Management of Construction Wastes

constuction-wastesA wide variety of wastes are generated during construction projects which may be classified into four categories – excavated wastes, demolition wastes, construction wastes and mixed wastes. Construction wastes are also known Construction and Demolition (C&D) wastes. Excavated materials is made up of soil, sand, gravel, rock, asphalt, etc. while demolition wastes is comprised by  concrete, metal, roofing sheets, asbestos, brick, briquette, stone gypsum, wood material. Waste materials generated from construction activities are concrete, dry wall, plastics, ceramics tiles, metals, paper, cardboards, plastics, glass etc. In addition, mixed wastes, such as trash and organic wastes, are also produced in construction projects.

Almost 90 percent of construction wastes are inert or non-hazardous, and can be reused, reclaimed and recycled and reused. The non-recyclable, non-hazardous and hazardous waste materials constitute the remaining 10 percent. The non-inert materials include trees, green vegetation, trash and other organic materials while and the hazardous construction waste materials include contaminated soil, left over paints, solvent, aerosol cans, asbestos, paint thinners, striping paint, contaminated empty containers.

Sustainable management of construction wastes uses number of strategies and is based on the typical waste hierarchy: Avoid/ eliminate, reduce, reuse, recycle, treat and dispose.

Avoidance / Source Reduction

Avoidance or source reduction is considered as the best strategy for waste management and is the most economic way to reduce waste and minimise the environmental impacts of construction wastes. This can be done by avoiding use of hazardous materials such as asbestos-containing materials or chromated copper arsenate treated timber or through green purchasing of materials. This includes purchasing of non-toxic materials, pre-cut timbers and ordering materials of desired dimensions.

Reuse

Although source reduction and elimination are preferred options in the waste management hierarchy, it is always not possible to do so. In this case consider reuse, donation and salvage options to companies or people who need those. Reuse option lengthens the life of a material. Reuse strategy can be used in two ways.

Building Reuse – It includes reusing materials from existing buildings and maintaining certain percentages of building structural and non-structural elements  such as interior walls, doors floor covering and ceilings.

Material Reuse – This is one of the most effective strategies for minimising environmental impacts which can be done by salvaging, refurbishing and reusing materials within the same building or in another building. Many of the exterior and interior materials can be recovered from existing buildings and reused in new ones. Such materials will include steel, walls, floor coverings, concrete, beams and posts, door frames, cabinetry and furniture, brick, and decorative items. Reuse of materials and products will help to reduce the demand for virgin materials and reduce wastes.

Recycle

There is very good potential to recycle many elements of construction waste. Recycling involves collecting, reprocessing and/ or recovering certain waste materials to make new materials or products. Often roll-off containers are used to transport the waste. Rubble can be crushed and reused in construction projects. Waste wood can also be recovered and recycled. Many construction waste materials that are still usable can be donated to non-profit organizations. This keeps the material out of the landfill and supports a good cause.

Treat and Dispose

This option should be considered after all other options are exhausted. The disposal of construction materials should be carried out in appropriate manner through an approved contractor. For examples, certain components of construction waste such as plasterboard are hazardous once landfilled. Plasterboard is broken down in landfill conditions releasing hydrogen sulfide, a toxic gas.

Zero-Waste Trends in the United States

Most people don’t see what happens to their trash. They throw it in a black plastic bag, toss the bag into a dumpster and the trash man collects it once a week and makes it disappear. Magic, right?

Wrong.

Most of our trash ends up in a landfill where it is buried and mixed in with decades-worth of junk. Certain items will break down over time while others are essentially just stored there, in a graveyard of forgotten items and a mountain of garbage.

In the year since China banned the import of other countries’ plastic recyclables, the global recycling industry has been in flux, resulting in plastics ending up in landfills, incinerators and littering the environment. This is causing countries and citizens across the globe to reexamine their recycling systems and highlights the need for zero waste practices.

Zero waste is the concept of eliminating the amount of trash thrown away by only purchasing reusable items. That’s a significant shift from the 4.4 pounds of trash that the average American tosses every day. But certain trends are helping make the idea of zero waste a reality in the United States. Let us have a look:

Replace Single-Use Packaging With Reusable Materials

Way too many plastic items that we use every day are meant to be used only once. And the amount of packaging that goes into shipping one box, that will simply get tossed in the garbage after the parcel is unwrapped, is astounding. In fact, 40 percent of plastic produced is packaging, which is thrown away after it arrives at your doorstep.

Plastic bag and straw bans are on the rise across the globe. Consumers are becoming more conscious of how their use of these items contributes to the trash crisis. Recent data shows that customers are more likely to buy products from brands that promote sustainable business practices.

Reduce Energy Waste By Choosing Renewable Options

Many industries are opting to reduce energy waste by pursuing renewable energy sources. U.S. manufacturers account for 30 percent of the nation’s energy consumption, which means manufacturers must take the lead in reducing fossil fuel consumption and energy waste.

The U.S. is the leader in energy waste. Americans spend $350 billion on energy costs each year, yet three-quarters of that energy goes to waste. One way to reduce the burden on our power grid — and our wallets — from all that lost energy is by switching to renewable sources.

Air compressors are vital to the upkeep of a successful farm, and many producers in the agricultural sector are also reducing waste by switching to high-powered air compressors that, when properly maintained, can reduce energy usage and cut costs.

Eliminate Food Waste

About 94 percent of food waste ends up in landfills, which contribute to methane gas emissions. Reducing food waste not only helps the environment, but it also decreases the amount you have to spend at the grocery store. It also helps to conserve energy, as less power is needed to grow and produce food if less is wasted.

Individual consumers can help eliminate food waste by freezing leftovers to preserve them and composting uneaten food, as opposed to tossing in the trash.

Restaurants can use these tactics and others to cut down on food waste, such as donating leftovers and properly training staff to get on board with waste reduction. They can also hire auditors to help them identify ways to reduce waste and streamline business practices.

Never Too Late to Make a Change

Though the statistics may seem disheartening, the reality is that it’s never too late to make a change in your individual or business habits to help cut down on waste and work toward the goal of accomplishing zero waste. Following these trends and implementing others is just one way to do your part to eliminate waste and protect the environment.

Plastic Wastes and its Management

Plastic seems all pervasive and unavoidable. Since the 1960s our use of plastic has increased dramatically, and subsequently, the portion of our garbage that is made up of plastic has also increased from 1% of the total municipal solid waste stream (household garbage) to approximately 13% (US Environmental Protection Agency). Plastic products range from things like containers and packaging (soft drink bottles, lids, shampoo bottles) to durable goods (think appliances, furniture and cars) and non-durable goods including things from a plastic party tray to medical devices. Sometimes marked with a number and a chasing arrow, there is an illusion that all plastics are recyclable, and therefore recycled. But there are a number of problems with this assumption.

While use and consumption of plastic is increasingly high, doubts about viable options for reuse, recycling and disposal are also on the rise. Complications such as the increasing number of additives used alter the strength, texture, flexibility, colour, resistance to microbes, and other characteristics of plastics, make plastics less recyclable. Additionally, there is very little market value in some plastics, leading municipalities to landfill or incinerate plastics as waste. Based on figures from the EPA (2011 data) only 8% of plastic materials are recovered through recycling.

Another major concern about plastics in the waste stream is their longevity and whether or not they are truly biodegrade. It is estimated that most plastics would take 500-1000 years to break down into organic components. Because of this longevity and the low rate of recycling, much of our plastic waste ends up in landfills or as litter. Some of this plastic waste makes its way via rivers and wind to the ocean. Garbage barges, and the trans-continental transport of recyclable materials also lead to an increasing amount of plastics in our oceans and waterways.

Plastic waste directly and indirectly affects living organisms throughout the ecosystem, including an increasingly high impact on marine life at a macro and micro scale. According to United Nations, almost 80% of marine debris is plastic. Policy enforcement remains weak, global manufacture of plastics continues to increase, and the quantity of plastic debris in the oceans, as well as on land, is likely to increase.

With limited sustainable recovery of plastics, there is a growing global movement to reduce the generation of plastic. Certain types of plastic may be ’safer‘ for the environment than others, however, there are troubling issues associated with all of them, leading to the conclusion that action is needed to remove plastic waste, and stricter controls are required to limit new sources of plastic pollution. Efforts such as light weighting of packaging and shifts to compostable plastics are options. Policies limiting the use of plastics such as bottle bills and bag bans are other ways to decrease the production and consumption of plastics.

Mining the debris fields in our oceans and turning plastic waste into usable materials, from socks made of fishing line to fuel made from a variety of plastic debris, is one way to mitigate the current situation.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Is Tire Recycling Dangerous?

Not too long ago, mountains of old tires were to be found in virtually every town and city’s landfill, and toxic tire fires that would sometimes take months to subside were a common occurrence. Today, these tire piles are a rarity, and thankfully, so are the fires that used to go with them.

scrap-tires-pyrolysis

We have largely to thank the combined initiatives of scientists, entrepreneurs, and legislators from banishing unsightly these unsightly tire piles from the landscape. Today you’re more likely to see old tires in your yoga mat or the asphalt you drive on than in ugly piles that you can see from the distance.

However, there have been questions about the widespread use of tire chips, especially in playgrounds, as mulch, and as repurposed water containers for agriculture and livestock.

These concerns are quite understandable, as we are in direct contact with tire chips when they are used in the first two applications. When used for agriculture and livestock, there seems to be a distinct and logical risk that any toxins that are released in those applications may eventually end up in our bodies.

Recycled tire products are safe for consumers

Provided that you are not the one processing the tires yourself (more on that later), there is an extremely low toxicity risk in tire chips. A typical tire chip is made from old tires, which means that they have already off-gassed much of their volatile organic compounds (VOC’s).  New tires emit a good amount of VOC’s, which you can readily detect because of the unique new tire smell.

Many of these compounds have been linked to cancer. However, decades of research and uncontrolled use of old tires in different applications through the 20th century seem to strongly indicate that unless you are actually involved in producing or processing tires, your risks are quite low due to the low dosage of chemicals a typical consumer can expect. It’s the doses that makes a chemical toxic, and in the case of old tires where most tire chips are derived, the risk is negligible.

However, working in an environment where you can actually smell the “new tire scent” constantly can be a significant risk. By analogy, a bartender will be fine if they have a drink with one customer. But if they drink with every single customer that comes by every night, they’re in serious trouble.

Recycling large volumes of tires can be problematic

Unless you constantly work with tires, the risk is quite minimal. You can and should feel free to recycle or repurpose any tires you have around your house or yard into furniture, tire swings, planters, or pet beds. However, if you’re thinking of recycling dozens of tires a week, you should reconsider, as the particulate dust from carving up or shredding old tires can also be a risk over time if you don’t have the right equipment or safety gear.

Improper tire recycling can also heighten your exposure to dangerous chemicals in the tires, especially when they are subjected to the heat of a grinder or shredder that is not specifically meant for tire recycling. This can expose you to high levels of carcinogenic VOCs without you realizing it.

If you need to safely dispose of a high volume of tires, or tires that are difficult to recycle, such as those on tractors and OTR vehicles, be sure to contact a professional recycler like Western Tire Recyclers.

Waste Management in Food Processing Industry

Food processing industry around the world is making serious efforts to minimize by-products, compost organic waste, recycle processing and packaging materials, and save energy and water. The three R’s of waste management – Reduce, Reuse and Recycle – can help food manufacturers in reducing the amount of waste sent to landfill and reusing waste.

EPA’s Food Recovery Hierarchy

EPA’s Food Recovery Hierarchy is an excellent resource to follow for food processors and beverage producers as it provides the guidance to start a program that will provide the most benefits for the environment, society and the food manufacturer.

Notably, landfill is the least favored disposal option for waste generated in food and beverage producers worldwide. There are sustainable, effective and profitable waste management options including:

  • making animal feed,
  • composting to create nutrient-rich fertilizer,
  • anaerobic digestion to produce energy-rich biogas,
  • recycling/reusing waste for utilization by other industries,
  • feeding surplus food to needy people

Waste Management Options

Food manufacturers has a unique problem – excess product usually has a relatively short shelf life while most of the waste is organic in nature. Food waste created during the production process can be turned into animal feed and sold to goat farms, chicken farms etc. As far as WWTP sludge is concerned, top food manufacturers are recycling/reusing it through land application, anaerobic digestion and composting alternatives.

Organic waste at any food processing plant can be composted in a modern in-vessel composting and the resultant fertilizer can be used for in-house landscaping or sold as organic fertilizer as attractive prices.

Another plausible way of managing organic waste at the food manufacturing plant is to biologically degrade it in an anaerobic digester leading to the formation of energy-rich biogas and digestate. Biogas can be used as a heating fuel in the plant itself or converted into electricity by using a CHP unit while digestate can be used as a soil conditioner. Biogas can also be converted into biomethane or bio-CNG for its use as vehicle fuel.

Items such as cardboard, clean plastic, metal and paper are all commodities that can be sold to recyclers Lots of cardboard boxes are used by food manufacturers for supplies which can be broken down into flat pieces and sold to recyclers.

Cardboard boxes can also be reused to temporarily store chip packages before putting them into retail distribution boxes. Packaging can be separated in-house and recovered using “jet shredder” waste technologies which separate film, carton and foodstuffs, all of which can then be recycled separately.

Organizing a Zero-Landfill Program

How do you develop a plan to create a zero-landfill or zero waste program in food and beverage producing company? The best way to begin is to start at a small-level and doing what you can. Perfect those programs and set goals each year to improve. Creation of a core team is an essential step in order to explore different ways to reduce waste, energy and utilities.

Measuring different waste streams and setting a benchmark is the initial step in the zero-landfill program. Once the data has been collected, we should break these numbers down into categories, according to the EPA’s Food Recovery Challenge and identify the potential opportunities.

For example, inorganic materials can be categorized based on their end lives (reuse, recycle or landfill).  The food and beverage industry should perform a waste sort exercise (or dumpster dive) to identify its key streams.

Nestlé USA – A Case Study

In April 2015, Nestlé USA announced all 23 of its facilities were landfill free. As part of its sustainability effort, Nestlé USA is continually looking for new ways to reuse, recycle and recover energy, such as composting, recycling, energy production and the provision of safe products for animal feed, when disposing of manufacturing by-products.

Employees also work to minimize by-products and engage in recycling programs and partnerships with credible waste vendors that dispose of manufacturing by-products in line with Nestlé’s environmental sustainability guidelines and standards. All Nestlé facilities employ ISO 14001-certified environmental management systems to minimize their environmental impact.

Recycling and Waste-to-Energy Prospects in Saudi Arabia

recycling-Saudi-ArabiaThe Kingdom of Saudi Arabia produces around 15 million tons of municipal solid waste (MSW) each year with average daily rate of 1.4 kg per person. With the current growing population (3.4% yearly rate), urbanization (1.5% yearly rate) and economic development (3.5% yearly GDP rate), the generation rate of MSW will become double (30 million tons per year) by 2033. The major ingredients of Saudi Arabian garbage are food waste (40-51 %), paper (12-28 %), cardboard (7 %), plastics (5-17 %), glass (3-5 %), wood (2-8 %), textile (2-6 %), metals (2-8 %) etc. depending on the population density and urban activities of that area.

In Saudi Arabia, MSW is collected and sent to landfills or dumpsites after partial segregation and recycling. The major portion of collected waste is ends up in landfills untreated. The landfill requirement is very high, about 28 million m3 per year. The problems of leachate, waste sludge, and methane and odor emissions are occurring in the landfills and its surrounding areas due to mostly non-sanitary or un-engineered landfills. However, in many cities the plans of new sanitary landfills are in place, or even they are being built by municipalities with capturing facilities of methane and leachate.

Recycling Prospects in Saudi Arabia

The recycling of metals and cardboard is the main waste recycling practice in Saudi Arabia, which covers 10-15% of the total waste. This recycling practice is mostly carried out by informal sector. The waste pickers or waste scavengers take the recyclables from the waste bins and containers throughout the cities. The waste recycling rate often becomes high (upto 30% of total waste) by waste scavengers in some areas of same cities. The recycling is further carried out at some landfill sites, which covers upto 40% of total waste by the involvement of formal and informal sectors.

The recycled products are glass bottles, aluminum cans, steel cans, plastic bottles, paper, cardboard, waste tire, etc. depending on the area, available facilities and involved stakeholders. It is estimated that 45 thousand TJ of energy can be saved by recycling only glass and metals from MSW stream. This estimation is based on the energy conservation concept, which means xyz amount of energy would be used to produce the same amount of recyclable material.

Waste-to-Energy Potential in Saudi Arabia

The possibilities of converting municipal wastes to renewable energy are plentiful. The choice of conversion technology depends on the type and quantity of waste (waste characterization), capital and operational cost, labor skill requirements, end-uses of products, geographical location and infrastructure. Several waste to energy technologies such as pyrolysis, anaerobic digestion (AD), trans-esterification, fermentation, gasification, incineration, etc. have been developed. WTE provides the cost-effective and eco-friendly solutions to both energy demand and MSW disposal problems.

As per conservative estimates, electricity potential of 3 TWh per year can be generated, if all of the KSA food waste is utilized in biogas plants. Similarly, 1 and 1.6 TWh per year electricity can be generated if all the plastics and other mixed waste (i.e. paper, cardboard, wood, textile, leather, etc.) of KSA are processed in the pyrolysis, and refuse derived fuel (RDF) technologies respectively.

Conclusion

Waste management issues in Saudi Arabia are not only related to water, but also to land, air and the marine resources. The sustainable integrated solid waste management (SWM) is still at the infancy level. There have been many studies in identifying the waste related environmental issues in KSA. The current SWM activities of KSA require a sustainable and integrated approach with implementation of waste segregation at source, waste recycling, WTE and value-added product (VAP) recovery. By 2032, Saudi government is aiming to generate about half of its energy requirements (about 72 GW) from renewable sources such as solar, nuclear, wind, geothermal and waste-to-energy systems.

Utilization of Date Palm Biomass

Date palm trees produce huge amount of agricultural wastes in the form of dry leaves, stems, pits, seeds etc. A typical date tree can generate as much as 20 kilograms of dry leaves per annum while date pits account for almost 10 percent of date fruits.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Date palm is considered a renewable natural resource because it can be replaced in a relatively short period of time. It takes 4 to 8 years for date palms to bear fruit after planting, and 7 to 10 years to produce viable yields for commercial harvest. Usually date palm wastes are burned in farms or disposed in landfills which cause environmental pollution in dates-producing nations.

The major constituents of date palm biomass are cellulose, hemicelluloses and lignin. In addition, date palm has high volatile solids content and low moisture content. These factors make date palm residues an excellent biomass resource in date-palm producing nations.

Date palm biomass is an excellent resource for charcoal production in Middle East

A wide range of physico-chemical, thermal and biochemical technologies exists for sustainable utilization of date palm biomass. Apart from charcoal production and energy conversion (using technologies like combustion and gasification), below are few ways for utilization of date palm wastes:

Conversion into fuel pellets or briquettes

Biomass pellets are a popular type of alternative fuel (analogous to coal), generally made from wood wastes and agricultural biomass. The biomass pelletization process consists of multiple steps including pre-treatment, pelletization and post-treatment of biomass wastes. Biomass pellets can be used as a coal replacement in power plant, industries and other application.

Conversion into energy-rich products

Biomass pyrolysis is the thermal decomposition of date palm biomass occurring in the absence of oxygen. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Bio-oil can be upgraded to either a special engine fuel or through gasification processes to a syngas which can then be processed into biofuels. Bio-oil is particularly attractive for co-firing because it can be more readily handled and burned than solid fuel and is cheaper to transport and store.

Conversion into biofertilizer

Composting is the most popular method for biological decomposition of organic wastes. Date palm waste has around 80% organic content which makes it very well-suited for the composting process. Commercial-scale composting of date palm wastes can be carried out by using the traditional windrow method or a more advanced method like vermicomposting.

Waste Management Progress in Nigeria’s Delta State

waste-nigeriaWaste management is a serious problem in Nigeria, and Delta State is no exception. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern. It is a problem that starts at a cultural level: many of the populace believe that once they remove waste from their homes it is no longer their concern, and you often see people disposing of their household waste in the streets at night. Once the waste gets out into the streets, it’s perceived as the duty of the government to handle it.

However, I have never yet heard of any Nigerian politician making waste management a feature of his or her manifesto during the election campaign process. Having said that, a few of Nigeria’s political leaders deserve to be commended for coming to terms with the fact that waste has to be managed properly, even if such issues were far from their minds when they entered political office.

Legislation and Framework

Nigeria does have a waste legislation framework in place. Its focus has been on the most toxic and hazardous waste: partly in response to some major pollution incidents in the 1980s, the government took powers in relation to Hazardous Waste in 1988. In the same year, the Federal Environmental Protection Agency was established – and was subsequently strengthened by the addition of an inspectorate and enforcement department arm in 1991, with divisions for standard regulation, chemical tracking and compliance monitoring. These laws have since given rise to regulations and guidelines pertaining to environmental and waste management issues.

Under our laws, waste management in each state is the duty of the local governments that fall within it, but few are taking an active approach to implementing and enforcing the sensible measures that the regulations require. A small number of states have taken over this task from local government, and Delta State’s decision to do this has led to significant new investment in waste management.

One of the fruits of that investment is the Delta State Integrated Waste Management Facility at Asaba for treating both household and clinical waste generated locally. It was developed when the Delta State government decided to put an end to the non-sustainable dumping of waste in Asaba, the state capital.

Integrated Waste Management Facility at Asaba

It is described as an integrated waste management facility because it includes a composting department, a recycling department and a (non-WTE) incineration department. Trucks carrying waste are weighed in as they come into the facility. From the weigh bridge, they move to the relevant reception bay – there are separate ones for household and clinical wastes – to tip their load, and are then weighed again on the way out.

Medical waste is taken directly for incineration, but household wastes are sent along conveyors for sorting. Recyclables and compostable materials are, so far as possible, separated both from other waste and from one another. Each recyclable stream ends up in a chamber where it can be prepared for sale. The compostable materials are moved to the composting section, which uses aerated static pile composting.

The remaining waste is conveyed into the three incinerators – moving grate, rotary kiln and fixed end– for combustion. The resulting ash is recycled by mixing it with cement and sharp sand and moulding it into interlocking tiles. The stacks of the three incinerators are fitted with smoke cleaning systems to reduce emissions. The process produces wastewater, which is channelled to a pit where it is treated and reused. Overall, 30% of the waste is composted, 15% recycled and 55% incinerated.

There are many examples of sophisticated waste infrastructure being built in developing countries, but failing because the necessary collection systems were not in place to support them. To ensure that this problem is avoided at Asaba, the Delta State government is working with a group known as the Private Sector Participants (PSP).

Each member of this group has trucks assigned to them and has been directed to collect household waste from different parts of the city, for delivery to the facility for treatment. The arrangements made by each PSP are different: some collect from outside individual properties, and some from communal sites; most collect waste that is found in the streets; and while each is subsidised by the state, households also have to pay towards the cost.

Before the Asaba facility was developed, most of the wastes generated in Asaba were disposed of at a dumpsite just adjacent to the Delta State Airport. This created a pungent odour, as well as visual disamenity for people nearby. A great deal of remediation work is now taking place at the dumpsite, which is vastly improving the local environmental quality.

War on Waste

Of course, although this is an improvement there remains more to do. First on the list is education. People do not know how sustainable waste management can impact positively in their lives, reducing their exposure to toxins as well as improving their surroundings. Nor do they understand that recycling a beverage can or a plastic bottle will cost less than producing one from virgin materials and will have a lesser environmental impact. There remains a good deal of cultural change and environmental education that is needed before people will stop throwing waste and litter on the streets – but there are few countries where, to some extent, the same would not be true.

Next is the lack of infrastructure. Nigeria has 36 states and a federal capital, yet the facility in Asaba is the first publicly commissioned one of its kind in the country; there are also some privately owned incinerators that a few companies in Port Harcourt use to treat wastes from vessels (ships), hospitals and industries. Lagos state and Abuja are relatively advanced, simply by virtue of having put in place a few managed landfills, but they are still far from having the level of facility that Asaba can now boast.

The backbone of Asaba’s progress is the state government’s commitment to put a proper waste management solution in place. We’ve seen the impact in the form of infrastructure, collections and remediation, and law enforcement work is starting to change people’s perception about waste management in Delta State. At the moment, plans are being concluded to setup another facility in Warri, Delta State’s industrial hub, which will be twice the size of the Asaba facility.?

My hope is that the progress made by Delta State will be a beacon for other states’ governments. The example we are providing of cleaner, hygienic, more environmentally responsible waste management, and the positive changes that is bringing about, should inspire new development elsewhere in the country, which could equal or even exceed Delta State’s results. So whilst Nigeria’s track record on waste may leave a lot to be desired, the path ahead could be a great deal more promising.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be found at this link.

Sustainable Solid Waste Management: Need of the Hour

The primary aim of sustainable solid waste management is to address concerns related to public health, environmental pollution, land use, resource management and socio-economic impacts associated with improper disposal of waste. “This growing mountain of garbage and trash represents not only an attitude of indifference toward valuable natural resources, but also a serious economic and public health problem”. These words from the former US President Jimmy Carter is enough to understand the social, economical and environmental impact of mismanaged waste disposal and an urgent call for help to look for innovative, smart, sustainable and effective waste disposal techniques.

According to UNEP, around 3 billion tons of waste is generated every year, with industrial waste being the largest contributor, especially from China, EU and USA. There has been a steady increase in the quantity of e-wastes and hazardous waste materials. The UNEP study observed a drastic shift from high organic to higher plastic and paper corresponding to increase in the standards of living and also made an interesting correlation between the higher GDP and the quantity of municipal waste collections.

In developing and under-developed countries, the use of open dumps to dispose of the solid waste from different sectors is staggeringly high compared to the developed and high income countries that are more dependent on recycling and use of sanitary landfills that are isolated from the surrounding environment until it is safe.

There are serious concerns on the increasing cost of waste disposal, especially in developing countries. It is estimated that around $200 billion are being spent on waste management in the OECD countries for both municipal and industrial waste.

For developing countries, at least 20-50% of its annual budget is devoted to waste management schemes and strategy that has been reported insufficient and inefficient at the same time. In these countries, use of unscientific and at times unethical and outdated waste management practices have led to various environmental repercussions and economic backlashes. Even the relatively small proportion of waste recycling and other waste minimization and re-use techniques for waste disposal is alarming.

The increasing cost of waste disposal is a cause of major concern in developing nations

As sustainable solid waste management evolves through waste awareness among general public, efforts within the industry, and waste management becoming not just an environmental concern but a political and strategic apprehension too, there are realistic chances of advancements and scientific innovations.

Innovation will then give birth to revolutionary and self-sustaining ideas within the industry, which earlier focused on basic waste management, will now grow towards maximum utilization and sustainable management of waste.

In the last couple of decades, sustainable solid waste management has become a matter of political significance with robust policies, strategies and agendas devised to address the issue. The good thing is that the industry has responded with innovative, cost-effective and customized solutions to manage solid wastes in an environmental-friendly manner.

Waste Minimisation – Role of Public, Private and Community Sector

waste-minisationWhen it comes to waste minimisation and moving material up the waste hierarchy you will find partisan advocates for the roles of the public, private and community sectors. Each will tell you the reasons why their sector’s approach is the best. The private sector will extol their virtues as the only ones capable of efficiently and effectively doing the job.  They rightly note that they are the providers on the front lines who actually recover the vast majority of material, that the private sector approach drives innovation and efficiency, and that if waste minimisation is to be sustainable this must include economic sustainability.

The community sector on the other hand will make a strong case to say that their model, because it commonly encompasses social, environmental, and economic outcomes, is able to leverage value from recovered materials to dig deeper into the waste stream, to optimise recovered material quality, and to maximise employment and local economic benefit.

Before recycling and composting were economically viable prospects, community sector organisations led the way, developing many of the techniques now widely used. They remain the leaders in marginal areas such as furniture reuse, running projects that deliver environmental outcomes while providing wider community benefits such as rehabilitation and training for marginalised groups.

Finally, in the public sector corner, advocates will point out that the profit-driven private sector will only ever recover those materials that are able to generate positive revenues, and so cannot maximise waste minimisation, while social outcomes are strictly a secondary consideration. The community sector, on the other hand, while encompassing non-monetary values and capable of effective action on a local scale, is not set up to deliver these benefits on a larger scale and can sometimes struggle to deliver consistent, professional levels of service.

The public sector can point to government’s role in legislating to promote consistent environmental and social outcomes, while councils are major providers and commissioners of recycling services and instrumental in shaping public perceptions around waste issues. The public sector often leads in directing activity towards non-monetary but otherwise valuable outcomes, and provides the framework and funding for equity of service levels.

So who is right? Each sector has good arguments in its favour, and each has its weaknesses. Does one approach carry the day?  Should we just mix and match according to our personal taste or based on what is convenient?

Perhaps we are asking the wrong question. Maybe the issue is not “which approach is better?” but instead “how might the different models help us get to where we ultimately want to go?”

Smells Like Waste Minimisation

So where do we want to go?  What is the waste minimisation end game?

If we think about things from a zero waste perspective, the ideal is that we should move from linear processes of extraction, processing, consumption and disposal, to cyclical processes that mimic nature and that re-integrate materials into economic and natural systems.  This is the nirvana – where nothing is ‘thrown away’ because everything has a further beneficial use.  In other words what we have is not waste but resources.  Or to put it another way – everything has value.

Assuming that we continue to operate in an essentially capitalist system, value has to be translated into economic terms.  Imagine if every single thing that we now discard was worth enough money to motivate its recovery.  We would throw nothing away: why would we if there was money to be made from it?

So in a zero waste nirvana the private sector and the community sector would take care of recovery almost automatically.  There might evolve a community and private sector mix, with each occupying different niches depending on desired local outcomes. There would be no need for the public sector to intervene to promote waste minimisation.  All it would need to do would be to set some ground rules and monitor the industry to ensure a level playing field and appropriate health and safety.

Sectoral Healing

Returning to reality, we are a long way from that zero waste nirvana.  As things stand, a bunch of materials do have economic value, and are widely recycled. Another layer of materials have marginal value, and the remainder have no value in practical terms (or even a negative value in the case of hazardous wastes).

The suggested shift in perspective is most obvious in terms of how we think about the role of the public sector. To bring us closer to our goal, the public sector needs to intervene in the market to support those materials of marginal value so that they join the group that has genuine value.

Kerbside (or curbside) collection of certain materials, such as glass and lower value plastics, is an example of an activity that is in effect subsidised by public money. These subsidies enable the private sector to achieve environmental outcomes that we deem sufficiently worthwhile to fund.

However, the public sector should not just be plugging a gap in the market (as it largely does now), but be working towards largely doing itself out of a job. If we are to progress towards a cyclical economy, the role of the public sector should not be to subsidise marginal materials in perpetuity, but to progressively move them from marginal to genuinely economic, so that they no longer require support.

At the same time new materials would be progressively targeted and brought through so that the range and quantity requiring disposal constantly shrinks.  This suggests a vital role for the public sector that encompasses research, funding for development of new technologies and processes, and setting appropriate policy and price structures (such as through taxes, levies, or product stewardship programmes).

Similarly, the community sector, because it is able to ‘dig deeper’ into the waste stream, has a unique and ongoing role to play in terms of being able to more effectively address those materials of marginal value as they begin to move up the hierarchy.  The community sector’s unique value is its ability to work at the frontiers.

Meanwhile, the private sector’s resources and creativity will be needed to enable efficient systems to be developed to manage collection, processing and recycling of materials that reach the threshold of economic viability – and to create new, more sustainable products that fit more readily into a waste minimising world.

In the end, then, perhaps the answer is to stop seeing the three models as being in competition. Instead, we should consciously be utilising the unique characteristics of each so that we can evolve our practices towards a future that is more functional and capable of delivering the circular economy that must eventuate if we are to sustain ourselves on this planet.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link