The Benefits of Stainless Steel General-Purpose Panels with Flanges for Industrial Applications

Industrial buildings are complicated structures, often demanding specialized components and features to guarantee smooth and efficient operations. One such component is access panels, essential for easy access to necessary industrial facilities and equipment.

The stainless steel general-purpose panels with flanges are among the industry’s favorites for their versatility and reliability solutions applicable to many industrial processes. This article explores the many advantages of using a stainless steel general-purpose panel with flange in your industrial establishment projects. 

benefits of stainless steel general-purpose panels with flanges in industrial uses

Keep reading to know the top 5 benefits of stainless steel general-purpose panels with flanges in industrial structures

1. Durable construction

The stainless steel general-purpose panels with flanges mainly contain a solid 16 gauge cold rolled stainless steel material. It is widely known for its sturdiness and can withstand extreme conditions and daily heavy use in industrial settings.

Access panels built with stainless steel are less likely to crack, warp, or corrode over time, making them a cost-effective investment that can surely last long. Moreover, it can strongly resist stains and bacteria as its smooth surface enables easy cleaning. 

2. Corrosion resistance

Stainless steel general-purpose panels with flanges are naturally corrosion-resistant. Hence, they are ideal for many industrial building applications where exposure to various environmental issues is prevalent, including moisture, chemicals, and other corrosive substances are typical. This resistance aids you in maintaining your industrial facility project’s strength and appearance, even after long years of usage. 

3. Easy maintenance

As stated earlier, stainless steel general-purpose panels with flanges exhibit a sleek surface that you can effortlessly maintain, requiring minimal cleaning and upkeep to stay in excellent condition always. With easy maintenance and cleaning access provided, you can help your clients reduce maintenance expenditures and downtime, allowing industrial operations to continue uninterrupted. 

4. Flange design

The flange design of stainless steel general-purpose access panels permits instant installation and removal, providing quick and convenient access to your industrial building project’s essential equipment and facilities. This way, you can speed up the maintenance and repair processes for the specialized personnel, further decreasing interruption time in operations and associated costs. 

5. Versatility

Stainless steel general-purpose access panels with flanges are a universal solution that you can utilize in different industrial settings, from food processing facilities to chemical plants and pharmaceutical manufacturing facilities. Its versatility is one of the product’s most loved features, making it a popular option for business owner clients looking for a lifelong and steadfast companion that can give their access needs. 

Installation Guide

Now that you know the benefits that simple stainless steel general-purpose panels with flanges can bring to your industrial work. Here’s a step-by-step guide on properly installing, so you can guarantee that they function as intended. 

Materials Needed

  • Stainless steel general-purpose panel with flanges 
  • Measuring tape 
  • Level 
  • Pencil or marker 
  • Power drill with a drill bit 
  • Screws or bolts 
  • Screwdriver or wrench 

Step 1: Measure and mark the panel placement

Use your measuring tape and start measuring and marking the location where you aim to install the stainless steel general-purpose panel with flanges. You can also use a level to guarantee that the markings are straight. Then, mark the intended panel flanges on the wall or ceiling to ensure proper alignment. 

Step 2: Cut the opening

With a power drill with a drill bit, you must cautiously cut the opening in the wall or ceiling according to the size of the access panel you purchased. Secure the alignment of the cut opening with the panel markings and ensure that the edges are smooth and even. 

Step 3: Install the access panel flanges

Coordinate the panel flanges with the wall or ceiling markings, confirming that both are level and straight. Unbox the screws or bolts usually included in your access panel purchase to attach the flanges to the wall or ceiling. Remember to use a screwdriver or wrench to securely tighten the screws or bolts. 

Step 4: Install the access panel

Once you apply the flanges securely, you can carefully place the panel into the opening. It’s crucial to ensure the panel’s alignment with the flanges and the edges. It would be best to flush it against the wall or ceiling. Use screws or bolts to attach the panel to the flanges if necessary.

Step 5: Test the access panel

Check the panel for secure installation by gently pushing or pulling on it. If it moves or you can see it’s loose, you must adjust the screws or bolts until they are firmly in place. Ensure the panel opens and closes swiftly and the flanges furnish a tight seal. 

Step 6: Finish and clean up

Once done installing and testing, cleaning up any debris or dust from the installation process is vital. Then, apply any desired finishing touches to the wall or ceiling around the attached panel to display a neat, elegant, and professional-looking appearance. 

Bottom Line 

Using stainless steel general-purpose panels with flanges in your industrial structure project allows your business owner clients to enjoy many benefits that can secure the facilities’ efficiency, productivity, and safety for workers. Just follow the detailed installation steps we provided, so you can guarantee that your panels are tightly installed and functioning correctly, supplying easy access to essential systems in your industrial building construction work.

Useful Resource: Benefits of Anti-Ligature Access Doors for High-Risk Areas

How to Choose the Most Efficient Air Compressor for Workshop

Air compressors are energy-generating appliances that can be used pretty much anywhere. When you have a workshop, you care a lot about the condition of all the appliances used in it and their efficiency because these are the tools that help you get work done. Buying your first air compressor, for any purpose, can be incredibly overwhelming. The specific details you should be aware of for each compressor can be complicated and confusing, which will leave you baffled as to which one will best suit the specific needs of your workshop. Here are some tips to help make that decision easier for you.

air-compressor-workshop

Choosing Between a Piston and a Portable Air Compressor

When it is time to choose an air compressor for your workshop, you are likely to come across numerous types of compressors which will make your decision even harder. However, for workshops, there are two popular and basic compressor types to choose between; piston and portable air compressors. According to Brett Patterson of Ablesales, a piston compressor is an excellent source of portable air supply for farms and workshops. Just like any other type of air compressor, the piston’s motor works on collecting the air in a set tank and pressing it with the degree of pressure needed. The more you use it, the more pressure the compressor will generate.

On the other hand, a portable air compressor does the exact same job as the piston compressor, just without the need for an air tank. The main perk of a portable air compressor is that it is easy to move around wherever you need it. It might not be as powerful when it comes to pressing the air, but it is quite versatile, especially if you have a large workshop where you might need it in different places at different times. It is also excellent in reducing waste that is harmful to the environment.

Consider the Size of the Compressor

Almost all workshops are known for having large machines and appliances. Essentially, an air compressor would be another machine added to your working space, so you would need to consider the size of the compressor you will be investing in to ensure the best efficiency and ease of work. Whether your workshop is big or small, you need to think about the load of work you are planning to do with the air compressor as that will determine the size of the tank required.

Compressors that need an air tank are usually more efficient for more demanding workshops, however, they are quite large. On the other hand, compressors with small or no air tanks can be more suitable for workshops with small workloads and smaller working spaces.

efficient-air-compressor

Check the Features

Efficiency and durability are essential features that workshop owners or managers look for in their appliances. The durability of an air compressor determines how much work it will be able to offer you as well as the life span of its productivity.

When you choose an air compressor, features like the coating of the tank and the strength of the steel build of the compressor itself should be at the top of your list. Read reviews on the supplier and manufacturer before you purchase to get a better idea of how reliable that specific machine will be for your workshop’s needs.

How is the Compressor Powered?

Workshop owners invest in air compressors to generate energy used in manufacturing products or powering certain appliances. However, the compressors themselves need to be powered in some way. Compressors can be powered by electricity, petrol, or diesel. Electric compressors are the most popular because of how energy-efficient and economical they are. However, they are not as powerful as their petrol-powered counterparts, which can be more reliable when it comes to pressing air.

Diesel compressors are similar to petrol-powered ones, but they can be a bit more harmful to the planet as they emit larger amounts of nitrogen compounds and particulate matter, which pollute the air and contribute to climate change.

Investing in an air compressor can be beneficial for your workshop, regardless of how big or small it is. But when it comes to deciding which compressor is best suited for your needs, the choice can be challenging. Your best bet is to do some research in advance and compare different types, sizes, and prices so you can choose which best fits your needs and budget. It also pays to read up on the different power sources and try your best to opt for a unit that doesn’t contribute as much to environmental degradation.

Things to Know About Automatic Weather Monitoring

Weather variables such as wind speed and direction, air temperature, humidity and rainfall are important factors in determining the course of a wide range of events. For example, agriculture has always been heavily dependent on the weather and weather forecasts, both for its control on the quality and quantity of a harvest and its effect on the farmer’s ability to work the land or to graze his stock.

weather-monitoring

Water resources generally depend critically not just upon rainfall, but also other weather phenomenon that together drive plant growth, photosynthesis and evaporation. Just as pollen and seed dispersal in the atmosphere are driven almost entirely by the weather, so too is the direction and distance of travel of atmospheric pollution.

Weather monitoring is also important not just in defining present climate, but also for detecting climate change and providing the data to input into models which enable us to predict future changes in our environment.

Because of the wide variety of uses for the information, there are a large number of environmental variables which are of interest to different groups of people. These include solar radiation, wind speed, wind direction, barometric pressure, air temperature, humidity and net radiation.

The demand for these data, usually on an hourly or more frequent timescale, has increasingly been met by the development and widespread deployment of automatic weather stations (AWS’s) over the past 30 years or so.

Automatic Weather Monitoring Station

EE-WMS-01, the automatic weather station developed by India-based Engineering and Environmental Solutions is a highly sophisticated monitoring & logging of intrinsic weather conditions like temperature, barometric pressure, wind direction, wind speed, wind chill and other optional parameters according to your requirements.

Automatic Weather Monitoring Station developed by Engineering and Environmental Solutions

Application areas include agriculture, hydrology, ecology and meteorology. For any sort of customized application, Engineering and Environmental Solutions can give assistance to select the best blend of sensors, data logger and accessories accordingly.

  • Field proven in severe weather conditions.
  • Unattended weather recording at remote and exposed sites.
  • Wide choice of sensors and accessories.
  • GSM Modem communication.

Flexibility and Customization

The DL-W’s analog inputs can be fully customized. Each channel can have its own input type and recording parameters. Software gives the user control over reading frequency, thresholds and units, and provides recording options for average, min and max, plus specialized wind options including wind rose, gusts and wind averaging Users can add their own custom sensor types to the sensor library, exploiting the DL-W’s detailed configuration options.

The DL-W provides 4 input ranges down to microvolt resolution with adaptive auto-ranging, excellent analog accuracy, and configurable sensor excitation enabling it to support nearly all analog sensors. Calculations based on the measurements from several input channels can be recorded and displayed as additional virtual channels (calculated measurements).

For more information and business enquiries please visit www.enggenv.com or contact Mohammad Hamza on +91-9540990415 or email on enggenvsolution@gmail.com or salman@bioenergyconsult.com

Green Steel Production – Opportunities and Challenges

The steel manufacturing industry is one of the highest carbon emission sources globally, leading to the highest CO2 emissions into the atmosphere. The process from converting iron ore to graded steel includes a blast furnace, followed by a basic oxygen furnace and an electric arc furnace. The highest emissions are generated during coke production, blast furnace, i.e., Energy demand and GHG emissions in the Iron and Steel sector principally result from the large consumption of coal/coke used in conjunction with the blast furnace.

What is Green Steel

Green steel refers to the process of steel manufacturing with reduced GHG emissions into the atmosphere as well as potentially reducing cost and improving steel quality, as compared to conventional steel production. A study indicates that steel demand will keep on rising until the end of the 21st century, so there is a huge motivation to look for an alternative method of steel production that emits low greenhouse gas (GHG) emissions into the atmosphere.

what is green steel

Scrap steel recycling is a positive step toward alleviating emissions. However, based on the available scrap, this route can contribute 44% of the total steel production by the end of 2050, which is not sufficient to meet the growing demands.

Also, the issue with recycled steel is that they are contaminated with copper and tin, which causes surface cracking during the hot rolling process. An integrated steel recycling process with innovative routes can bring down the global warming to a manageable threat.

Blast furnace (BF) and basic oxygen furnace (BOF) contribute to 70% of total GHG emissions into the environment. The process reduces iron into ores, sinter and pellets using carbon-based lowering agents. Fluxes (or steel scrap) are added to the blast furnace to maintain the slag temperature and separate the impurities. The hot metal produced contains sulphur, phosphorous, manganese and silicon. The impurities are heated/reduced in BOF to produce high-quality steel with carbon below 2%. High Calcium and dolomite lime are utilized in multiple stages of this procedure and result in various improvements and advantages.

According to research, hydrogen-based and electricity-based steel production have minimal emissions into the atmosphere. However, this technology is still under investigation, some small-scale development has been done in the past, but large scale development is still under development phase.

Pathways for Green Steel Production – Opportunities and Challenges

Various alternative ways exist to produce low-grade carbon products such as carbon capture and storage (CCS), renewable hydrogen and high utilisation of biomass resources. The use of artificial iron units (AIUs) in iron steel production can reduce significant carbon emissions and high-grade steel production.

To minimize emissions, scrap use must be incorporated into the manufacturing process. The use of bioenergy resources in steel production can be a good option, but that goes through a long list of concerns, such as biomass availability, the capital cost of replacement of existing technology.

An Integrated Iron and Steel Mill (ISM) consists of many complex series of interconnected plants, where emissions come out from many sources (10 or more). Huge amount of CO2 is produced by the reduction reaction reactions occurring in the blast furnace and the combustion reaction in sintering, blast furnace and basic oxygen furnace.

green steel

Biomass can be used for steel production in place of coal, but this is discouraged by most industries, mainly because of huge biomass requirement, transportation, and storage requirement. Another alternative is the use of natural gas, which at present accounts for 20% of overall steel production in the world. Natural gas produces GHG emissions, which is feasible for small scale goals. If the end target is to achieve significant scale goals, then natural gas use integrated with carbon capture technology is beneficial.

The absorption process is another method used to separate CO2 from gas streams using chemical solvents. However, this process is very expensive because of the high thermal energy required to break the strong bond between solvents and CO2.

Adsorption is also a process to reduce CO2 where a gas stream is passed through the solid adsorbent (such as zeolites, activated carbon). The bed loaded with reduced pressure, increased temperature, and low voltage electric current is challenging to maintain to also expensive.

Gas separation is also a method to reduce GHG emissions, which works on the development of gas separation membranes (polymers, ceramics, zeolites and metals), depending on the difference in physical and chemical interactions. The reducing efficiency reaches up to 80% CO2 separation. In 2007, a simulation study revealed 97% of CO2 recovery from blast furnace gas. Ongoing research in Australia where researchers are developing new technology for gas separation membrane. The research aims to test a number of separation strategies, investigate the influence of syngas and minor gas components.

Hydrogen-based steel making route is another positive step toward green steel. Two different routes exist, direct hydrogen reduction and hydrogen plasma reduction. Small scale utilisation of hydrogen with up to 70% volume reduction was achieved, but the large-scale application is still under development.

The challenge lies mostly with the hydrogen-based DRI process, it produces 0% carbon which does not fulfil the carbon demand of the downstream process. The second issue is the supply of sufficient hydrogen. According to the study, the electricity cost for hydrogen production, considering the electrolysis to produce the hydrogen, should be less than 0.02 USD/kWh to make the process economically feasible. However, hydrogen storage supply and transportation costs are other scopes that still need to be explored.

Closing Comments

As on closing comments, steel production is one of the highest GHG emitting sources globally. If not controlled, the commitment at Paris Climate Summit 2015 to hold global temperature below 2℃ seems lost way before the set target date of 2050.

Promoting green steel production can be majorly significant with the targets. Technologies exist that can reduce GHG emissions, and some of them are under commission at a small scale; however, large scale implementation is yet to get approval from research integrity.

Existing technologies are very expensive, or they do have technical challenges which are economically costly to manage. Hydrogen-based steel production is a technology that looks very promising. Researchers are working on the project to analyse the economic and technical feasibility at a large scale.

How to Make the Pharmaceutical Industry More Sustainable

The pharmaceutical industry has a substantial impact on the environment, especially when the materials used to make them and the chemicals that comprise make their way directly into the environment. The pharmaceutical industry at large as well as average consumer can take steps to make of use of medicine more sustainable through both significant and relatively minor changes.

pharmaceuticals-impact-environment

Medicines and the Environment

The drugs that we consume naturally enter our environment as our body turns them to waste. This issue becomes exacerbated when people intentionally dispose of unused medicine by flushing it down the drain.

Although our water treatment systems are designed to take contaminants out of our wastewater before we re-introduce to the natural environment, some still get through. These contaminants, which include those in medications, can damage the ecosystems they end up in.

High levels of estrogen in waters due to birth control, for example, can hamper the ability of fish to reproduce, reducing their population size. Once those chemicals find their way into the water, they enter the food chain and eventually impact animals that live on land too, including humans.

Plants will absorb the chemicals from medications. Animals then eat these plants or drink the water and ingest the contaminants. Humans might drink the water or eat the plants or animals, making pollution from pharmaceuticals a human health hazard as well. This problem becomes worse in the summer when livestock such as cattle require two to three times as much water as they do during other times of the year.

Useful Resource: Methods for Sustainable Wastewater Treatment

Proper Disposal of Medicines

If you have unused medications that you need to get rid of, don’t flush them down the drain or throw them straight into the trash. The U.S. Food and Drug Administration (FDA) recommends one of several other options for the safe and sustainable disposal of medicines.

Some communities have drug take-back programs that the Drug Enforcement Administration (DEA) approves. Some pharmacies also allow you to mail in or dispose of unused medications at kiosks. The DEA also organizes a national drug take-back day.

Although certain medications have recommendations on the label to flush them, you can dispose of the majority of them in your regular trash at home. The FDA recommends mixing them with something unpalatable such as dirt, kitty litter or coffee grounds in a plastic bag that you can seal. This disguises the drugs and prevents pets from getting into them. You can then throw the bag away.

If you are a throwing away a prescription medication container, be sure to scratch out all potentially identifying information to protect your privacy and identity.

Using Medicines More Sustainably

Another option for reducing the impact your use of medicine has on the environment is to use less of it or use more environmentally friendly medications.

To use less medicine, only use it when you truly need it and try substituting natural remedies for pharmaceuticals. Reach for naturally derived treatments such as essential oils, vitamins, herbs or a cup of hot tea. Always consult with your doctor before changing your medication regimen.

As a long-term strategy, regular exercise and a healthy diet can do wonders in improving your overall health and decreasing your need to take medicines.

Sustainability from the Industry’s Perspective

Of course, making the pharmaceutical industry more sustainable isn’t the sole responsibility of the consumer. The industry can also change its practices to manage pharmaceuticals in a more eco-friendly fashion.

One aspect of this involves energy use. The manufacturing and transportation of medications can be extremely energy-intensive. By using energy more efficiently and using cleaner energy, drug companies can reduce their environmental impact.

Pharmaceutical industry can change its practices to manage pharmaceuticals in a more ecofriendly manner.

These corporations can also make an effort to include more eco-friendly substances in their medications. While they may not be able to remove every non-natural chemical from their products, they can offer greener alternatives to consume and look into reducing the presence of damaging substances as much as possible.

This applies not only to the organizations closest to the consumers but to the entire supply chain.

Medications are often vital to our health, but it can also have a negative impact on the health of our environment. Taking steps to manage pharmaceuticals more sustainably can enable us to protect our own well-being as well as that of our environment.

Recycling of Lead-Acid Batteries in Developing Countries

Lead-acid batteries (also known as LABs) are a common item in our daily lives. Once the lead of the battery is timed out, we have no option but to dump it because it has no use for us anymore, but the copper plates in the battery remain reusable which can be used for recycling. There are some disagreements about the benefits of recycling battery, say alkaline battery, over simple disposal because the mercury in the battery no longer exists and the disposal material is abundant and non-toxic. But for automotive batteries the scenario is different in terms of benefits. The recycling of this type of battery holds both economic and environmental benefits.

lead-acid-battery-recycling

The reusable material from the used battery is removed and recycled which reduces the needs for raw materials which is originally imported from abroad. It creates a balance payment and cost. In addition to this there can be considerable environmental impact during mining processes such as emission from smelting of sulfide ore, copper, nickel, and cobalt and this can be eliminated if recycling can be introduced.

Dangers of Lead-Acid Batteries

LABs generally consist of both sulphuric acid and large amount of lead which is not only corrosive but also a good carrier for soluble lead and lead particles. Lead is highly toxic metal which causes a wide range of adverse health effect especially on young children. If one gets expose excessively to lead it can cause damage to brain and kidney, impair hearing, and can led to various other associated problems. On an average an automobile manufactured contain about 12kg of lead, in which about 96% of lead is used in lead acid battery and remaining 4% is used in other applications like wheel balance weight, protective coating and variation dampers.

Both lead and cadmium are harmful for human health and environment. This toxic substances seeps into the soil, groundwater and surface water through landfill and also releases toxins into the air when they are burnt in municipal waste incinerators. Moreover cadmium can be easily absorbed by the pant root and get into the fruits, vegetables, and waters are consumed by animals and human beings, they can fall to prey to a host of ill effects.

Studies have shown that nausea, excessive salivation, abdominal pain, liver and kidney damage, skin irritation, headaches, asthma, nervousness, decreased IQ in children, and sometimes even cancer can result from exposure to such metals for a sufficient period of time.

Need for Effective Control Measures

In a battery recycling plant, effective control measures need to be implemented, both to protect the health of workers and to prevent pollution of the environment. Good plant design, with reduction of the potential for the emission of contaminating substances is of utmost importance and the newer smelting processes are inherently much cleaner than traditional blast furnaces.

Pollution abatement technologies, including the treatment of exhaust gases and liquid effluents, need to be installed. Those mostly exposed to releases within the plants are the workforce. Control measures such as maintaining minimum standards of air quality within the works, medical surveillance of employees, use of protective equipment, and provision of conditions of good hygiene in general, is necessary to avoid occupational lead exposure. However, few government/non-governmental steps have been taken yet; rather this practice is a traditional trading system as prevail in the society.

Positive and Negative Impacts

In developing countries such as Bangladesh, recycling or reusing of used lead-acid batteries has both positive and negative impact on environment. Positive impact is that, if battery is recycled in proper and in sustainable manner it saves environment from toxic material of battery, otherwise battery waste is dumped into the landfills. Negative impact is that if recycling is not done in sustainable manner emits gases produced from battery recycling has adverse impacts on environment and human being.

In a battery recycling plant, effective control measures are required to safeguard public health and environment.

Direct recycling process should be banned as it has adverse impact on environment. As it is an illegal process, shopkeepers perform this process in hidden way. Government should impose the law and regulation strictly in this occurrence. This information can be used for advertising material highlighting the environmental benefits of recycling or reusing encourages the purchasing of old lead acid battery. It will accelerate the selling rate of old battery.

Importance of Awareness

Necessary steps should be taken to increase awareness about environmental impacts of used lead acid batteries. Proper instruction should be provided among the general mass. It will also increase reusing of old battery. Battery regeneration is a unique process specially designed to revive the lost capacity of batteries and give priority to choose secondary battery. Battery Reuse Centre can be developed for effective reuse and recycle.

The aim to divert reusable battery, donated by the public, which often could have been destined for landfill and instead provides a much needed source of low-cost battery to those in need. The battery reuse service encourages volunteer involvement and trainee placements in all aspects of its operation. Awareness program (posters, pamphlets, TV & radio commercials, road-shows, website, exhibitions, talks), infrastructure, information center, tax rebates for manufacturers should be taken to increase recycling or reusing of old battery.

The 5 Environmental Issues That Construction Firms Must Address

For the last couple of years, it seems like barely a week has gone by without an alarming sign of climate change. There have been extreme weather events, as well as unexpected wintry conditions in California and the record-breaking heatwave that we saw here in the United Kingdom last summer. The government has made pledges that it will take the issue seriously, but there has been a lot of scepticism from leading figures about how much that will actually amount to. It is very clear that businesses and individuals must also step up and take responsibility.

When it comes to construction, there are a lot of different areas that require focus. So much of the conversation around the construction and property industries over the last couple of years has focused on other issues which, while admittedly important, do not factor in the long-term environmental concerns. For example, there was a huge amount written about the shortages in construction supplies, and the shortage of skilled workers in that industry. Meanwhile, the property market ballooned during the pandemic years and has since come crashing back to earth. As we look forward to the rest of the year, and the years beyond, here are the major environmental issues that construction firms must address when they are working.

environmental impact of construction projects

1. Air Pollution

Air pollution has been pushed to the forefront in recent months. For example, London’s mayor Sadiq Khan has made cleaner air a huge part of his mission. It is important to remember that during the construction process, there are a lot of opportunities for exhaust fumes and other noxious vapours to be emitted for extended periods.

Construction firms must be aware of the air pollution that they are causing and look for ways that they can either mitigate it or rule it out entirely. A simple example of how they can cut down on exhaust created is to use electric vans and other vehicles where possible for transporting materials to the work site.

2. Non-Recycled And Non-Recyclable Materials

This is an area that every business needs to focus on, regardless of sector, but it can be particularly relevant here. People who are looking to build their properties from scratch may insist on using entirely new materials, but there is no need for such a definitive approach. Take something as simple as a wooden deck, for example. Recycled materials are just as hardy, just as effective, and just as easy to style.

It is the responsibility of the contractors to offer a range of materials to their clients and to recommend the use of recycled materials where they can. This will massively cut down on the amount of waste that the construction industry generates. It is also important to think about using recyclable materials.

construction-waste

So much waste from construction projects ends up in landfills. It is vital that the industry as a whole considers this issue and tries to avoid using everything from single-use plastics to non-biodegradable materials.

3. Impact On The Local Wildlife

Every time a construction project gets underway, the local wildlife will be affected. There is such a huge number of different elements and species at play that the idea that a project could be completely free of this issue is a hard one to believe. However, with the right preparation, surveys and consideration, the impact can be kept to a minimum. The specifics will vary from project to project depending on the location and the type of wildlife that lives in the area. For example, a project taking place near water will have to consider everything from fish and frogs to the animals that use the area.

One of the most important species that anyone thinking of renovating or demolishing a building will need to consider is bats. Bats are a protected species in the UK, and they often make their nests in roofs, lofts, and barns. They are also often found in trees, and a bat survey must be conducted to ensure that you are not damaging their habitat.

The first step is to take a preliminary roost assessment. If a roost is found, then you will need further surveys about the best way forward. For more information about bat surveys and a range of other wildlife surveys, talk to the team at Arbtech. They can help you to get surveys done quickly and efficiently and advise on how your project can proceed.

4. Noise Pollution

This point may seem a little less grave than some of the others that have been discussed already, but it is a major factor not just to the local people, but to the local wildlife. Sustained noise pollution can be a serious problem, which is why it is advised that construction companies check with the local council before they begin a project. It may be that work must be restricted to certain times of day, or it may be that the project needs to be moved entirely.

methods for stabilizing soil for construction

5. Using Methods That Cause Erosion And Contamination

As unfortunate as it may be, there are still a lot of ways that construction companies can damage the local environment through carelessness. For example, it is possible for the soil surrounding the worksite to become eroded thanks to the coming and going of heavy vehicles and heavy equipment, not to mention the ongoing disruption of the construction work itself. Soil and water contamination is also a major risk on a lot of projects and requires constant vigilance from the people working on the site to ensure that it is not happening.

One of the main factors that contribute to these harmful scenarios is businesses not investing in newer techniques and new equipment which are less likely to have a negative impact. Given how tough the market has been, it is understandable that spending a lot of money is the last thing any firm wants to commit to. However, the environmental impact of any construction project must be going to be kept to a minimum.

What are the Factors Affecting Inverter for Home Price?

Inverters have become an increasingly essential aspect of modern life today. After all, our world runs on electricity, and we can often come to a screeching halt in its absence. Almost every household today is, consequently, equipped with an inverter and a power backup system. Whether you’re looking at investing in an inverter for the first time or are looking to upgrade from your existing system, one of the essential factors is the inverter for home price point.

What determines the inverter for home prices? What are the essential components of a home inverter system?

factors that govern inverter for home prices

Keep reading: we’ll answer all your questions about inverter for home prices — and how you can find the best deal for your home.

The Importance of Inverter for Home Prices

While many suggest that inverter for home prices aren’t nearly as important as their quality, there is no denying that budget is a vital consideration for people when they are looking to purchase it. However, it’s also worth noting that inverters are, ultimately, long-term investments. Therefore, it is important to look at at least a little past inverter for home prices alone.

Let us now look at the factors that inform the inverter for home prices.

1. Load on your Inverter

Since inverters are designed to start working in the event of a power cut, the inverter for home price is directly influenced by how much power you will require it to handle when you lose power. For instance, the inverter for home price will be lower if your power requirements are low, such as if you only want to power a few fans and lights. However, if you want to power heavy-duty appliances such as refrigerators, air conditioners, and TVs, the inverter for home price will go up.

To determine a precise inverter for home price, you can use an online load calculator or even perform the math yourself to determine your load requirements.

2. VA or Volt Ampere Rating

The Volt Ampere or VA rating of an inverter tells you how much power it can supply to your appliances in the event of a power cut. Like the power load on your inverter, the capacity of your inverter will also be a factor influencing the inverter for home price. The higher an inverter’s VA rating, the higher the inverter for home price, and vice versa.

High-quality and trustworthy manufacturers offers a wide variety of inverter for home prices based on your needs and budgets while delivering excellent engineering in their inverters.

3. The Battery of your Inverter

Any inverter backup system is ultimately powered by its battery. This is where power is stored for use in the event of an electricity cut. The quality, type, and capacity of your inverter battery — measured in Ampere Hours, Ah — will also determine the inverter for home prices.

benefits of solar inverter

Inverter batteries also come in many types, from flat and tubular inverter batteries to newer technologies such as lithium-ion battery-powered inverters. Inverter for home prices is directly impacted by the type of inverter battery you invest in, in addition to its capacity.

Conclusion

A number of factors and components impact inverter for home prices. The best thing you can do for your home is to invest in high quality — such as inverter systems manufactured by a trustworthy brand. This is, ultimately, the best way to get a great inverter for your home in the long run.

Recommended Reading: What is Solar Inverter?

How to Reduce Maritime Industry Emissions: Plausible Solutions

Until 2018, the maritime industry did not have a climate plan. While this may seem surprising, shipping tends to stay quiet about the environmental impacts of a global economy. Additionally, unlike other carbon-intensive sectors, it tends to quietly sail along unnoticed by consumers. It was not included in the Paris Agreement in 2016 and was not held accountable for its contribution to increased greenhouse gas emissions.

The International Maritime Organization laid out plans to cut emissions in half by 2050, an ambitious goal by one of the world’s main polluters. One of the main strategies to reduce CO2 emissions is to transition to more efficient fuel types. Most large shipping vessels operate with heavy fuel oil, which is rich in sulfur and extremely polluting. The International Maritime Organization is seeking to replace heavy fuel oil in 60,000 shipping vessels.

emissions-shipping-sector

However, consumer awareness surrounding the environmental cost of international shipping, coupled with innovative technology, may reduce the amount of pollution produced. The most likely solutions to reduce emissions from the maritime industry include transitioning to a more low-carbon fuel source, changing transport speeds, adopting sustainable shipping waste disposal strategies, transitioning to renewable energy and optimizing travel routes.

The Price of International Shipping

Shipping emissions are expected to grow exponentially between now and 2050. International shipping accounts for the majority of industrial pollution. Maritime regulations are significantly behind those for other carbon-intensive industries. It can be legally complicated to assign accountability to certain countries, especially in international waters. A handful of mega-ships can have the same level of greenhouse gas emissions as millions of cars, accounting for an incalculable portion of air and water pollution.

Our economy is global. When you look at the tags on your furniture, appliances, clothes and electronics, you may see dozens of countries around the world. Even our food, including perishable items like avocados and lettuce, are shipped internationally. Fresh produce can be shipped thousands of miles without spoiling using different refrigeration systems, such as air compressor technology. While these technologies make it easier to transport food, they come with a high-carbon impact. However, there are energy-efficient solutions to reduce carbon emissions in the shipping industry.

Energy-Efficient Solutions

Low-carbon technology is available in the shipping industry, but how it works in practice may be a different story. For example, switching from a high sulfur fuel oil to a low carbon option may have the greatest impact on reducing greenhouse gas emissions. Lowering sulfur oxide emissions is key to reducing the effects of international shipping.

However, switching oils will require the industry to identify pollution from the whole lifecycle, meaning that the use of fuel is only one part of its environmental impact. Accounting for this will be crucial in finding a sustainable solution for maritime industry emissions.

Another solution that is easier to implement than changing fuels is a practice called slow steaming. Slow steaming simply refers to slowing boats down, sometimes only by a few degrees. While it may not sound like much, changing a ship’s speed by a couple of kilometers can result in an 18% increase in fuel savings, which could be a gamechanger. However, industry leaders are worried that simply slowing down ships is not the answer, since it will result in a need for more vessels to keep the global economy moving.

Other energy-efficient solutions to reduce maritime industry emissions include route optimization, renewable energy such as wind-assist technology and transitioning to all-electric ships. Norway, a main exporter in the petroleum and fish industries, has already tested an all-electric vessel and is actively working to optimize this technology to transition more ships away from fuel oil.

Time for Maritime Industry to Go Green

The effort by the maritime industry to reduce greenhouse gas emissions is significant. Effective solutions to help curb climate change include transitioning to low sulfur fuel oils, changing ship speeds and investing in new technology such as renewable energy. However, consumer awareness will also play a vital role in the future of international shipping. The cost of a global economy is significant. Finding more sustainable methods of transporting goods across the ocean is imperative.

A Glance at Drop-in Biofuels

Biofuel commercialization has proved to be costly and lingering than expected due to its high production cost and modification to flexibility in engines. Drop-in fuels are alternatives to existing liquid fuels without any significant modification in engines and infrastructures. According to IEA, “Drop-in biofuels are liquid bio-hydrocarbons that are functionally equivalent to petroleum fuels and are fully compatible with existing petroleum infrastructure”.

drop-in-biofuels

What are Drop-in Biofuels

Drop-in biofuels are can be produced from oilseeds via trans-esterification, lignocellulosic biomass via thermochemical process, sugars and alcohol via biochemical conversion or by hybrids of the above methods. Drop-in fuels encompass high hydrogen to carbon ratio with no/low sulfur and oxygen content, low water solubility and high carbon bond saturation. In short drop-in fuel is a modified fuel with close functional resemblance to fossil fuel.

Existing biofuels – bioethanol and biodiesel – have wide variation from fossil fuels in their blend wall properties – high oxygen content, hydrophilicity, energy density and mainly compatibility in existing engines and infrastructures. Oxygenated groups in biofuel have a domino effect such as reduction in the energy density, production of impurities which are highly undesirable to transportation components, instability during storage etc.

Major advantages of drop-in fuels over existing fuels are as follows:

  • Reduced sulphur oxide emissions by ultra low sulphur content.
  • Reduced ignition delay by high cetane value
  • Reduced hydrocarbons and nitrogen oxides emissions
  • Low aromatic content
  • Low olefin content, presence of olefin compounds undergo auto-oxidation leading to surface depositions.
  • High saturates, therefore leaving minimum residues
  • Low particulate emissions
  • No oxygenates therefore has high stability.

Potential Biomass Feedstock

Drop-in biofuels can be produced from various biomass sources- lipids (vegetable oils, animal fats, greases, and algae) and lignocellulosic material (such as crop residues, woody biomass, and dedicated energy crops). The prominent technologies for biomass conversion to drop-in fuel are the thermochemical and the biochemical process.

The major factor playing role in selection of biomass for thermochemical methods is the energy content or heating value of the material, which is correlated with ash content. Wood, wood chips accounts for less than 1% ash content, which is favorable thermal processing than biochemical process, whereas straws, husks, and majority of the other biomass have ash content ranging up to 25% of dry mass.

Free sugar generating plants such as sugarcane and sweet sorghum, are desirable feedstock for Acetone-Butanol-Ethanol fermentation and have been widely implemented. Presently there is a focus to exploit lignocellulosic residues, rich in hydrocarbon, for fuel production. However, this biomass requires harsh pretreatment to remove lignin and to transform holocellulose (cellulose & hemicelluloses) into fermentable products.

The lignocellulose transformation technology must be circumspectly chosen by its life cycle assessment, as it resists any changes in their structural integrity owing to its complexity. Lignocellulosic biomass, when deoxygenated, has better flexibility to turn to drop-in fuels. This is because, in its native state of the feedstock, each oxygen atom consumes two hydrogen atoms during combustion which in turn reduces effective H: C ratio. Biomass feedstock is characterized with oxygen up to 40%, and higher the oxygen content higher it has to be deoxygenated.

Thermochemical Route

Thermochemical methods adopted for biomass are pyrolysis and gasification, on thermolysis of biomass produce intermediate gas (syngas) and liquid (bio crude) serving as precursors for drop-in fuel. Biomass when exposed to temperature of 500oC-600oC in absence of oxygen (pyrolysis) produce bio-oil, which constitutes a considerable percentage of oxygen. After down streaming by hydroprocessing (hydrotreating and hydrocracking) the rich hydrocarbon tar (bio-oil) can be converted to an efficient precursor for drop-in fuel.

At a higher temperature, above 700, under controlled oxygen, biomass can be converted to liquid fuel via gas phase by the process, gasification. Syngas produced is converted to liquid fuel by Fischer-Tropsch with the help of ‘water gas shift’ for hydroprocessing. Hydroprocessing after the thermochemical method is however costly and complex process in case of pyrolysis and inefficient biomass to fuel yield with gasification process.

Biochemical Pathway

The advanced biocatalytic processes can divert the conventional sugar-ethanol pathway and convert sugars to fatty acids. Modified microbial strain with engineered cellular machineries, can reroute the pathway to free fatty acid that can be transformed into butanol or drop-in fuel with necessary processing.

Schematic for the preparation of jet fuel from biomass

Schematic for the preparation of jet fuel from biomass

Biological processing requires operation under the stressful conditions on the organisms to reroute the pathways, in additional to lowering NADPH (hydrogen) consumption. Other value added products like carboxylic acid, polyols, and alcohol in the same biological routes with lower operational requirements have higher market demands and commercial success. Therefore little attention is given by chemical manufacturers to the biological pathways for drop-in fuel production.

The mechanisms of utilization of lignocellulosic biomass to fuel by biological pathway rely heavily on the availability of monomeric C5 and C6 sugars during fermentation. Ethanol is perhaps the best-known and commercially successful alcohol from ABE fermentation. However, butanol has various significant advantages over ethanol- in the perception of energy content, feasibility to existing infrastructures, zero blend wall, safety and clean aspects.

Although butanol is a closer drop-in replacement, existing biofuel ethanol, is a major commercial competitor. Low yield from fermentation due to the toxicity of butanol and complexity in down streaming are the vital reasons that hamper successful large scale butanol production.

Challenges to Overcome

Zero oxygen and sulphur content mark major challenges for production of drop-in fuels from conventional biomass. This demands high hydrogen input on the conventional biomass, with H: C ratio below 0.5, like sugar, starch, cellulose, lignocellulose to meet the effective hydrogen to carbon ratio of 2 as in drop-in fuel. This characterizes most of the existing biomass feedstock as a low-quality input for drop-in fuels. However oleochemicals like fats, oils, and lipids have closer H: C ratio to diesel, gasoline and drop-in fuels, thus easier to conversion.

Oleochemical feedstock has been commercially successful, but to prolong in the platform will be a major challenge. Lipid feedstock is generally availed from crop-based vegetable oil, which is used in food sectors. Therefore availability, food security concerns, and economics are the major constraints to sustaining the raw material. Consequently switching to lignocellulosic biomass feedstock for drop-in holds on.

Conclusions

Despite the hurdles on biomass characteristics and process technology for drop-in fuel, it is a vital requirement to switch to better replacement fuel for fossil fuel, considering environmental and economic benefits. Understanding its concepts and features, drop-in fuel, can solve existing greenhouse emission debate on current biofuels. Through crucial ambiguities existing on future of alternative fuels, drop-in fuel has a substantial potential to repute itself as an efficient sustainable eco-friendly fuel in the near future.

References

  • Neal K Van Alfen: ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS, Elsevier, Academic Press.
  • Pablo Domínguez de María John: INDUSTRIAL BIORENEWABLES:A Practical Viewpoint: Wiley & Sons.
  • Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou: BIOFUELS- PRODUCTION AND FUTURE PERSPECTIVES, CRC Press.
  • Satinder Kaur Brar, Saurabh Jyoti Sarma, Kannan Pakshirajan : PLATFORM CHEMICAL BIOREFINERY-FUTURE GREEN CHEMISTRY, Elsevier.
  • Sergios Karatzos, James D. McMillan, Jack N. Saddle: Summary of IEA BIOENERGY TASK 39 REPORT-THE POTENTIAL AND CHALLENGES OF DROP-IN BIOFUELS, IEA Bioenergy.
  • Vijai Kumar Gupta, Monika Schmoll, Minna Maki, Maria Tuohy, Marcio Antonio Mazutti: APPLICATIONS OF MICROBIAL ENGINEERING, CRC Press.