7 Myths About Smart Homes

A Smart Home has been on everyone’s lips in recent years. However, some issues remain relevant years later. In the article we will analyze the main misconceptions about a Smart Home, adding examples and explanations.

Myth 1 – The use of smart technologies will lead to an increase in the number of wires, which are already difficult to understand

It is precisely because of the use of an aging mechanical control system that an incredible number of wires appear.

Modern Smart Home systems assume only one wire to each light source. And there is no need to start repairs if you want to add a new option. All this is done at the programming level and saves you money and nerves. And the introduction of a new light source will require an additional laying of just one wire.

Myths about Smart Homes

Myth 2 – The Smart Home system is difficult to understand

Modern housing involves numerous groups of light. In front of us are many mechanical switches that are trying to control all this. Is it easy to remember which button is responsible for what?

In Smart Home, the push-button control panels have a built-in indication for displaying feedback. To simplify the control on the panel with mechanical keys, the manufacturer can engrave, which will make the control process even more intuitive.

Myth 3 – Using such a large amount of electronics will inevitably lead to higher energy bills

Everything is exactly the opposite. Smart Home technologies use low-current controllers, and their availability will optimize the use of electricity in the room. For example, the light will automatically turn off in a room where there are no people, and all equipment will be in sleep mode. You can also adjust the lighting so that it does not shine at full power during daylight hours. Such optimization can be carried out not only with light but also with heating.

Myth 4 – The Smart Home is a technology for the construction stage, and it is difficult to install it on existing buildings, if possible

Along with the rapid development of the world, the requirements for comfort and the level of housing are also developing. Many manufacturers are still at the development stage considering the possibility of integrating their devices into a Smart Home system.

There is a smooth transition of the old energy supply system to a new highly intelligent one. This will require the least of costs for repairing the premises, but it guarantees increased control over engineering systems, significant resource savings, and, most importantly, a level of comfort that is inaccessible to the classical system.

Myth 5 – Building a Smart Home or rebuilding an old one entails a lot of legal problems

The myth of the difficulties of legal support for the construction of Smart Homes and the rebuilding of ordinary houses into smart ones was invented by those who did it on their own. Lawyers in Dubai will help you save time on legal registration.

Myth 6 – The Smart Home is very sensitive to power loss

This is a problem of Smart technologies. But now the devices are equipped with non-volatile memory. In practice, this means that when power is lost, the modules fall asleep, completely without losing settings and certainly without breaking.

smart homes

Myth 7 – Smart Home technology is just an advanced toy that will quickly get bored

Smart Home technologies will work properly and bring benefits regardless of the lively interest in them. The fact that the user gets used to them so easily and no longer sees something incomprehensible in them speaks in favor of the fact that such technologies will soon become commonplace and standard.

Designing a Smart Home is much easier than a classic one. There is no need to worry about each transaction, remember its functionality and the specifics of what it leads to. A Smart Home will allow you to arbitrarily set the functionality of each device without using additional communications.

The Smart Home is the choice of those for whom the house is not only a fortress but also a place of comfort when the house almost guesses the wishes of its owner. You will forever forget the irritated voice: “Turn off the light after you!

5 Ways Artificial Intelligence is Helping to Save Our Planet

It takes a high level of data analysis to predict the effects of climate change and the implications of our actions to stop and adapt to it. Often, scientists have terabytes of data, but not the computing power to make sense of climate issues like hurricanes. But this level of analysis is possible with artificial intelligence (AI). In fact, AI may be the best weapon we have to combat and adapt to the effects of climate change. That’s because it can analyze large chunks of data from past events and make accurate predictions about future ones.

Today, AI is helping to monitor and predict everything from glacier retreat to commercial waste management. As innovations in “deep learning” march on, AI’s prescience will help inform scientists about climate impacts and policymakers on the most prudent steps for adaptation. Here are some critical ways AI is helping to preserve our planet.

1. Smarter Home Energy Use

AI is helping save the planet by assisting homeowners through energy-efficient smart homes. The Internet of Things and today’s “smart devices” let homeowners control their energy use and lower their monthly bills. Smart thermostats can adjust temperature settings for specific rooms in a house. Smart water sprinklers can change water usage based on weather forecasts. And smart security systems can cut down on false alarms calls — so fewer gas-guzzling trips by first responders. The automation, connection, and prediction power built into these smart devices allow homeowners to lower their carbon footprint.

smart-homes

But smart energy use is not just about conservation — it’s also about the best time to use energy. Peak energy hours like evenings are higher-demand, higher-cost times. Smart devices can automate energy use for low-demand hours. Plus, off-peak times like mid-day are when alternative energy sources like solar and wind contribute the most. Therefore, smart technology promotes renewable energy.

2. Soil Conservation

Soil degradation is a problem often overlooked in the media. But it has serious consequences for humanity’s ability to adapt to and survive climate change. It takes a millennium to generate only three centimeters of topsoil, and soil degradation is happening at a much faster rate. Chemicals, deforestation, erosion, and global warming are major contributors to soil degradation. And if the current rate of degradation continues, the planet’s farmable land could disappear within 60 years, according to United Nations officials.

sustainable agriculture

But farmers and scientists are using AI to help conserve the soil by marshaling complex algorithms along with robots and drones to detect erosion and monitor soil health. For example, one company has developed an agricultural app to help farmers identify nutrient deficiencies within their soil. And farmers are using machine learning to predict the best times to plant, irrigate, and harvest crops based on weather changes. Accurate predictions mean less need for pesticides and fertilizers, which degrade the soil.

Also Read: Role of Machine Learning in Data Science

3. Exploring and Protecting Oceans

Scientists watch and test the health of oceans because they’re the best indicators of Earth’s health. Microplastics, increased CO2 levels, and ocean acidification are changing the surface of the planet. The key to protecting oceans is exploring and monitoring them for changes. Climate scientists and oceanographers are using AI technology to drive autonomous marine vehicles to the deepest depths. And some companies are developing autonomous garbage collection systems that would help remove plastics and floating debris.

garbage in ocean

Another emerging technology — blockchain — is helping to track fishing and identify illegal behavior. Blockchain is the same technology that powers cryptocurrencies like Bitcoin. The technology acts as a transparent ledger for transactions. Blockchain is a decentralized system, which means it operates autonomously and isn’t subject to misuse and abuse. Trust is critical to international treaties that regulate fishing quotas and manage overfishing. Blockchain technology can record each fish (e.g., tuna) with a scannable code uploaded to the ledger. Therefore, retailers, customers, and regulators can confirm that fish are legally caught.

4. Air Pollution Detection

AI is becoming an invaluable tool for tracking our air quality and identifying sources of pollution. During accidental emissions, city air quality officials need to identify and respond quickly. Some European cities are using leak sensors and AI to help create emission maps, predict mortality rates, and estimate financial costs of emergency responses. These data points give decision makers a more accurate view of the air pollution along with more targeted remediation.

air-pollution-repurcussions

In addition to monitoring air pollution, AI is also cutting tailpipe emissions. AI manages self-driving cars to make getting from point A-to-B more efficient. Self-driving automobiles can cut oil consumption and greenhouse gas emissions by 2% to 4% annually. AI and global positioning systems operating driverless tractor-trailer rigs will make deliveries non-stop, faster, and less costly to the planet. Complex algorithms, sensors, and traffic lights are directing traffic flow in some cities. These systems are currently reducing travel time by 25%, braking by 30%, and idling time by 40%.

5. Evaluating the Efficacy of Action

AI is bringing powerful ways to monitor and predict threats to our environment. Synthetic thinking adds value for scientists, officials, and policymakers by giving them deeper looks into current environmental situations. Perhaps, more than anything, AI’s biggest potential lies in figuring out where solutions hit the mark and where they miss. It’s counterproductive to invest resources and time into bad solutions. But that’s highly likely, given the complexity of climate change and adaptation.

Where do we invest? Which coastline needs saving the most? What communities are at a higher risk? With dwindling resources and bigger dangers, we will face some hard decisions in the future about where to deploy our efforts. At some point, those decisions will mean life or death. We will need quick thinking and accurate data. Evaluating our options and predicting their implications is where AI will bring the most value.

7 Energy Efficiency Innovations That Can Help Homeowners

Domestic energy efficiency has advanced a long way over the last few decades. Despite our overall energy consumption increasing by just over a third since 1980, on average our homes consume around 10% less overall. How can this be the case when we have so many more electrical appliances? Back in 1980, not many homes had more than a single TV, and computers and mobile phones were essentially non-existent. Yet somehow they used more electricity!

The answer to this question comes down to one simple principle. Energy efficiency. Government regulations and technical advances led by the private sector have resulted in appliances that are simply more sustainable. Throw in a better public understanding of the importance of reducing carbon emissions, and also the use of money expert comparison sites to track the expense of powering a home, and it the picture becomes a little clearer.

Expect to see this trend become ever more prevalent in the near future, as sustainability has become a huge industry that continues to rapidly expand.

Here’s a selection of the most recent energy efficiency innovations that are already helping homeowners save money that we can expect to become common place over the coming years.

1. Smart Homes

At first glance, you may wonder what the point is in buying a new domestic appliance that is advertised as ‘internet connected/ready’. After all, who is going to need a web compatible refrigerator or air conditioning unit? It is increasingly common for newly released appliances to boast this feature because in the coming years, our homes are going to be much more connected than at present. Being able to monitor and control energy expenditure remotely via smartphone is a tech that is already with us – but these are still the early days.

The next big step forward is going to be the implementation of wireless sensors throughout the home. These will connect all the appliances in the home to a centralized control panel which will automatically instruct how they interact with the energy supply.

For instance, appliances not in use, but on ‘standby’ mode will be entirely disconnected from the power supply when nobody is at home. Heating and air conditioning use will be precisely measured according to the ambient temperature. Just these two examples – and there are many more in the pipeline – are set to shave a considerable amount of household energy consumption in the very near future.

2. Next Generation Home Insulation

The US Industrial Science & Technology Network takes the approach that heating and cooling costs can best be reduced by simply developing superior insulation. While still at the development stage, these are promised to be far more efficient at preventing heat from escaping.

As may be expected, they are also going to be environmentally sound and most likely comprised of recycled foam materials. Should these be proven to work, there is a very good chance they will become the industry norm for new build and redeveloped housing in the years to come.

home-insulation

3. Reflective Roofing Materials

While insulation is ideal for maintaining an ambient temperature what about those who live in warmer climes? Everyone knows how expensive it is to run air conditioning 24 hours a day, but there have been considerable recent advances in reflective rooftop materials. Currently, these work by using special pigments that are coated onto the roof in order to reflect sunlight and heat.

The next generation in development will use fluorescent pigments that look likely to be up to four times more efficient. So for those who reside in areas where effective air conditioning is essential around the year, these new materials may well be an absolute godsend.

4. Magnetocaloric Refrigerators

A fridge powered by magnets? Close, but not quite. Refrigeration technology has barely changed or advanced since they were first introduced. Modern fridges still rely on vapor compression, which unfortunately requires chemical coolants that are notoriously bad for the environment.

Next generation models are going to be able to make use of water-based coolants that make use of the magnetocaloric effect. In layperson’s terms, this is the use of magnets to alter the magnetic field which can provide an extremely energy efficient cooling effect. Expect this to become commonplace in the coming years, thanks to their potential in enormously reducing energy expenditure and carbon emissions.

5. Much More Efficient Heat Pumps

Considerable progress has been made by the US Building Technologies Office in developing heat pumps that essentially move heat throughout the home. There are three models in design that promise to considerably reduce expenditure on heating while also significantly reduce carbon emissions. Standard gas boilers/furnaces are notoriously expensive and inefficient.

  • A low-cost gas-based heating pump could massively increase efficiency and result in lowering heating costs by a staggering 45%.
  • Multiple function fuel based pumps designed for domestic use can still save an estimated 30% with the added bonus of also providing more efficient water heating.
  • Natural gas based heating pumps connected with air conditioners aim to use a very low emission boiler to cater for all domestic needs regardless of the season. Of all three options, this is the most complete package and the one most likely to become widespread in the coming years.

These styles of heat pumps are also going to be used to significantly reduce the energy used by clothes drying machines. General Electric has been already near completing their first gas pump compatible dryer. This is intended to reduce the energy consumption of perhaps the least efficient appliance in the home by up to 60%.

heating-radiator

6. Even Better LED Lighting

Energy saving lighting may have become the accepted norm in many households, and the good news is that it is set to become even better. At present these are up to 85% more efficient than old fashioned incandescent bulbs, but the next generation – scheduled for a few years time – promise to double their efficiency. An improvement up to 230 lumens (from the current 115) is forecast.

8% of all electricity consumption in the USA are due to lighting homes and businesses. Having that figure will make for a huge national saving and reduction of energy costs across the board.

LED-lighting-workplace

7. Advanced Window Insulation

While still in development this may not sound like a huge advance, but could well result in enormous net energy savings down the line. Using microprocessors and sensors to measure sunlight and radiant heat, these are going to automatically provide shading to assist with providing ideal natural lighting and also assist with heating. Expect these to be integrated with the general smart home system outlined above in due course.

Final Thoughts

So there we have seven of the most exciting and interesting energy efficiency innovations that we can expect to see in the home over the coming years. While some are already in production while others are just passing the prototype phase, the future is looking positive in terms of reducing emissions and better managing energy consumption.

Energy efficiency is here to stay and these developments will likely only be the tip of the iceberg compared to what we can look forward to over coming decades.