Optimizing Any Outdoor Venue for Maximum Recycling Potential

Concerts, outdoor festivals and other gatherings with large numbers of people can generate an immense amount of waste. Not only is this wasteful potentially off-putting and unsanitary, but it can cause damage to both the environment and the appeal of the venue.

Many event organizers and planners focus on maximizing the appeal of their events via marketing, big names and other elements designed to draw in crowds. However, any outdoor event in particular must take into account the challenges posed by waste management and recycling in order to ensure sanitary and environmentally-friendly conditions.

recycling-outdoor-venue

In order to maximize the recycling potential of any outdoor venue, the following actions should be considered by any planning team prior to the event.

Partner with Green Waste Removal Companies

One of the biggest ways any event organizer(s) can contribute toward energy efficiency and more environmentally-friendly outcomes is to procure the services of a green waste disposal service.

Anyone who has organized an outdoor event before – especially in an open space or other area where standard permanent facilities do not exist – understands the need for waste disposal. Companies such as Satellite Industries provide on-site portable restroom services that dispose of waste in efficient and environmentally-friendly ways.

Some companies even use this bio-waste to create clean energy from the output, helping to further minimize its impact on the environment.

Position Recycling Bins Ideally

Virtually every outdoor venue generates large amounts of waste. From bottles and cans to miscellaneous items that find their way onto the ground or in trash cans, it can be a mess. When planning any outdoor event, organizers will have full control over where the flow of traffic is and how/where people congregate.

With this knowledge available, event planners can take steps to ensure that recycling bins and containers are optimally positioned throughout the premises to capture the largest amount of waste possible. Depending on the event and its offerings, you may need separate containers for aluminum, plastic, paper and/or glass.

Ask for Help

Especially true when coordinating events for charities, local organizations and non-profits, a small volunteer force may be both obtainable and very useful in facilitating recycling. With the help of a few volunteers, a team can scour the venue during and after the event in order to retrieve recyclables from the receptacles. In addition, these volunteers can also help with any litter found on the grounds during the event, thereby minimizing the amount of clean-up time after the event has concluded.

Contact Local Recycling Centers

Your local recycling center, landfill or governmental body may have additional resources to provide in the pursuit of improving recycling at an event. Some cities have independent recycling agencies that offer free receptacles and pick-up for recycled goods. Others offer comprehensive guides on how to position recycling areas and maximize participation from event attendees. Even the federal government offers recycling resources to those who wish to improve waste outcomes.

Outdoor festivals, such as Glastonbury, generates a tremendous amount of waste.

Ultimately, this information and assistance can go a long way toward maximizing recycling at any event, as these entities will have plenty of expertise and experience in these areas. Such advice can help further improve environmentally-friendly outcomes and reduce the incidence of waste at any event.

The massive amount of potential waste generated during any outdoor event can be disruptive both to the event and the environment. Event organizers who want to maximize cleanliness and environmental friendliness can take steps to reduce the amount of discarded materials that end up in landfills and other centers. By working with local agencies, procuring volunteers, partnering with waste removal agencies and using recycling bins efficiently, the overall amount of waste at any outdoor event can be substantially reduced.

Waste Management in Sweden: Perspectives

Sweden is considered as a global leader in sustainable waste management and in the reduction of per capita carbon footprint. The country consistently works to lower its greenhouse gas emissions, improve energy efficiency and increase public awareness. Over the past 10 years, Sweden developed methods of repurposing waste, so less than one percent of the total waste generated in the country makes it to landfills. To accomplish this, the country changed their perspective of garbage.

Increase Recycling

Recycling is a part of Swedish culture. Residents regularly sort recyclable materials and food scraps from other waste in their homes before disposal. This streamlines the recycling process and reduces the effort required to sort large volumes of waste at larger recycling centers. As another way to promote recycling, the Swedish government created legislation stating recycling centers must be within 1,000 feet of residential areas. Conveniently located facilities encourage citizens to properly dispose of their waste.

Repurpose Materials

Citizens are also encouraged to reuse or repurpose materials before recycling or disposing of them. Repurposing and reusing products requires less energy when compared to the recycling or waste disposal process. As Swedes use more repurposed products, they reduce the volume of new products they consume which are created from fresh materials. In turn, the country preserves more of its resources.

Invest in Waste to Energy

Over 50 percent of the waste generated in Sweden is burned in waste-to-energy facilities. The energy produced by these facilities heats homes across the country during the long winter months. Localized heating — known as district heating — has improved air quality throughout the nation. It’s easier and more economical to control the emissions from several locations as opposed to multiple, smaller non-point sources.

Another benefit of waste-to-energy facilities is that ash and other byproducts of the burning process can be used for road construction materials. As a whole, Sweden doesn’t create enough waste to fuel its waste to energy plants — the country imports waste from its neighbors to keep its facilities going.

In the early 1990’s, the Swedish government shifted the responsibility for waste management from cities to the industries producing materials which would eventually turn to waste. To promote burning waste for energy, the government provides tax incentives to companies which make more economically attractive.

Impact of Waste-to-Energy

Although Sweden has eliminated the volume of trash entering landfills, they have increased their environmental impacts in other ways. Waste-to-energy facilities are relatively clean in that most harmful byproducts are filtered out before entering the environment, though they still release carbon-dioxide and water as their primary outputs. On average, waste-to-energy plants generate nearly 20 percent more carbon-dioxide when compared to coal plants.

 

waste-management-sweden

Coal plants burn and release carbon which is otherwise sequestered in the ground and unable to react with the earth’s atmosphere. Waste-to-energy facilities consume and release carbon from products made of organic materials, which naturally release their carbon over time. The downside to this process is that it frees the carbon from these materials at a much faster rate than it would be naturally.

The reliance on the waste-to-energy process to generate heat and the tax incentives may lower Swedish motivation to recycle and reuse materials. The country already needs to import trash to keep their waste-to-energy plants running regularly. Another disadvantage of this process is the removal and destruction of finite materials from the environment.

Even though Sweden continues to make strides in lowering their environmental impact as a whole, they should reevaluate their reliance on waste to energy facilities.

Recycling of Lead-Acid Batteries in Developing Countries

Lead-acid batteries (also known as LABs) are a common item in our daily lives. Once the lead of the battery is timed out, we have no option but to dump it because it has no use for us anymore, but the copper plates in the battery remain reusable which can be used for recycling. There are some disagreements about the benefits of recycling battery, say alkaline battery, over simple disposal because the mercury in the battery no longer exists and the disposal material is abundant and non-toxic. But for automotive batteries the scenario is different in terms of benefits. The recycling of this type of battery holds both economic and environmental benefits.

lead-acid-battery-recycling

The reusable material from the used battery is removed and recycled which reduces the needs for raw materials which is originally imported from abroad. It creates a balance payment and cost. In addition to this there can be considerable environmental impact during mining processes such as emission from smelting of sulfide ore, copper, nickel, and cobalt and this can be eliminated if recycling can be introduced.

Dangers of Lead-Acid Batteries

LABs generally consist of both sulphuric acid and large amount of lead which is not only corrosive but also a good carrier for soluble lead and lead particles. Lead is highly toxic metal which causes a wide range of adverse health effect especially on young children. If one gets expose excessively to lead it can cause damage to brain and kidney, impair hearing, and can led to various other associated problems. On an average an automobile manufactured contain about 12kg of lead, in which about 96% of lead is used in lead acid battery and remaining 4% is used in other applications like wheel balance weight, protective coating and variation dampers.

Both lead and cadmium are harmful for human health and environment. This toxic substances seeps into the soil, groundwater and surface water through landfill and also releases toxins into the air when they are burnt in municipal waste incinerators. Moreover cadmium can be easily absorbed by the pant root and get into the fruits, vegetables, and waters are consumed by animals and human beings, they can fall to prey to a host of ill effects.

Studies have shown that nausea, excessive salivation, abdominal pain, liver and kidney damage, skin irritation, headaches, asthma, nervousness, decreased IQ in children, and sometimes even cancer can result from exposure to such metals for a sufficient period of time.

Need for Effective Control Measures

In a battery recycling plant, effective control measures need to be implemented, both to protect the health of workers and to prevent pollution of the environment. Good plant design, with reduction of the potential for the emission of contaminating substances is of utmost importance and the newer smelting processes are inherently much cleaner than traditional blast furnaces.

Pollution abatement technologies, including the treatment of exhaust gases and liquid effluents, need to be installed. Those mostly exposed to releases within the plants are the workforce. Control measures such as maintaining minimum standards of air quality within the works, medical surveillance of employees, use of protective equipment, and provision of conditions of good hygiene in general, is necessary to avoid occupational lead exposure. However, few government/non-governmental steps have been taken yet; rather this practice is a traditional trading system as prevail in the society.

Positive and Negative Impacts

In developing countries such as Bangladesh, recycling or reusing of used lead-acid batteries has both positive and negative impact on environment. Positive impact is that, if battery is recycled in proper and in sustainable manner it saves environment from toxic material of battery, otherwise battery waste is dumped into the landfills. Negative impact is that if recycling is not done in sustainable manner emits gases produced from battery recycling has adverse impacts on environment and human being.

In a battery recycling plant, effective control measures are required to safeguard public health and environment.

Direct recycling process should be banned as it has adverse impact on environment. As it is an illegal process, shopkeepers perform this process in hidden way. Government should impose the law and regulation strictly in this occurrence. This information can be used for advertising material highlighting the environmental benefits of recycling or reusing encourages the purchasing of old lead acid battery. It will accelerate the selling rate of old battery.

Importance of Awareness

Necessary steps should be taken to increase awareness about environmental impacts of used lead acid batteries. Proper instruction should be provided among the general mass. It will also increase reusing of old battery. Battery regeneration is a unique process specially designed to revive the lost capacity of batteries and give priority to choose secondary battery. Battery Reuse Centre can be developed for effective reuse and recycle.

The aim to divert reusable battery, donated by the public, which often could have been destined for landfill and instead provides a much needed source of low-cost battery to those in need. The battery reuse service encourages volunteer involvement and trainee placements in all aspects of its operation. Awareness program (posters, pamphlets, TV & radio commercials, road-shows, website, exhibitions, talks), infrastructure, information center, tax rebates for manufacturers should be taken to increase recycling or reusing of old battery.

E-Waste Management in the GCC: Perspectives

The growing amount of e-waste is gaining more and more attention on the global agenda. In 2017, e-waste production is expected to reach up to 48 million metric tons worldwide. The biggest contributors to this volume are highly developed nations, with the top three places of this inglorious ranking going to Norway, Switzerland and Iceland.

In Norway, each inhabitant produces a massive 28.3 kg of e-waste every year. Not far behind the top ten of this ranking lie GCC member states, with both Kuwait and UAE producing each 17.2 kg e-waste per capita per year. Saudi Arabia with its many times larger population produces least e-waste per capita among all GCC countries, with 12.5 kg a year.

Link between Development and E-Waste

Recent research suggests that there is evidence of a strong link between economic development and the generation of e-waste.  Due to rapid urbanization growth rates along with a substantial increase in the standard of living, more people develop a consumerist culture. With rising disposable income, people replace their technology more frequently, as soon there are upgraded gadgets on the market. This development is aggravated by technological progress, which renders shorter life spans of products.

Complexity of E-Waste

E-waste is not only a fast-growing waste stream but also complex, as it contains a large variety of different products. This makes it extremely difficult to manage. The rapid technology development and the emergence of items such as smart clothes will render e-waste management even more difficult in the future. Dealing with e-waste is not only toxic for workers with direct contact to it, but also the dumpsites on which e-waste is stored can have severe environmental impacts on the surrounding areas. Many developed countries export the bulk of their e-waste to developing countries, where it is recovered using extremely harmful methods for both human and the environment.

Out of the total e-waste produced world-wide, only about 15% are collected by official take-back schemes. The European Union is one of the few regions in the world with uniform legislation regarding the collection and processing of e-waste. The WEEE (Waste Electrical and Electronic Equipment) Directive took effect in 2003 and was designed to make manufacturers of appliances responsible for their equipment at the end of its life, a system known as extended producer responsibility (EPR).

An Untapped Opportunity

However, e-waste should not only be seen as a problem which more and more developed countries have to face. According to statistics, the intrinsic material value of global e-waste is estimated to be 48 billion euros in 2014. Even though the large part of e-waste constitutes of iron and steel, precious metals such as gold, copper, palladium, silver, platinum, cobalt, and more provide economic incentive for recycling.  In addition to the intrinsic material value, there are more benefits to e-waste recycling, such as job and employment creation.

electrical-waste-uk

In addition to these economic benefits, the recycling of electronic waste products also ensures to reduce environmental pollution by conserving virgin resources, whose extraction goes along with severe damages to entire ecosystems.

Situation in GCC Countries

In almost all GCC countries, there is minimal to zero legislation on e-waste, with minor differences between the respective counties. Kuwait as one of the biggest per capita e-waste producers among the GCC nations uses the same landfills for both conventional and e-waste. Bahrain operates only one landfill for the entire country, but there are several recycling initiatives in place, aiming at separating plastics, metals and paper. Still, there is no comprehensive law on e-waste management. Saudi Arabia possesses the biggest total amount of e-waste among the GCC countries. There are private companies, initiatives and Non-Profit-Organizations currently working on e-waste recycling, but there is no regulated system in place.

Oman does not have regulations or facilities to deal with e-waste, but the country has recently stated the realization of a need for it. Qatar has also recognized the need to address the waste management issue, but no concrete actions have been taken. The most advanced momentum regarding e-waste of all GCC countries can be found in the UAE. In some waste management centers, there are facilities where e-waste is classified and sorted out specifically. The UAE government is currently developing regulation and facilities to for sound e-waste recycling.

The Way Forward

As we have seen, in many GCC countries the need for e-waste legislation is widely recognized. E-waste management provides an opportunity and a huge potential in the entire Middle East, primarily due to four reasons.

First, e-waste management is a source of employment for both highly skilled and unskilled workers. This could help to transfer employment from the public to the private sector, which is a goal of many Gulf countries. Second, e-waste recycling can also minimize costs, as less landfill space is being used. In Bahrain, the only existing landfill is expected to reach its capacity in the next years, and poses furthermore a health risks for the population as it is close to urban areas.

The most advanced momentum regarding e-waste in the GCC can be found in the UAE.

Third, the intrinsic value of e-waste with its precious metals provide economic incentive for recycling. As reserves for many metals decrease drastically, the economic value of these resources is expected to increase. And fourth, developments in e-waste management provide opportunities for industry and environmental research. Innovative and efficient recycling processes could be developed and transferred to other countries.

In order to fulfill this potential for e-waste management in GCC countries, the first step is to develop a sound regulatory framework in order to ensure private sector participation. Additionally, programs to increase public awareness for waste and in specific e-waste need to be developed, which is necessary for an integrated e-waste management system.

References

Kusch, S. & Hills, C.D. (2017). The Link between e-Waste and GDP—New Insights from Data from the Pan-European Region. Resources 6 (15); doi:10.3390/resources6020015

Baldé, C.P., Wang, F., Kuehr, R. & Huisman, J. (2015). The global e-waste monitor – 2014. United Nations University, IAS – SCYCLE. Bonn, Germany

Morgan, K. (2015). Is there a future for e-waste recycling? Yes, and it’s worth billions.

Cucchiella, F., D’Adamo, I., Lenny Koh, S.C. & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews (51); doi:10.1016/j.rser.2015.06.010

Alghazo, J. & Ouda, O. (2016). Electronic Waste Management and security in GCC Countries: A Growing Challenge. Conference Paper.

Debusmann, B. (2015). New regulations are coming up to deal with e-waste.

8 Best Ways for Your College to Go Green

Today a lot of colleges have made an environmental revolution. No more coffee to go, no more plastic bottles to buy on a territory of the campus, the implementation of eco-friendly projects and campaigns – all this now is becoming a sustainable lifestyle for the majority of students.

The effects of climate change are dramatically terrifying. In most colleges, the initiative of the activities to make planet safer comes from administration faculties. However, any little action of every student will help to protect our Earth. Let’s see now how green we may be in a range of college life.

college-green

Today you even may look for the university that has its degrees in eco subjects: such as sustainable agriculture, natural resources conservation and indoor gardening and so on.

1. Energy supply

Whether it is a constructing of building with more efficient environmentally substantial windows and panels that use solar, wind or even water power, during past several years the colleges become a way eco-friendlier. Some programs promote the conservation in any aspect and the composting bins.

2. Using electronics instead of paper

The world now is digitally focused, and this is good news for a planet. A lot of colleges are equipped with computer classes, electronic libraries, and online testing programs. You may also have with taking notes electronically in order not to waste paper and money on buying notebooks. Instead of buying a book, prefer to borrow it or get only if necessary.

To see and read more more living a sustainable and healthy life, check out the Public Goods Blog by clicking here.

3. Opening a refectory with a local eco food

Organic food and organic gardening is a modern, healthy part of a sustainable lifestyle. The most colleges now have the individual spaces for organic gardening where any student can work to show their faith-based actions. They can grow plants, vegetables or fruits that are used in the kitchen of the campus for preparing healthy food.

The administration of some universities now got rid of trays – they state it will prevent students from over-eating and wasting food. Instead, a student takes a plate where he can put only as much as he can eat.

4. Having a place for refilling a water bottle

As you know, only 20% of plastic bottles will be recycled. The question is that where did other 80% proceed to? The management of some colleges take concrete measures to fight this issue: they don’t sell plastic bottles on the territory of campus. As an alternative, they give reusable water bottles and provide with stations of water filling. Isn’t it an amazingly simple and useful to evolve an initiative to become environmentally conscious?

5. Special campaigns for students

It is important for colleges to have some green project ideas for college students that may evolve students to concrete actions toward the protection of an ecology. It can be something like tree planting, street cleaning or any other environment-themed campaigns.

Organic food is a modern, healthy part of a sustainable lifestyle.

Organic food is a modern, healthy part of a sustainable lifestyle.

The effective way to make the more environmentally sustainable community is creating a communication between students and management. Every student may have his fresh ideas of go green, and it ‘d be good and if the management could encourage them and help to realize.

6. Transportation

What doesn’t student dream of having his car? But don’t lie to yourself – it is not a secret that the cars are the biggest reason of pollution in the air. Just think about it – do you need a car? Taking a public transport or having a bicycle will not only save a planet but also will save your money.

Many colleges offer carpool boards which allow pairing riders with drivers and a shuttle bus which run on biodiesel that is much safer for the planet than any other fuel.

7. Good old recycling

Almost every college has recycling bins and trash cans on its territory. The faculty and staff should be responsible for what and where they throw away – it will be a good example for every student.

8. Creating eco-friendly rules in a campus

  • Turn off everything
  • Using LED light bulbs
  • Reduce, reuse, recycle
  • Water-usage control (only a 5-minute shower)
  • Buy recyclable and eco products, e.g. you can even find eco friendly wooden watches these days.
  • Use power bars
  • Wash cups and plates, don’t use disposable paper or plastic utensils
  • Walk, bike and use public transport instead of a car

If you at a moment of decision which higher educational institution to choose – go ahead to pick a “go green” university which has at least some of point mentioned above!

Don’t close your eyes to truth – the climate change, the nuclear waste, etc.

With all these actions, even the little ones, we may protect the environment together and live a sustainable life!

If this article written by a birdie essay writer was helpful and met your expectations – you can find other related works and even obtain help with EssayHub if needed!

Wish you a good green luck!

Benefits of Eco-Friendly Junk Removal Services in 2021

With only nine years until the effects of climate change become irreversible, it is more important than ever that we are all doing as much as we can to look after our planet. One way to make a positive impact on the environment is to sign up with an eco-friendly junk removal service.

What is eco-friendly junk removal?

The goal of eco-friendly junk removal is to dispose of waste in an ecologically responsible way. This can mean different things depending on what service you choose to sign up with.

Some services will try to rehome goods such as unwanted clothing, furniture, and toys, whereas others, like J Dickinson and Sons, aim to recycle all waste in a safe and environmentally friendly way.

benefits of eco-friendly junk removal

Why should I use an eco-friendly junk removal service?

There are a whole host of reasons why you should consider using an eco-friendly junk removal service. First of all, it is a way of disposing of waste that is beneficial to the environment. It reduces the amount of waste that ends up in landfills. It is a preventative measure against global warming and that alone should sell the service to you.

Secondly, if your unwanted goods are being reused and donated to someone who may really value them, this feels morally better than just throwing things away. Instead, you are doing something good for someone else as well as doing something that will benefit the planet.

What to do in the absence of eco-friendly junk removal service

Eco-friendly junk removal does not have to be done via a service. You can make a big difference yourself with your waste.

Instead of throwing out old clothes that you no longer use, fill up a bag and take it down to your local charity shop. The same can be done with children’s toys, DVDs, books, bedding, and more.

If you have unwanted furniture items, instead of taking them to a dump or leaving them in a skip, try selling them at a reasonable price instead. Gumtree and Facebook Marketplace are excellent starting points if you are looking to sell any unwanted goods.

This puts some money into your pocket, and is a much more environmentally friendly way to dispose of something than simply throwing it away.

skip bins

You can also start upcycling your waste. Keep a space in your shed for scrap wood and metal, as you never know when it might come in handy. Start DIY projects and turn old items into something new and exciting.

A slightly shabby dining table can be sanded down, repainted and used outside. Use unwanted pots, pans, or even sinks as planters in your garden. With upcycling, you can go as far as your imagination takes you.

Conclusion

Eco junk removal is an excellent way to care for people and the planet. Donating or selling unwanted items benefits both yourself and others. Collection services are excellent as you know you have disposed of your goods in an environmentally responsible way. Upcycling allows your creative spirit to run free. There really is no reason not to get involved in eco-friendly junk removal this year.

Solid Waste Management – History and Future Outlook

The disposal of municipal solid waste is the second most major concern for public health in developing countries because of population explosion, rampant poverty and high urbanization rates combined with poor government funding to curb waste management. Factors such as waste composition, technologies and lack of infrastructure have been found to set apart the good management of solid wastes in developing nations. Municipal waste is mainly comprised of paper, vegetable matter, plastics, metals, textiles, rubber and glass. In some countries (developing as well as developed), municipal solid waste is mixed with medical wastes and this may pose health risk to waste handlers and general public.

Historically, burying the wastes is the most preferred method for waste management in many countries. This method is still used in many more countries. Tackling environmental issues has become more important and more preferred than pollution and consumption of unsustainable utilization of resources. Most importantly, the primary objective of waste management is to put emphasis on protecting the people and environment from potentially harmful effects of waste.

Methods of Solid Waste Management

Depending on the types of wastes generated, four methods of solid waste management has been used throughout the history, i.e. dumping, incineration, recycling and waste prevention. Waste generated from household is much different from industrial waste, agricultural waste, medical waste or mining wastes.

When wastes contain any hazardous component, or it has capability to become hazardous with time, poses very serious threat to environment and health. Hazardous wastes generated needs to be handled very carefully, with special techniques. This is one of the major reasons of open landfills are getting replaced with sanitary landfills.

At a landfill, wastes are covered with thick layer of soil. By the late 1950, this practice was very common for waste management across the world. Earlier landfills had considerable sludge and methane emissions, which were harmful to the environment as well as animal and human health. But these issues have been resolved largely by modern disposal methods, which were developed around 20 years ago. Modern landfills are equipped with thick layer of clay followed by plastic sheets. This method was practiced by some nations and still going on.

In 1930-1940, many cities in USA adopted new technology to curb waste issues by burning at high temperature, this method is known as incineration. During initial years, this method was not very efficient and emit very large amount of poisonous gasses, this is the major reason of incinerators shut down during that period. During mid-1970s, scientists modified incinerators to generate energy, which are known as waste to energy plants. But after around a decade, it has become major issue to build these plants, again because of emission issues.

With development of technology, waste burning in advanced form of incinerators became common in 1970s, researchers across the world bet on incinerators or waste to energy plants for solution to energy crisis in 1973. However, with realisation of impact on environment and air quality, it become very difficult to find location to build any waste to energy plants, mainly because of public opposition. Another issue with incinerator is production of ashes, which contain huge amount of heavy metals, toxic and inorganic compounds.

waste-to-energy-plant

Incineration is the most common waste-to-energy method used worldwide.

Future of Solid Waste Management

The overall concept of wastes needs to be considered economically, it will be more considered as economically viable product if waste is considered as an inefficiency of the production process not as rejected residue of waste product. A permanent rejection or heavy restriction into products which produces waste that cannot be accumulated back into the environment safely.

The major challenge in waste management is to persuade people/community to consider waste as a resource, rather than a liability on society, which can be created with more innovation and technological development of manufacturing industry, waste processing industry and new business model and plans.

This planning system will create circular economy where product value created by inputs (e.g. energy, materials, labour etc.) is extended by enabling a material that goes into circular economy, beyond product life. We go from mineral to metals to product then back to minerals/metals. By understanding economic cycle of waste, people will understand the creation of opportunities to more sustainable product in future with limited resources.

Key Challenges in the Implementation of Waste-to-Energy

The biggest challenge in the implementation of Waste-to-Energy projects lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of MSW-to-energy bring up concerns of environmental justice and organize around this. They view waste-to-energy as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

Spittelau-Incinceration-Plant

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question.

It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant.

Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with.

The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations in WTE Projects

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Product Life-Cycle Assessment: Closing the Loop

If you’re interested in green and environmental issues you may have heard the phrase ‘life-cycle assessment’ in relation to a particular product. It can be difficult to ascertain exactly what this life-cycle assessment involves – so we’re hoping to shed some light on the process, the different types of assessment that take place and explain what’s involved with each step.

product-life-cycle-assessment

A look at the bigger picture

Essentially, a product life-cycle assessment takes an overall view of that item’s impact on the environment – and in doing so, offers a true picture of how green that product really is. The aim is for consumers, manufacturers and policy makers to be given a true environmental picture of any product.

Although it’s an example that divides the opinion of environmentalists around the world, the Toyota Prius provides an interesting picture of why the product life-cycle assessment is required in a world driven by a company’s desire to be seen as green. The Prius is an electric-hybrid car which Toyota claims delivers an impressive 60 miles per gallon of fuel – a statistic that puts it as a firm environmental favourite.

However, there are claims that the construction methods used to create the batteries that power the Prius are hugely detrimental to the environment – with some sources saying the manufacturing plant impacts the environment so greatly that by the time a Prius is driven from the showroom – it’s already had the environmental impact it would take any other car 1,000 gallons of fuel to match.

What’s the verdict?

So, is the Prius good or bad? That’s not for us to decide – and we’re not suggesting one way or another, we’re simply using this as an illustration of how complex any environmental consideration can be in a product with such an intensive manufacturing process and prolonged lifespan. At the other end of the calculation you’d have to consider how long the Prius will run for – and whether that balances a supposedly negative building method.

Stages of product life-cycle assessment

The product life cycle analysis is ordinarily broken down into different stages:

1. Extraction and processing of raw materials

This is a full understanding of the journey from source to point of manufacture that the building blocks of any product take. For example, in the manufacture of a table you would begin by looking at the trees that provide the wood, the logging process that takes them from forest to timber yard and the impact of the machinery used throughout that process.

You would repeat this process for every raw material that goes into the table’s manufacture.

2. Manufacturing

Next comes the manufacturing itself – if machinery or any industrial process is used to piece our table together then resources used in that process must be considered when we look at the overall impact of the product on the environment.

3. Packaging

The packaging that a product is delivered in is effectively another product in itself. Although unlikely in our table example, it’s not uncommon for extravagant packaging to represent 10-20% of a product’s recommended retail price. Curtis Packaging, an award-winning UK based sustainable packaging company suggest manufacturers pay careful consideration to the impact of packaging on a product’s overall green credentials – from raw materials to the point of disposal, the packing that adorns your product can have serious environmental considerations.

4. Marketing

At first glance you could be forgiven for thinking marketing a product comes with no environmental impact – but you’d be wrong. From the printing of advertising materials – to the sales team’s 20,000 annual miles in company vehicles – there can be a lot of resource put into any marketing process. However, measurement is no mean feat – companies can find it difficult to differentiate between their overall carbon footprint and that associated with any one product.

5. Product use, re-use and maintenance

This is where the impact of a product moves from the manufacturer and into the hands of the consumer. What does typical use look like? How long is a product being used for? Does one person’s use vary compared to another’s? For our example table, the answers could be fairly simple – on the other hand, there’s a huge amount of variation when you look at a broad range of car drivers.

Packaging that adorns your product can have serious environmental impact.

Packaging that adorns your product can have serious environmental impact.

For any product that requires maintenance, the LCA just became much more complex (again!) – just as packaging represented an entirely separate product that requires its own assessment – a similar process is required when a car receives a tank of fuel, a top up of coolant, brake fluid, spark plugs, brake pads… hopefully you get the picture (hint – it’s complex and sprawling!)

However difficult it might be to anticipate, it’s an environmental imperative that big industry is aware of the impact they have – even when their product has left their hands.

6. Recycling, disposal and waste at the end of the product’s life

From pizza boxes to old cars, it’s easy to think of their job as being done when they’re waved off to a recycling bin or breaker’s yard – but environmentally this could just be the beginning of their impact.

In terms of recycling – the effort and impact of the process must be outweighed by the benefit of the salvaged material, it’s often in life-cycle assessments that decisions are made around what is worth recycling – and what should be destined for landfill. If landfill is the ultimate resting place for any product, what does the deterioration process look like and what does that mean to the environment in the short, medium and long-term?

Then, to bring the assessment cycle full circle – any product that can be processed and re-used re-enters the assessment cycle back at the extraction and processing of raw materials stage…

Ultimately, what is the life-cycle assessment done for?

There’s no one reason that a product life-cycle assessment is done. For some companies, they’re keen to explain the full back-story of the product. For others, it can be an exercise in understanding the full process and highlighting any areas that can be financially streamlined – it certainly provides a solid baseline from which improvements can be made.

For the most environmentally ethical companies, the life-cycle assessment gives a true picture of the impact they have on the well-being of the planet – and offers a chance to get a full and honest picture of the moves they and their partners can make in creating a product that fulfils the requirements of the environment – as well as those of the customer and shareholders.

Beat Plastic Pollution by Knowing How to Recycle Plastic

According to GenFollower, around 8.3 billion metric tons (9.1 billion US tons) of plastic have been produced worldwide, and it is found that 9.1% of plastic waste is not recycled, and this is an alarming figure which is contaminating our natural environment. Although plastic is a very useful material that’s rigid, flexible and robust, it becomes waste right after use, and contaminate the environment.

plastic-bottle

In order to protect our environmental surroundings as well as to make the most of plastic material, recycling procedure is the best solution. Plastic is actually a common material that’s now frequently used by everyone on this planet. Plastic is used in several ways because it is compact and lightweight.

The continues maintenance required is little.

Typical plastic items that usually used are bottles, food packages, bags, and containers. When you buy grocery, food items or any other product from any store or shop, you’ll use plastic bags for carrying them.

Uses of Plastic

Plastics are commonly used in:

Where does the Problem Lie?

The big problem with plastic is its disposal.

Plastic is made of polymer-bonded substances and isn’t biodegradable which means plastic won’t break down when it is buried. When plastic is burnt, it discharges detrimental chemical substances in smoke. Most of these chemical substances in smoke have negative effects on our ecosystem. Therefore, the necessity of recycling arises.

Straight into Something New

Recycling means making new items out of waste material. In this article, learn more about how to to recycle plastics

Almost all types of plastic materials can’t be reprocessed. If we recycle those that can be reprocessed, the earth will be saved to a certain degree. Plastic recycling requires the process of recovering discard plastic, and this particular waste is then reprocessed to make new materials that could be more advanced than their original state.

When compared with many other materials such as metal and glass, recycling of plastic is complex and expensive. It’s because of the high molecular body weight of the large polymer-bonded chains that make the plastic material.

Heating plastic does not melt the polymer-bonded chains, and therefore, a tiresome and complicated procedure is required. Several types of plastic-type material can’t be mixed since they recycle separately.

Benefits of Recycling of Plastics

Recycling plastic has many positive aspects:

  • Use of non-renewable fuels is usually reduced by recycling as the production of new plastic materials requires more of these fuels.
  • Use of electrical power is also reduced because already prepared plastic material is reused.
  • Amount of plastic-type material that reaches the garbage dump sites are reduced. This may eradicate land pollution to some extent.
  • Carbon pollutants are reduced because manufacturing units discharge more carbon.

Inverse Polymerization Procedure

The most popular procedure that is used for polymers recycle is the inverse polymerization procedure in which the polymers in the plastic material are transformed into monomers that are used in the manufacturing process.

plastic-wastes

Recycling has unending benefits

Most of these chemical substances are then synthesized and purified to form new materials. Different polymers are usually transformed into oil in another process. The main advantage of this particular process is that any mixture of polymers can easily be used.

Steps Involved in Plastic Recycling

The standard steps which are involved in the particular recycling of plastic material are;

  • Step 1: Accumulating plastic waste from industries and households.
  • Step 2: Separating the plastic waste materials in different categories such as bags, containers, pet bottles, etc.
  • Step 3: The plastic is cut into small pieces.
  • Step 4: The small pieces are carefully cleaned for removing any unwanted particles or dirt contaminants on them.
  • Step 5: The cleaned pieces are dissolved and poured into storage containers for recycling.

In order to aid this process, plastics that have identification code should be identified with the different polymers that are usually used in the manufacturing of plastic. This process should be started at home. When you’ve used that plastic item, you can easily use the same item for something else entirely. For instance, if you purchase a fruit juice bottle, you can easily use the plastic bottle as a storage bottle for reusing the PET bottle.