About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

Is Your Commercial Cleaning Service Sustainable?

It’s becoming more evident with time that people who want to ensure any form of financial security in the future need to start their own businesses. You can’t rely on your day to day job anymore to give you that feeling of financial security, and many are starting to realize this. So, people invest their money in all sorts of ventures, but one in particular has much potential for it if you know what you’re doing: commercial cleaning services. It’s probably crossed your mind at one point or another to start one, but there’s a problem stopping you. Is it sustainable? It can be, if you do all the right things.

A huge industry

In case you didn’t know it, the cleaning services industry is a multi-billion dollar one that is growing every year, and it’s a great business to get into if you know what you’re doing. The first thing you should do is identify if you want to get into home cleaning service or commercial cleaning service. The latter naturally takes the bigger chunk of the industry as a whole since companies hire atlanta cleaning service for regularly maintaining their office spaces.

Residential cleaning is also relevant to millions of people calling services to keep their houses clean, but it definitely isn’t as big as its commercial counterpart, and that’s why you probably started your cleaning service in the commercial sector. If you are aiming to make your business sustainable, you need to do a couple of things.

Stick to your niche

So, you started a commercial cleaning service, and there’s a lot of money in it. But that doesn’t mean you should get greedy and try to get into residential services as well. Spreading yourself too thin could be the end of your business, and you don’t really need to do it because the commercial cleaning industry is more than capable of sustaining your company.

Even if you hit a dry spell, don’t think about abandoning your specialty for the sake of another; instead, wait it out and things will get better for your company.

Cost VS quality balance

One of the most important things you need to do to keep Madison cleaning service running is maintaining a balance between keeping the cost low and yet giving your customers excellent quality.

You need to understand that there are dozens of others like you out there, so if your business sees a dip in quality, you’ll lose all your clients. Instead, you can cut costs by not having a large office space, for instance, or opting for older cleaning technologies, while still maintaining quality.

Invest in your people

For Wimbledon cleaning services, the most important asset is their personnel! All of the cleaning technicians are professionals who’ve gone through thorough training, allowing them to handle the great variety of cleaning solutions and to ensure the safety and satisfaction of the customers! They must always maintain professional conduct, so expect nothing but perfect results!

These are the most important points you need to tackle in order for your commercial cleaning service to be sustainable. If you can do that, the sky’s the limit for your business.

Why Wastewater Treatment is Crucial in Our Society

Wastewater treatment is essential for maintaining proper balance throughout the world’s ecosystems. Wastewater contains toxic substances that harm wildlife and humans, including (and especially) aquatic life. This toxic water comes from a variety of sources, including sewage systems.

When organic matter enters a water source, like a river, aquatic lifeforms consume it as food. As the organic pollutants break down, the animals require more oxygen for the process. This leaves less oxygen in the water overall. When oxygen levels become dangerously low, animals in the water suffocate and die.

effluent-treatment-plant

Wastewater is toxic

Although some fish and other animals can break down toxins, toxic water is a serious risk to human health and is responsible for millions of deaths each year, mostly in developing nations.

Unclean water also causes diseases like cholera and schistosomiasis. Although these diseases generally occur in developing countries that don’t treat their wastewater, they can occur anywhere.

What is wastewater treatment? How does it work?

Wastewater treatment is the process of filtering contaminants out of water that has been previously used for another purpose. This process can occur both naturally and through manmade efforts.

Our ecosystem has a natural water treatment system that involves microorganisms that eat waste material, along with different layers of substrate and soil that filter the water as it absorbs into the earth. However, this process is too slow to efficiently filter the enormous amount of wastewater produced by humans. That’s where water treatment facilities come into play.

Water treatment plants are complex systems

What exactly happens at a wastewater treatment plant? While there are different methods, some of the systems use similar components. For example, the Four Rivers Sanitation Authority in Illinois treats wastewater by first pumping it to a higher elevation for gravity to pull the water through the first part of the treatment and filtering process.

The treatment process begins by filtering out the largest debris like plastic to prevent the pumps from becoming damaged. Debris that gets filtered out is then sent to a landfill.

Next, abrasive materials like sand and coffee grounds are filtered out of the wastewater. This grit is separated and sent to a landfill.

Settling tanks are then used to filter out fats, oils, and greases. These tanks also separate solids, most of which are sent to a separate processing facility. A small amount of solids are sent to the aeration tanks to maintain the proper environment required for microorganisms to devour the solids.

The water is then processed through a second set of settling tanks and is then disinfected with high-powered bleach. Sodium bisulfite is used to reduce the amount of chlorine in the water to make it less harmful to plant life when it’s discharged into the river.

What is in wastewater, exactly?

Since wastewater comes from human use, thousands of contaminants are present, although not all are present in every batch of water. In general, there are both inorganic and organic compounds found in wastewater.

sewage_sludge

Organic matter found in wastewater includes:

  • Proteins
  • Fats
  • Oils
  • Greases
  • Synthetic compounds from detergents
  • Carbohydrates

Inorganic matter found in wastewater includes:

  • Copper
  • Lead
  • Nickel
  • Magnesium
  • Potassium
  • Zinc
  • Sodium

Most of these contaminants come from industrial wastewater and aren’t easily broken down. When these inorganic compounds collect in water sources, they build up over time, making the water increasingly toxic to animals and humans.

Other matter found in wastewater includes:

  • Nutrients: High levels of nitrogen and phosphorous create “dead zones” by feeding large algae blooms. These blooms block sunlight, causing plants to die. Bacteria then proliferate by feeding on the dead plant matter.
  • Microorganisms: Harmful microorganisms include E. coli, parasites, and bacteria.
  • Pharmaceuticals: Pharmaceuticals enter wastewater through human waste and people flushing drugs down the toilet.

Wastewater treatment can help with water scarcity

There are many places across the world that experience droughts and water shortages on a regular basis. Without treating wastewater, drinking water sources become (and remain) contaminated. This includes rivers, lakes, and streams.

Treating wastewater in these areas would provide residents with a clean source of water to use for drinking, washing clothes, and bathing. After continually treating the wastewater, it would eventually bring the rivers, lakes, and streams back to a less-polluted state over a long period of time.

However, getting a treatment system set up takes money, time, and resources. The nations that need it the most can afford it the least. However, there are people and organizations working on solutions to this problem.

It’s not an overnight fix, but hopefully, one of those organizations will soon create a successful model that works for developing nations.

Collection Systems for Agricultural Biomass

Biomass collection involves gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control soil erosion, maintain soil productivity, and maintain soil carbon levels.

biomass-collection-systems

The most conventional method for collecting biomass is baling which can be either round or square. Some of the important modern biomass collection operations have been discussed below:

Baling

Large square bales are made with tractor pulled balers. A bale accumulator is pulled behind the baler that collects the bales in group of 4 and leaves them on the field. At a later date when available, an automatic bale collector travels through the field and collects the bales.

The automatic bale collector travels to the side of the road and unloads the bales into a stack. If the automatic bale collector is not available bales may be collected using a flat bed truck and a front end bale loader. A loader is needed at the stack yard to unload the truck and stack the bales. The stack is trapped using a forklift and manual labor.

biomass-collection

Loafing

When biomass is dry, a loafer picks the biomass from windrow and makes large stacks. The roof of the stacker acts as a press pushing the material down to increase the density of the biomass. Once filled, loafer transports the biomass to storage area and unloads the stack. The top of the stack gets the dome shape of the stacker roof and thus easily sheds water.

Dry Chop

In this system a forage harvester picks up the dry biomass from windrow, chops it into smaller pieces (2.5 – 5.0 cm). The chopped biomass is blown into a forage wagon traveling along side of the forage harvester. Once filled, the forage wagon is pulled to the side of the farm and unloaded. A piler (inclined belt conveyor) is used to pile up the material in the form of a large cone.

Wet Chop

Here a forage harvester picks up the dry or wet biomass from the windrow. The chopped biomass is blown into a forage wagon that travels along side of the harvester. Once filled, the wagon is pulled to a silage pit where biomass is compacted to produce silage.

Whole Crop Harvest

The entire material (grain and biomass) is transferred to a central location where the crop is fractionated into grain and biomass.  The McLeod Harvester developed in Canada fractionates the harvested crop into straw and graff (graff is a mixture of grain and chaff). The straw is left on the field. Grain separation from chaff and other impurities take place in a stationary system at the farmyard.

McLeod Harvester fractionates the harvested crop into straw and graff

For the whole crop baling, the crop is cut and placed in a windrow for field drying. The entire crop is then baled and transported to the processing yard. The bales are unwrapped and fed through a stationary processor that performs all the functions of a normal combine. Subsequently, the straw is re-baled.

Properties and Uses of POME

Palm Oil processing gives rise to highly polluting wastewater, known as Palm Oil Mill Effluent (POME), which is often discarded in disposal ponds, resulting in the leaching of contaminants that pollute the groundwater and soil, and in the release of methane gas into the atmosphere. POME is an oily wastewater generated by palm oil processing mills and consists of various suspended components. This liquid waste combined with the wastes from steriliser condensate and cooling water is called palm oil mill effluent.

POME

On average, for each ton of FFB (fresh fruit bunches) processed, a standard palm oil mill generate about 1 tonne of liquid waste with biochemical oxygen demand 27 kg, chemical oxygen demand 62 kg, suspended solids (SS) 35 kg and oil and grease 6 kg. POME has a very high BOD and COD, which is 100 times more than the municipal sewage.

POME is a non-toxic waste, as no chemical is added during the oil extraction process, but will pose environmental issues due to large oxygen depleting capability in aquatic system due to organic and nutrient contents. The high organic matter is due to the presence of different sugars such as arabinose, xylose, glucose, galactose and manose. The suspended solids in the POME are mainly oil-bearing cellulosic materials from the fruits. Since the POME is non-toxic as no chemical is added in the oil extraction process, it is a good source of nutrients for microorganisms.

Biogas Potential of POME

POME is always regarded as a highly polluting wastewater generated from palm oil mills. However, reutilization of POME to generate renewable energies in commercial scale has great potential. Anaerobic digestion is widely adopted in the industry as a primary treatment for POME. Biogas is produced in the process in the amount of 20 mper ton FFB. This effluent could be used for biogas production through anaerobic digestion. At many palm oil mills this process is already in place to meet water quality standards for industrial effluent. The gas, however, is flared off.

Palm oil mills, being one of the largest industries in Malaysia and Indonesia, effluents from these mills can be anaerobically converted into biogas which in turn can be used to generate power through CHP systems such as gas turbines or gas-fired engines. A cost effective way to recover biogas from POME is to replace the existing ponding/lagoon system with a closed digester system which can be achieved by installing floating plastic membranes on the open ponds.

As per conservative estimates, potential POME produced from all Palm Oil Mills in Indonesia and Malaysia is more than 50 million m3 each year which is equivalent to power generation capacity of more than 800 GW.

New Trends

Recovery of organic-based product is a new approach in managing POME which is aimed at getting by-products such as volatile fatty acid, biogas and poly-hydroxyalkanoates to promote sustainability of the palm oil industry.  It is envisaged that POME can be sustainably reused as a fermentation substrate in production of various metabolites through biotechnological advances. In addition, POME consists of high organic acids and is suitable to be used as a carbon source.

POME has emerged as an alternative option as a chemical remediation to grow microalgae for biomass production and simultaneously act as part of wastewater treatment process. POME contains hemicelluloses and lignocelluloses material (complex carbohydrate polymers) which result in high COD value (15,000–100,000 mg/L).

POME-Biogas

Utilizing POME as nutrients source to culture microalgae is not a new scenario, especially in Malaysia. Most palm oil millers favor the culture of microalgae as a tertiary treatment before POME is discharged due to practically low cost and high efficiency. Therefore, most of the nutrients such as nitrate and ortho-phosphate that are not removed during anaerobic digestion will be further treated in a microalgae pond. Consequently, the cultured microalgae will be used as a diet supplement for live feed culture.

In recent years, POME is also gaining prominence as a feedstock for biodiesel production, especially in the European Union. The use of POME as a feedstock in biodiesel plants requires that the plant has an esterification unit in the back-end to prepare the feedstock and to breakdown the FFA. In recent years, biomethane production from POME is also getting traction in Indonesia and Malaysia.

Why Does Waste Matter in the Gaia Theory?

Do you know where your food comes from and where the uneaten leftovers go after you’ve thrown them away?

Whether you’re thinking about it or not, every action you take has some effect on the world around you. A chemist named James Lovelock hypothesized that living organisms interact with their surroundings to maintain a livable environment.

Today, this is known as the Gaia Theory.

Why Waste Matter in the Gaia Theory

The Gaia Theory

One of the defining points of the gaia theory is that organisms live synergistically with the Earth. All plants, animals, and people contribute to a stable environment simply by living in it.

Unfortunately, wasteful habits by people do the opposite. Actions that harm entire populations of organisms will have a waterfall effect that harms the environment. An example of this is found in trees.

Wood is a necessary product in day-to-day life. However, harvesting too much wood without a replacement plan or not fully utilizing the wood harvested decimates the tree populations. Trees pull carbon, the most common greenhouse gas, from the air and replace it with oxygen. If the number of trees decreases, the mass of carbon increases, which encourages the onset of global warming.

Global warming then weakens populations of other organisms, which in turn further worsens the environment. Every living thing depends on one another.

Global Warming

The Earth is no stranger to mass extinction events. Throughout history, incredible incidents such as meteors, continent-wide wildfires, and volcanoes have directly caused global warming and cooling. Surviving plants, animals, fungi, and microorganisms all contributed to the Earth’s recovery from such events.

Scientists are currently theorizing that we are in the middle of yet another mass extinction event, due to pollution, overdevelopment, and waste. During the worst-case scenario, the Earth will recover from this, but only after millions of years.

The more biodiversity is lost, the longer the environment will take to recover. More must be done to protect and preserve what is left to keep the Earth habitable for as long as possible.

Waste Not, Want Not

National Geographic outlines the harmful effects of plastic waste that hasn’t been properly disposed of or recycled. This plastic primarily ends up in the oceans, which impedes life even at the microscopic level.

Plastic takes centuries to decompose but will still break down into “microplastics” that have infected every water system in the world. This is not only toxic for animals, but people as well. Every creature can be harmed by the ingestion of plastic, contributing to mass extinctions, and further jeopardizing the livability of the Earth.

plastic waste

The main culprit is single-use plastic, which accounts for 40 percent of the plastics produced yearly. This includes plastic grocery bags and packaging.

Plastic production and use are increasing exponentially, with no real change in how plastics are disposed of. To protect our environment, this must change.

The Best Time to Start is Now

Waste may be an unavoidable part of life, but it can still be managed. The worse global warming gets, the more resources will be needed to combat it, and the more impact waste has on all of us. The complex system that is the Earth can only self-regulate if we allow it to.

You can do your part today to minimize your own waste. Taking the advice of professionals and being mindful of how you interact with the environment you live in are important steps.

Remember, we all live on this Earth together, and must do our best to take care of it.

5 Money-Saving Upgrades To Make Your Home Energy-Efficient

Did you know the average American household spends about $2,000 annually for utilities? What’s more, $200 to $400 is money wasted due to drafts, air leakage, and outdated HVAC systems. That’s a lot of money, right? You can save that money by making energy efficient upgrades to your home.

Let’s take a look at these money-saving upgrades, shall we?

1. Insulation

A very cost effective way to save on energy is by adding more insulation in the attic, or switching out the typical blanket insulation for either cellulose loose-fill insulation or spray foam insulation. The spray foam insulation is the most effective type of insulation for energy efficiency.

home-insulation

With that in mind, installing spray foam insulation requires professional installation and it can range anywhere from $1 to $1.50 per square foot.

2. Energy efficient appliances and HVAC system

Older appliances tend to use a of energy and are nowhere near as energy efficient as newer models. Look for appliances and electronics that are ENERGY STAR approved products. By replacing the refrigerator, washer and dryer and even the ranges, you can save 15% on how much energy your home uses.

The same with heating and cooling. When you upgrade your HVAC system, you can save up to 20% to 50% on your energy bills – providing you make some of the other upgrades on this list.

hvac-repair

3. Programmable thermostat

It seems like everything is a smart device doesn’t it? Smart thermostats are an excellent way to reduce the amount of heating and cooling is used, especially when you’re not home. In the winter, you can decrease the temperature when you’re not at home and increase it to a comfortable temperature about 30 minutes before you get home, and vice versa.

eco-friendly-business-practices

If you don’t want to go the smart thermostat route, there are programmable thermostats where you can change the settings so the temperature is where it’s set to at the desired time.

4. Eliminating air leaks

One of the biggest culprits of wasted energy is air leakages. A whopping 40% of a home’s heating or cooling is lost due to drafty doors and windows and ill-fitted air ducts. You can prevent this by upgrading your doors and windows to high energy options. Not only are the new doors and windows themselves energy efficient, but the new seals will prevent air leakage.

If you cannot afford new windows or doors, you can always use exterior-grade caulking and new weatherstripping to seal up cracks or gaps you may find.

5. Install ceiling fans

Ceiling fans are a great way to add a bit of style to a room, but they can also help circulate the air, regardless of the season. Most fans have a switch that allows you to change the direction the fan moves. In the summer, it should rotate counterclockwise to push the cooler air down, therefore making the air feel cooler than it actually is. In the winter, it should rotate clockwise to pull the cool air upward and push the warm air downward.

Keeping your home’s energy costs as low as possible isn’t just smart as a homeowner, it’s also a good way to increase the value of your home. And, according to HomeLight’s Q2 2020 survey, we are in a seller’s market! 60% of agents who participated in the survey said there were 60% more bidding wars in June 2020 and the market doesn’t seem to be slowing.

That means if you’re looking to sell, these energy efficient upgrades are a great way to pique a buyer’s interest – maybe even more than one!

Biofuels from Syngas

An attractive approach to converting biomass into liquid or gaseous fuels is direct gasification, followed by conversion of the syngas to final fuel. Ethanol can be produced this way, but other fuels can be produced more easily and potentially at lower cost, though none of the approaches is currently inexpensive.

The choice of which process to use is influenced by the fact that lignin cannot easily be converted into a gas through biochemical conversion. Lignin can, however, be gasified through a heat process. The lignin components of plants can range from near 0% to 35%. For those plants at the lower end of this range, the chemical conversion approach is better suited. For plants that have more lignin, the heat-dominated approach is more effective.

Gasification_Process

Layout of a Typical Biomass Gasification Plant

Once the gasification of biomass is complete, the resulting syngas or synthetic gas can be used in a variety of ways to produce liquid fuels as mentioned below

Fischer-Tropsch (F-T) fuels

The Fischer-Tropsch process converts “syngas” (mainly carbon monoxide and hydrogen) into diesel fuel and naphtha (basic gasoline) by building polymer chains out of these basic building blocks. Typically a variety of co-products (various chemicals) are also produced.

The Fisher-Tropsch process is an established technology and has been proven on a large scale but adoption has been limited by high capital and O&M costs. According to Choren Industries, a German based developer of the technology, it takes 5 tons of biomass to produce 1 ton of biodiesel, and 1 hectare generates 4 tons of biodiesel.

Methanol

Syngas can also be converted into methanol through dehydration or other techniques, and in fact methanol is an intermediate product of the F-T process (and is therefore cheaper to produce than F-T gasoline and diesel).

Methanol is somewhat out of favour as a transportation fuel due to its relatively low energy content and high toxicity, but might be a preferred fuel if fuel cell vehicles are developed with on-board reforming of hydrogen.

Dimethyl ether

DME also can be produced from syngas, in a manner similar to methanol. It is a promising fuel for diesel engines, due to its good combustion and emissions properties. However, like LPG, it requires special fuel handling and storage equipment and some modifications of diesel engines, and is still at an experimental phase.

If diesel vehicles were designed and produced to run on DME, they would become inherently very low pollutant emitting vehicles; with DME produced from biomass, they would also become very low GHG vehicles.

The UK’s E-Waste Problem

There’s no doubt that the UK is in the midst of an electronic waste crisis with more than two thirds of households sitting on old phone chargers, along with other items. A study by OKdo shows exactly how big our e-waste problem is, why it’s an issue and how we can dispose of electronic items safely and responsibly.

Here we’ll take a look at the key findings and help you get clued up on what to do with your old electronic items without adding to the UK’s landfill.

e-waste crisis in united kingdom

The UK produces some of the biggest e-waste

With an average of 23.9kg of e-waste per person, the UK is one of the top e-waste producers in the world. Shockingly, during the first six months of 2021, the country produced an amount of electronic waste equivalent to 15 Eiffel Towers.

Cables seem to be a huge contributing factor with 140 million being stored in homes up and down the country. Not only this, households have up to 60 items of old electronics that are left unused in drawers and cupboards.

Why is there such a big e-waste problem?

The main issue appears to be that people simply don’t know how to recycle their old technology with 38% of people aged 45-54 having never done it and are unsure how to. The younger Millennials are more clued up with 31% knowing how to recycle their e-waste.

With electronic products increasing every year and the demand for more digital technology due to remote working, the problem of electronic waste is only going to get worse. Add to this our culture’s obsession with having the latest gadgets and brand-new phones and smart devices, and it’s not difficult to see we’re heading for a serious landfill and environmental issue.

How can we dispose of e-waste safely?

Donating to charity is one way to dispose of unused tech without clogging up landfill. Charities will often donate such technology to communities where items are needed so you’ll be helping others too.

electrical-waste-uk

There are also many company initiatives and services which encourage the recycling of old items, often rewarding you for doing so in the form of vouchers or money off a new tech device.

Council collections or recycling centres are another option if you’re looking for a local site to take your old items to. It’s worth checking your local council to make sure your device can be recycled.

By raising awareness of the e-waste problem and making sure we know how to recycle our old technology, we can contribute to a safer and greener environment and possibly help other communities along the way.

Weather-Resistant Building Materials for 2022

Homeowners are always wary of extreme weather conditions such as flooding, severe rain, excess heat, and extreme coastal surges. Extreme weather can either damage the exteriors of a home or your garage flooring Minneapolis or make the indoor temperatures. That leads to expensive repairs or high costs and energy saving is at the forefront of every homeowner’s mind. To protect a home from extreme weather, the best thing to do is build using water-resistant materials and to elevate your house in a way that surging floods don’t sweep your house away.

If you have resolved to build a new home in 2022, here are some of the most weather-tolerant materials to consider:

1. Concrete

Concrete is one of the strongest building materials out there, particularly when it comes to withstanding pressure and stress. This material can be pre-casted to become water-resistant, it doesn’t expand or contract in extreme weather, and when reinforced with rebar and pre-stressed, it can be extremely durable.

What’s more, concrete is readily available all over the world at very affordable prices. You can use it to build your basement walls or a slab foundation for your home or rental property by hiring services of specialized companies.

2. Wood

Wood is one of the oldest building materials. I mean, it was used to build shelters in the mid-stone age. You can use wood as a primary siding material or reinforce it with concrete or metal to make it stronger and more durable. Wood is also a bad conductor of heat, making it an ideal material to use in areas that experience extremely hot or extremely cold seasons.

However, wood has one key disadvantage: It can decay when exposed to excess water for a prolonged period. It can withstand moderate moisture for a decade or two especially when there is an occasional sun to dry it up, but it will eventually decay. The positive thing is that wood can be painted and treated to prevent it against moisture damages.

3. Vinyl

Vinyl is a great siding installation due to its ability to shed rainwater away. It is not 100% water-resistant, but it has superior water resistance than wood. In most cases, vinyl is installed in a standard interlocking horizontal wall, so it does not retain much dampness or snow after a rainy season. Modern vinyl panels are made with “weep holes” that aid in channeling away excess water in order to keep the siding wall dry at all times, consequently increasing its durability.

You can also reinforce it with an insulation board so as to keep away any stubborn moisture that refuses to dry away through the weep holes. A house wrap is also a great secondary reinforcement- it ensures that moisture doesn’t penetrate the sidings, consequently keeping your interiors warmer than the exteriors.

4. Metal roofing

For the homeowners who live in hailstone-prone areas, metallic hail-resistant roofing shingles are your best bet. Such roofing will withstand storm damage and remain intact even when high winds blow through your region. If you want a hail-resistant roofing option that is also stylish and contemporary, you can try the stone-coated metal roofing tiles.

5. Fire-resistant materials

There are areas that are more prone to fire outbreaks than storm damages. California, for example, experience lots of wildfires during summer months than they experience storms during winter. If you live in such an area, then you need to use building materials that make your home as fire-resistant as possible. Sometimes it is hard to avoid these acts of nature, but your contractor can help you mitigate their effects.

You can, for example, install fire-rated roofing that resists ignition even when exposed to extremely high temperatures. There are also windows that don’t shatter in heat. Even if these materials won’t be salvaged after the fire, they will at least prevent your interiors from the fire. You will only need to do minor rehabilitations to your home’s exteriors once the fire subsides.

6. Stone

Most ancient buildings world over are made of stone. This material is durable and can withstand almost every extreme weather condition you can think of. It is also classy and readily available.

Conclusion

There are many weather-resistant materials to check out in 2022. More new materials will be invented going forward, and the existing ones will continue being reinforced in order to increase their durability and strength. The six materials discussed above will get the job done. If you need more, make sure you research widely and talk to as many homeowners in your area before settling for a material.

Things You Need to Know About Construction Project Manager?

A construction project manager basically coordinates material resources and employee schedules throughout an entire project. This is normally accomplished by using different techniques and determining the scope of the project, the cost of the project, the time that is required from start to finish, and the quality of the completed work. Anyone who works in this field knows that a construction project manager’s day is never the same, as the work is continuously changing as the project progresses.

construction-project-professionals

Construction project managers can work on residential, commercial, and even industrial buildings, or they can work on bridges, roads, and schools. They will hire all the contractors and oversee the work of the architects, engineers, and all the vendors. Depending on the size of the project, a single construction project manager may be in charge, or there may be multiple ones in charge of their own specific sections.

While some construction project managers do not have a degree, it is becoming more common for a Bachelor’s Degree to be required for this position. The degree should be in a construction related field like construction management, civil engineering, or building science, but that may not be necessary if a person has quite a bit of hands-on experience in the field. That same hands-on experience is still necessary though, even with a construction related degree, and it can be earned by working as an intern, craftworker, and even a supervisor at a construction site.

Successful construction project managers will continue with their schooling to earn their Master’s Degree, as well as earning their certification for either Associate Constructor, Certified Professional Constructor, or Certified Construction Manager.

One of the first things that a construction project manager will do when they are hired for a job is to create a schedule for the entire project. This schedule will list everything that needs to be done in chronological order, while including the time needed for each item and detailed masonry estimates. They may need to make a few changes before the schedule is complete, due to ensuring that everything is finished at the agreed upon time.

Once a construction project manager has the schedule figured out, they will need to determine how many workers they will need and when each one will be needed. This can be tricky, as one small mistake can throw the entire schedule off. Each part of the project will need different workers, as many construction workers specialize in one thing or another. That means that project managers will be hiring painters, plumbers, electricians, drywallers, flooring installers, waste management professionals and numerous other workers to keep each part of the project moving along on time.

As soon as the project begins, a construction project manager must inspect and review everything that is being completed, so that it all meets current building and safety codes and regulations. In order for that to happen, they must explain all the plans and contract terms to everyone who is working on the project. This can be accomplished all at once or spread out over multiple meetings as the project progresses.

Changes are always part of the construction world, whether the client changes their mind on something in the original design or part of that design will not work the way that it was thought. Those changes always need to be documented somewhere and construction project managers need to be the ones that make sure that they are. Changes can be written as revisions or a change order and then approved by all parties.

There is always a need for permits and licensing when constructing a new building and if any are not obtained when they need to be, the construction may not start on time or the work that was completed may need to be torn down. Most construction project managers are well-versed in the necessary permits and licenses that are needed, but if there are ever any questions, they would need to contact the local town or city board for the proper answers.

While a good part of a project manager’s day will be spent supervising all the workers, they will also need to complete paperwork and track all the progress and costs. This is necessary so that they can stay on budget and on time, but it is also something that the clients like to keep an eye on as well. This is also an excellent way to see how delays have affected the schedule or how future delays could jeopardize the entire project.

The quality of a construction project should always be high and project managers are in charge of ensuring that quality control programs are in place. This can be as simple as doing in-house inspections routinely. Those inspections can also show if there is any damage or ways that an accident can happen and how those can be prevented.

A construction project manager has quite a bit to do each day, but thankfully, due to the use of computers and construction estimation software, they can easily do some of their work wherever they are. They will also have everything that they need at any time, since they can easily access that information from their smartphone or laptop.

Every project manager needs to be organized and a quick thinker, but those who choose this profession thrive in the hustle and bustle of their everchanging workload.