definitely on the right page. Below are tips that will help with your selection process. As you read along, you’ll definitely get an idea on how and where to find for the right supplier in China.

Looking for a Good Industrial Valve Supplier in China

Price

Several growing industries focus on one major aspect of the business — the price. This is, without a doubt, essential when choosing suppliers to provide you with the services you need. However, there is more to a valve supplier than just the price. Keep in mind that these people are in business to bring in money, just like you.

Stability

This is one of the major indicators of a good valve supplier. As a client, of course, you want to sign up with manufacturers who have extensive experience in the industry. Suppliers who have been in the business for quite a long time now. Apart from this, the supplier should have long-tenured executive experience as well as a stable and sturdy reputation with the clients. These are surely things you need to consider.

Reliability

Of course, it is highly important for suppliers to be reliable in order to gain trustworthy and loyal customers. This is another important definition of an ideal valve supplier — reliability. Most of the times, you can get the best reliability from large-scale suppliers. These are companies who have enough resources to perform system backups as well as sources in the event something goes wrong.

Location

This is one aspect that you should take note. Valves and other related equipment ordered outside China can take a long time to get to your area and may add up costly freight charges. You can definitely check for potential suppliers without the need to outsource overseas. Find a supplier closer to where you are to avoid unnecessary charges. Orders will be more flexible as well if opt to get suppliers within China.

Competitiveness

Since China is a huge country, valve suppliers are in constant competition. Look for someone who can offer the latest, most innovative products, and services. A company who have well-rounded and knowledgeable employees to answer your questions and market their products effectively. Attractive financial terms should be offered for client purchases. They should have a rational attitude toward you and are willing to work with you hand in hand for potential business growth.

Where to Start Searching?

Now that you already have an idea of what type of supplier you’re looking for, you should also have a better idea of where to start your search. Basically, the best place to start is through the internet, however, there are other areas that might help you as well.

Referrals

Referrals can bring you some of the best leads. The technique is don’t be afraid to ask for recommendations from your local and professional networks. Find individuals who have found success in searching for valve suppliers. Ask them if they are willing to share information and/or their contacts.

Because of social networks, finding potential suppliers is not that much of a hassle. It made it so easy to spread the word, thus increasing your chance of finding a supplier. You can join Facebook groups or other related online communities of industrial business and see if anyone is willing to share his/her review.

As you start to select suppliers, be sure to ask them if they can be of help to point you in the right direction, regardless if they are not the ideal one for you. They will likely have the best contacts and would be glad to refer you to the one that suits your interest best.

Google

Google has always been our go-to when searching for something. With just a simple search, we can immediately find what we’re looking for. However, a lot of potential valve suppliers can’t be seen on the first few searches on Google. Probably because their websites are not up-to-date. Therefore, it is recommended to prioritize the first two pages of the search results. You might also want to use several search terms, such as wholesaler, wholesale, distributor, etc.

Familiarize yourself with Google’s search shortcuts. This is the best way to enhance the search quality, hence the results as well.

Conclusion

Finding the best valve supplier is not that complicated if you know where to begin your search and what to look for. With tons of new valve suppliers in the market today, it can be a challenge who to choose. Hence, it pays to have an idea about a supplier’s background and how long they have been in the industry.

Whether you’re new to the industry or not, these tips will surely help you find your potential supplier. And, speaking of a potential valve supplier in China, XHVAL is definitely top of the list. You might want to check them out.

The 8 Challenges to Networking a Factory

The age of the smart factory is here! More and more industrial processing facilities are hooking everything together, creating internal networks, to reap the benefits that these bring. The data-gathering and analysis-related functions of a networked factory can do wonders for long-term success and production efficiency. However, there are more than a few challenges.

Source: https://unsplash.com/photos/Jth4utoCVNo

Whether you are acquiring supplies from otscable for a new facility or you’re looking to upgrade an existing one, there are issues you have to consider. Some of these might be obvious at the outset, such as the logistics of all this networking gear. Others might catch you off-guard. Here are the seven most critical challenges that occur if you intend to make a smarter factory.

Legacy Equipment

One concern that is highly practical is legacy equipment. Older machinery could come from an era when networking wasn’t important. These could be crucial to your operations, but also too old for a simple “plug and play” approach. This means that you are in desperate need to figure out how to blend the old and new, and that’s not always the easiest thing to achieve.

Unfortunately, there are instances when there is no solution. If you’re upgrading from an existing factory, you will have to settle for mixing the old and new and working as best you can. You can look into using third-party integration equipment and adaptors, which are your best option if a strict update and upgrade are out of the cards.

Physical Logistics

Another huge concern is simple logistics. Where do you lay out the cables? Where are the routers or switches installed? How far between support hardware are the cables running? This is something that you need to understand before you start placing equipment on the ground. Consider the layout and where your heavy machinery as you plan the placement of your networking infrastructure.

Security

Security is a concern. A smart factory collects a great deal of data about your operations, which might be highly sensitive. Protecting it and any insights gained from it is important for most factories and companies. One way to protect the data is to go for a wired network, which traditionally is much harder to infiltrate from the outside.

In general, you do not want to go with a smart factory until you have the security in place. You want layers of protection and authorization for your data. How you achieve that is up to you, though keeping the more sensitive data in a closed network, inaccessible from the outside without the right credentials, is a good first step.

Data Storage

Data storage is also an ongoing concern for smart factories. As operations are recorded down to their minutia, all that information has to be kept somewhere. Preferably, the storage occurs on-site so you don’t have to stretch the network too far and risk security issues. This means you need to account for the storage and the conditions that prevent the hardware from being damaged.

Factory Visibility

Visibility is also a concern. In the old days, you might have observers present but practically no real active monitoring. Most things were probably done passively. In a smart factory, you’re going from zero monitoring to thousands of devices and points collecting data all the time. This can be a staggering amount of information to process and may require a learning curve.

A related challenge to this is if multiple factories are interconnected. Even if you maintained visibility in one, being suddenly thrust into seeing all of your facilities in such detail can be staggering. This is something that usually takes a bit of time to get used to.

Outages

You’ll want back-up systems in place in the event of outages. Never assume that you will never have an outage, and set the network up so that it functions on its own even without internet access. Make sure that the most crucial parts of it can work and record data independently, even under outage conditions.

Edge Networking

Going closer to the “edge” might also be a challenge for you. Edge networks are when a single task is processed by multiple terminals across a network. This can be a serious challenge because it means that your internal network has to connect to a much broader one. This will require serious cooperation between multiple departments, facilities, and personnel.

The Right Tools

Finally, you have to look at the tools you intend to use. The market for devices and tools for smart factories is increasing, which is both good and bad. It’s good because you have more options available, so there are higher odds something that suits your needs is out there. It’s bad because there’s more chaff to wade through, more time needed to get the right ones.

Conclusion

Yes, it is challenging to hook a factory to a network and engage in the “Internet of Things.” There are challenges that must be overcome, logistics to consider, and costs to factor in. However, there are many benefits to gain, both from the network itself and by keeping up to date on the march of technology.

Wastes Generation in Tanneries

Wastes originate from all stages of leather making, such as fine leather particles, residues from various chemical discharges and reagents from different waste liquors comprising of large pieces of leather cuttings, trimmings and gross shavings, fleshing residues, solid hair debris and remnants of paper bags.

Tanning refers to the process by which collagen fibers in a hide react with a chemical agent (tannin, alum or other chemicals). However, the term leather tanning also commonly refers to the entire leather-making process. Hides and skins have the ability to absorb tannic acid and other chemical substances that prevent them from decaying, make them resistant to wetting, and keep them supple and durable. The flesh side of the hide or skin is much thicker and softer. The three types of hides and skins most often used in leather manufacture are from cattle, sheep, and pigs.

Out of 1000 kg of raw hide, nearly 850 kg is generated as solid wastes in leather processing. Only 150 Kg of the raw material is converted in to leather. A typical tannery generate huge amount of waste:

  • Fleshing: 56-60%
  • Chrome shaving, chrome splits and buffing dust: 35-40%
  • Skin trimming: 5-7%
  • Hair: 2-5%

Over 80 per cent of the organic pollution load in BOD terms emanates from the beamhouse (pre-tanning); much of this comes from degraded hide/skin and hair matter. During the tanning process at least 300 kg of chemicals (lime, salt etc.) are added per ton of hides. Excess of non-used salts will appear in the wastewater.

Because of the changing pH, these compounds can precipitate and contribute to the amount of solid waste or suspended solids. Every tanning process step, with the exception of finishing operations, produces wastewater. An average of 35 m3 is produced per ton of raw hide. The wastewater is made up of high concentration of salts, chromium, ammonia, dye and solvent chemicals etc.

A large amount of waste generated by tanneries is discharged in natural water bodies directly or indirectly through two open drains without any treatment. The water in the low lying areas in developing countries, like India and Bangladesh, is polluted in such a degree that it has become unsuitable for public uses. In summer when the rate of decomposition of the waste is higher, serious air pollution is caused in residential areas by producing intolerable obnoxious odours.

Tannery wastewater and solid wastes often find their way into surface water, where toxins are carried downstream and contaminate water used for bathing, cooking, swimming, and irrigation. Chromium waste can also seep into the soil and contaminate groundwater systems that provide drinking water for nearby communities. In addition, contamination in water can build up in aquatic animals, which are a common source of food.

Thermal Conversion of Tannery Wastes

tannery-wastesTanneries generate considerable quantities of sludge, shavings, trimmings, hair, buffing dusts and other general wastes and can consist of up to 70% of hide weight processed. Thermal technologies, gasification in particular, by virtue of chemically reducing conditions, provides a viable alternative thermal treatment for Chrome containing materials, and generates a chrome (III) containing ash. This ash has significant commercial value as it can be reconstituted.

All of the wastes created by the tannery can be gasified following pre-treatment methods such as maceration, drying and subsequent densification or briquetting. A combined drying and gasification process could eliminate solid waste, whilst providing a combustible gas as a tax-exempt renewable energy source, which the tannery can directly reuse. Gasification trials have illustrated that up to 70% of the intrinsic energy value of the wastes currently disposed can be recovered as “synthesis gas” energy.

Gasification technology has the potential to provide significant cost benefits in terms of power generation and waste disposal, and increase sustainability within the leather industry. The gasification process converts any carbon-containing material into a combustible gas comprised primarily of carbon monoxide, hydrogen and methane, which can be used as a fuel to generate electricity and heat.

A wide range of tannery wastes can be macerated, flash dried, densified and gasified to generate a clean syngas for reuse in boilers or other Combined Heat and Power systems. As a result up to 70% of the intrinsic energy value of the waste can be recovered as syngas, with up to 60% of this being surplus to process drying requirements so can be recovered for on-site boiler or thermal energy recovery uses.

A proprietary technology has been in commercial operation at a tanyard on the West Coast of Norway since mid 2001. The process employs gasification-and-plasma-cracking and offer the capability of turning the tannery waste problem to a valorising source that may add values to the plant owner in terms of excessive energy and ferrochrome, a harmless alloy that is widely used by the metallurgical industry. The process leaves no ashes but a non-leaching slag that is useful for civil engineering works, and, hence, no residues for landfill disposal

Towards Sustainable Pharmaceutical Management

The pharmaceutical industry has a substantial impact on the environment, especially when the materials used to make them and the chemicals that comprise make their way directly into the environment. The pharmaceutical industry at large as well as average consumer can take steps to make of use of medicine more sustainable through both significant and relatively minor changes.

Medicines and the Environment

The drugs that we consume naturally enter our environment as our body turns them to waste. This issue becomes exacerbated when people intentionally dispose of unused medicine by flushing it down the drain.

Although our water treatment systems are designed to take contaminants out of our wastewater before we re-introduce to the natural environment, some still get through. These contaminants, which include those in medications, can damage the ecosystems they end up in.

High levels of estrogen in waters due to birth control, for example, can hamper the ability of fish to reproduce, reducing their population size. Once those chemicals find their way into the water, they enter the food chain and eventually impact animals that live on land too, including humans.

Plants will absorb the chemicals from medications. Animals then eat these plants or drink the water and ingest the contaminants. Humans might drink the water or eat the plants or animals, making pollution from pharmaceuticals a human health hazard as well. This problem becomes worse in the summer when livestock such as cattle require two to three times as much water as they do during other times of the year.

Proper Disposal of Medicines

If you have unused medications that you need to get rid of, don’t flush them down the drain or throw them straight into the trash. The U.S. Food and Drug Administration (FDA) recommends one of several other options for the safe and sustainable disposal of medicines.

Some communities have drug take-back programs that the Drug Enforcement Administration (DEA) approves. Some pharmacies also allow you to mail in or dispose of unused medications at kiosks. The DEA also organizes a national drug take-back day.

Although certain medications have recommendations on the label to flush them, you can dispose of the majority of them in your regular trash at home. The FDA recommends mixing them with something unpalatable such as dirt, kitty litter or coffee grounds in a plastic bag that you can seal. This disguises the drugs and prevents pets from getting into them. You can then throw the bag away.

If you are a throwing away a prescription medication container, be sure to scratch out all potentially identifying information to protect your privacy and identity.

Using Medicines More Sustainably

Another option for reducing the impact your use of medicine has on the environment is to use less of it or use more environmentally friendly medications.

To use less medicine, only use it when you truly need it and try substituting natural remedies for pharmaceuticals. Reach for naturally derived treatments such as essential oils, vitamins, herbs or a cup of hot tea. Always consult with your doctor before changing your medication regimen.

As a long-term strategy, regular exercise and a healthy diet can do wonders in improving your overall health and decreasing your need to take medicines.

Sustainability from the Industry’s Perspective

Of course, making the pharmaceutical industry more sustainable isn’t the sole responsibility of the consumer. The industry can also change its practices to manage pharmaceuticals in a more environmentally friendly fashion.

One aspect of this involves energy use. The manufacturing and transportation of medications can be extremely energy-intensive. By using energy more efficiently and using cleaner energy, drug companies can reduce their environmental impact.

Pharmaceutical industry can change its practices to manage pharmaceuticals in a more ecofriendly manner.

These corporations can also make an effort to include more eco-friendly substances in their medications. While they may not be able to remove every non-natural chemical from their products, they can offer greener alternatives to consume and look into reducing the presence of damaging substances as much as possible.

This applies not only to the organizations closest to the consumers but to the entire supply chain.

Medications are often vital to our health, but it can also have a negative impact on the health of our environment. Taking steps to manage pharmaceuticals more sustainably can enable us to protect our own well-being as well as that of our environment.

Recycling of Lead-Acid Batteries in Developing Countries

Lead-acid batteries (also known as LABs) are a common item in our daily lives. Once the lead of the battery is timed out, we have no option but to dump it because it has no use for us anymore, but the copper plates in the battery remain reusable which can be used for recycling. There are some disagreements about the benefits of recycling battery, say alkaline battery, over simple disposal because the mercury in the battery no longer exists and the disposal material is abundant and non-toxic. But for automotive batteries the scenario is different in terms of benefits. The recycling of this type of battery holds both economic and environmental benefits.

The reusable material from the used battery is removed and recycled which reduces the needs for raw materials which is originally imported from abroad. It creates a balance payment and cost. In addition to this there can be considerable environmental impact during mining processes such as emission from smelting of sulfide ore, copper, nickel, and cobalt and this can be eliminated if recycling can be introduced.

Dangers of Lead-Acid Batteries

LABs generally consist of both sulphuric acid and large amount of lead which is not only corrosive but also a good carrier for soluble lead and lead particles. Lead is highly toxic metal which causes a wide range of adverse health effect especially on young children. If one gets expose excessively to lead it can cause damage to brain and kidney, impair hearing, and can led to various other associated problems. On an average an automobile manufactured contain about 12kg of lead, in which about 96% of lead is used in lead acid battery and remaining 4% is used in other applications like wheel balance weight, protective coating and variation dampers.

Both lead and cadmium are harmful for human health and environment. This toxic substances seeps into the soil, groundwater and surface water through landfill and also releases toxins into the air when they are burnt in municipal waste incinerators. Moreover cadmium can be easily absorbed by the pant root and get into the fruits, vegetables, and waters are consumed by animals and human beings, they can fall to prey to a host of ill effects. Studies have shown that nausea, excessive salivation, abdominal pain, liver and kidney damage, skin irritation, headaches, asthma, nervousness, decreased IQ in children, and sometimes even cancer can result from exposure to such metals for a sufficient period of time.

Need for Effective Control Measures

In a battery recycling plant, effective control measures need to be implemented, both to protect the health of workers and to prevent pollution of the environment. Good plant design, with reduction of the potential for the emission of contaminating substances is of utmost importance and the newer smelting processes are inherently much cleaner than traditional blast furnaces.

Pollution abatement technologies, including the treatment of exhaust gases and liquid effluents, need to be installed. Those mostly exposed to releases within the plants are the workforce. Control measures such as maintaining minimum standards of air quality within the works, medical surveillance of employees, use of protective equipment, and provision of conditions of good hygiene in general, is necessary to avoid occupational lead exposure. However, few government/non-governmental steps have been taken yet; rather this practice is a traditional trading system as prevail in the society.

Positive and Negative Impacts

In developing countries such as Bangladesh, recycling or reusing of used lead-acid batteries has both positive and negative impact on environment. Positive impact is that, if battery is recycled in proper and in sustainable manner it saves environment from toxic material of battery, otherwise battery waste is dumped into the landfills. Negative impact is that if recycling is not done in sustainable manner emits gases produced from battery recycling has adverse impacts on environment and human being.

In a battery recycling plant, effective control measures are required to safeguard public health and environment.

Direct recycling process should be banned as it has adverse impact on environment. As it is an illegal process, shopkeepers perform this process in hidden way. Government should impose the law and regulation strictly in this occurrence. This information can be used for advertising material highlighting the environmental benefits of recycling or reusing encourages the purchasing of old lead acid battery. It will accelerate the selling rate of old battery.

Importance of Awareness

Necessary steps should be taken to increase awareness about environmental impacts of used lead acid batteries. Proper instruction should be provided among the general mass. It will also increase reusing of old battery. Battery regeneration is a unique process specially designed to revive the lost capacity of batteries and give priority to choose secondary battery. Battery Reuse Centre can be developed for effective reuse and recycle.

The aim to divert reusable battery, donated by the public, which often could have been destined for landfill and instead provides a much needed source of low-cost battery to those in need. The battery reuse service encourages volunteer involvement and trainee placements in all aspects of its operation. Awareness program (posters, pamphlets, TV & radio commercials, road-shows, website, exhibitions, talks), infrastructure, information center, tax rebates for manufacturers should be taken to increase recycling or reusing of old battery.