About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

Cheap Writing Service for Student Needs

When students are looking for a cheap writing service to help with their essays, they are often overwhelmed with all of the results that they find. There are many different websites available, but they are not all created equal. This is one of the best websites for essay writing help, especially for essay editing.

WritePro.net wants to make sure that its users are satisfied with the help that they receive. They have outlined a few simple guarantees that make a huge difference in a student’s overall success. Not every service offers these types of things, and some of them do not even guarantee a student’s progress.

Here Are the Website’s Guarantees

  • Immediate attention. No matter when you try to reach out to receive help on your essay, somebody will be available. This service offers help at all hours, so you don’t have to worry about missing out. Their employees are stationed all over the world. These employees are on standby, which means they are just waiting for you to submit your essay and receive help!
  • WritePro’s employees realize the importance of turning assignments in on time. Students have deadlines to meet in multiple classes, and it can be hard to adhere to those deadlines with a busy schedule. Luckily, this service gives students plenty of time to turn in their essays once they are edited.
  • Plagiarism is a big deal in the academic world and in writing in general. Students must submit unique, original work in order to receive credit for their assignments. If it is found that a student has plagiarized, the student might receive a zero on the essay or face other serious consequences. This service offers cutting-edge anti-plagiarism software, which the employees will use to ensure that every paper is unique.

There are a few good reasons for students to receive help from professional essay writers. The main reason that students will ask a professional for help is that they need to strengthen their writing or they do not have enough time to write the entire essay on their own.

Using a professional writer for paper help has a variety of benefits, including:

  • Improving writing style. Students are still developing their writing, and they might not be at the appropriate grade level. They might also need help with transitioning from everyday writing to more formal, academic writing. A professional can point out different parts of an essay that students should change and help them to make those changes.
  • Receiving important feedback. Sometimes the only feedback that students receive on their writing is from their teachers during the grading process. This input is critical to the writing process, but it happens after the essay has been completed. Working with a professional writer gives students an opportunity to get feedback before it becomes a part of their grade.
  • Getting a second look. After working on an essay for hours, students tend to lose focus and may not realize that their writing isn’t making sense. Writing professionals can take a look at the work that students have completed and make sure everything makes sense. This can also help to improve the overall flow of the paper!

One of the best parts about this specific service is that it is geared toward ESL students. ESL students are faced with extra challenges when it comes to writing essays. This is because they are often unfamiliar with the writing techniques and styles that native English speakers have known for their entire lives.

Overall, WritePro boasts many impressive features, which is helpful when students are choosing a cheap writing story. Its commitment to ESL students is also very significant and can be hard to find elsewhere.

Biomass Conveyors: An Overview

Biomass_ConveyorA well designed biomass conveyor system should take into account the variability of the material and provide the consistent and reliable flow that is crucial to power generation. Depending upon the type of boiler and conversion system, the fuel is either transported directly to the powerhouse via a belt conveyor, or first processed in a chipper/grinder to produce a finer texture. For example, municipal solid waste is deposited into pits where cranes mix the refuse and remove any large, non-combustible items. Sometimes, it is further processed to remove ferrous materials, glass, and other non-combustible materials.

For large pellet-fired biomass system, rail dump method is very common where railway tracks are constructed to transport biomass. Station is specified for train and fuel receiving bins are typically located below the track and rail cars dump into bins, either directly or through a rotary dumper. Fuel received is then transferred by belt conveyors to the biomass storage bins. For small particle size, pneumatic conveying system offer greater flexibility in routing than traditional belt conveyors. Equipment specific to pneumatic systems include positive displacement blowers and rotary feeders that function as air locks.

In a typical biomass thermal power plant, the initial process in the power generation is biomass fuel handling. A railway siding line is taken into the power station and the biomass is delivered in the storage yard. It is then unloaded from the point of delivery by means of wagon tippler. It is rack and pinion type. The biomass is taken from the unloading site to dead storage by belt conveyors. The belt deliver the biomass to warehouse.

The transfer points inside the warehouse are used to transfer biomass to the next belt. The belt elevates the biomass to breaker house. It consists of a rotary machine, which rotates the biomass and separates the light inorganic materials (viz. plastic or other incombustible particles) from it through the action of gravity and transfer it to reject bin house through belt. The belt further elevates the biomass until it reaches the crusher through belt. In the crusher a high-speed 3-phase induction motor is used to crush the biomass according to the requirement, for gasification size range is usually upto 15-20mm, while for biomass-fired boiler, size of 50mm is acceptable. Biomass rises from crusher house and reaches the dead storage.

Cost-effective production of biomass energy is very much dependent on efficient handling of available biomass sources, as well as the efficiency of each process. An important, but often overlooked, area is the efficient receiving of different types and different capacities of biomass as it enters the plant and then conveying this material to the production equipment.  In many cases, the space available for biomass handling is limited.

Receiving equipment can be installed in a pit or at the ground level. The size and volume of the receiving pocket can be suited to vehicle volumes or turn-around times. The receiving pit can be used as small buffer biomass storage or as an emergency or mixing pocket.

Belt conveyors are an economical and reliable choice for transferring biomass over long distances at high capacities with lower noise levels. Designs range from simple, open configurations to totally closed and washable conveyor galleries. Well engineered conveyors have the maximum safe distance between support legs to minimize the cost of civil construction as well as reducing the number of obstructions on the ground.

Chain conveyors are a reliable choice for transporting unscreened or dusty biomass, or when the available space is limited. Screw conveyors are a very economical alternative for transporting biomass over short distances.

Biomass conveyors are an integral feature of all biomass conversion routes

Nowadays, automated conveyor systems are getting traction around the world. Fully automated fuel handling systems employ a biomass storage bin that can hold upto 50 tons (or more) of biomass. The bin is filled by a self-unloading truck with negligible or no onsite staff assistance. From the biomass storage bunker, the fuel is fed automatically to the boiler by augers and conveyors. The fully automated system is a good match for biomass plants where maintenance staff has a large work load and cannot spend much time working with the biomass conversion plant.

Pellet-based hopper systems offer low costs for both installation and operation. In a modern biomass pellet boiler system, fuel is stored in a relatively low-cost grain silo and automatically fed, with no operator intervention, to the boiler or boilers with auger systems similar to those used for conveying feed grain on farms.

The fuel-handling system uses electric motors and is run by automated controls that provide the right amount of fuel to the combustion chamber based on facility demand. Such conveyor systems require minimal maintenance, around 20-30 minutes daily, for ash removal and maintenance of motors and augers, estimated to be about 20-30 minutes per day.

Hiring a Waste Management Company Can Take the Guesswork out of Recycling

Whether talking about recycling for a home or business, this type of service is extremely important for the environment. Waste has a negative impact on the environment and can cause pollution of many kinds. Most companies that offer both garbage and recycling services are very organized, and consumers are expected to be equally organized in sorting their waste and separating it from recyclable items.

Because the process of figuring out what can be recycled, many individuals and business owners find it is much easier to simply hire a waste management company.

Below are some questions to consider when looking for recycling services and reasons why hiring a waste management company can take the guesswork out of recycling.

What Kind of Recycling Service is Required?

This can mean anything from home to office to hazardous waste to syringe collection services.  Some companies offer all types of recycling and provide the different bins necessary to mitigate these needs. It is important to contact the company and find out as much information that is needed to make an informed decision on how recycling is handled.

However, most companies will only offer a general list of items that can be recycled, including plastics, cardboards, glass, etc. This list will not be exhaustive, leaving many consumers to wonder what to do with items such as plastic bottle caps, milk cartons and the like. A waste management company will know the specific regulations for what can and cannot be recycled, eliminating the hassle for you.

What Can Be Recycled?

Bricks, wood, paper, metals, cardboard, plastics, concrete, and green waste can all be recycled.

  • Bricks – These are broken down and crushed in order to be made into new bricks.
  • Wood – Wood can be used again as building materials or can be processed into pulp or mulch. Recycling wood can limit the number of trees that are being cut down.
  • Paper – The process for this material mixes old paper with chemicals and water to break it down. It is then chopped, heated and broken down further into strands of cellulose.  This substance is then called slurry or pulp and is further recycled into new paper.
  • Metals – Recycling metals will not alter its properties, the most common metals recycled are steel and aluminum.
  • Cardboard – This uses a process that reuses thick sheets of multilayered papers (cardboard) that have been discarded.
  • Plastics – The recycling process for plastics recovers waste or scraps of plastic and reprocesses them into useful products.
  • Concrete – This type of recycling is becoming more common and uses a process of reuse of the rubble for new construction endeavors.
  • Green Waste – This can be anything from leaves to grass trimmings to flower cuttings that can be decomposed and then recycled. This will in turn produce what is called green waste.

There are a number of items that can be recycled, but it is important to note that not all recycling pickup services will be able to process all the items mentioned above. Certain materials, such as concrete or wood, must be disposed of at specific facilities.

plastic-wastes

Recycling has unending benefits

For the average homeowner, this can mean having to locate the specific facility and transport the recyclable materials to them. A waste management company will have the contacts in the industry to know where to take any type of recyclable item and can take care of the transportation for you.

What Recycling Techniques Are Used, and Are They Legal and Ethical?

  • Concretes and Aggregates – This process would involve using a crushing machine and combining the concrete with bricks, asphalt, dirt and rocks. The smaller pieces will be used as gravel, crushed concrete can all be used as dry aggregate, which in turn can be used to make new concrete that will be free of contaminates.
  • Batteries – This type of recycling can be very difficult; all batteries must be sorted into groups of similar kinds and require. Older batteries contain cadmium and mercury, which are very harmful and must be handled very carefully.
  • Biodegradable Waste – This type of waste can be made into reusable material via the process of biological decomposition. The two mechanisms that help this to occur are composting or converting it into soil improver and biogas. The latter uses anaerobic digestion where organic wastes are broken down by microorganisms in a biogas plant.

Again, a waste management company will be able to guarantee that your recycling ends up in the right processing facilities and to ensure that it does get processed according to government regulations and ethical means. When the wrong items end up in recycling, this can lead to an entire batch being thrown out. A waste management company will make sure that the recyclable items are properly sorted, helping to ensure that your efforts to recycle do not go to waste.

What Are the Benefits of Recycling?

There are many benefits to using a recycling service. For instance, recycling conserves energy, reduces greenhouse gases, reduces water and air pollution, and conserves natural resources by reusing recycled materials. Protecting the environment is one of the most important things a home or business can do. When an individual or business chooses to recycle all different kinds of waste, it makes the world a better, less toxic place to live.

Not only does recycling help protect the world, it also reduces the need for extraction such as mining, logging and quarrying. It also reduces the need for processing and refining of raw materials. All these processes can contain harmful, substantial amounts of water and air pollution. Recycling will save this energy while reducing the amount of greenhouse gas, which in turn helps to attack climate change.

Looking for Cheap Business Electricity? Tips to Get the Best Tariffs

Every business person knows that making a profit from an enterprise is not easy. Reducing expenses is among the best ways to ensure profitability. However, it requires identification of all your costs and expenses. One area of concern for most businesses is the ever-rising cost of electricity. Indeed, cheap business electricity is a factor that can make or break your business. We guide you through some of the best techniques that’ll help you to get the best electricity tariffs for your business.

Compare the prices

The electricity sector has many suppliers. Each one of them is in it to make money. The competition is stiff, and so every supplier continually looks for the best ways to beat the competition.

Also, the tariffs differ among different industry players. Hence, you should endeavor to compare the prices among various suppliers. In case you get another provider with the best deal, it’s time to switch.

Know when your contract ends

When the electricity contract expires, and you are not aware, it can automatically renew because such a contract requires formal termination. The worst case scenario is where the contract rolls-over to higher prices. Knowing when your contract ends provides you with the perfect opportunity to switch suppliers.

Consider using a broker

The process of finding the electricity supplier with the most competitive tariffs is tedious and time-consuming. As a business owner you have many other essential engagements hence it would be better to use an electricity broker.

Brokers deeply understand electricity matters. They know all the suppliers and the tariffs they offer. They may also know the secrets of the trade that you might not be aware of. To crown it all,brokers in most cases will not charge you for their service as they get a fee from the electricity partner you choose.

Discuss with your supplier

When your contract ends, it provides you with a stellar opportunity for negotiating with your current supplier for tariff reduction. Most suppliers won’t want to lose you as their customer, and so they may be willing to listen to you.

Even where you have a quote from other electricity suppliers or also using a broker, it does cost you anything to try and negotiate with your current supplier. When you call them, let them know that you are considering switching if they do not lower the tariffs. Also, at the time of contract renewal, you get the opportunity to request for discounts.

Change Tariffs

Many people don’t even know their existing electricity plan. It is an excellent idea to look at your electricity bill or contract to discover your plan. Your tariff could be based on a flat-rate, or it could vary depending on the amount of usage.

It is also possible that your tariff depends on the time of usage. Selecting the best tariff can enable you to save a lot in electricity bills. Negotiating with your supplier for a customized tariff is another excellent strategy for reducing your business electricity.

Food Waste Management and Anaerobic Digestion

Food waste is one of the single largest constituent of municipal solid waste stream. In a typical landfill, food waste is one of the largest incoming waste streams and responsible for the generation of high amounts of methane. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities.

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be utilized as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes etc or can be disposed in dedicated food waste disposers (FWDs). Rising energy prices and increasing environmental concerns makes it more important to harness clean energy from food wastes.

Anaerobic Digestion of Food Wastes

Anaerobic digestion is the most important method for the treatment of food waste because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer. The relevance of biogas technology lies in the fact that it makes the best possible utilization of food wastes as a renewable source of clean energy.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, the benefits of anaerobic digestion of food waste includes climate change mitigation, economic benefits and landfill diversion opportunities.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Codigestion at Wastewater Treatment Facilities

Anaerobic digestion of sewage sludge is wastewater treatment facilities is a common practice worldwide. Food waste can be codigested with sewage sludge if there is excess capacity in the anaerobic digesters. An excess capacity at a wastewater treatment facility can occur when urban development is overestimated or when large industries leave the area.

By incorporating food waste, wastewater treatment facilities can have significant cost savings due to tipping fee for accepting the food waste and increasing energy production. Wastewater treatment plants are usually located in urban areas which make it cost-effective to transport food waste to the facility. This trend is catching up fast and such plants are already in operation in several Western countries.

The main wastewater treatment plant in East Bay Municipal Utility District (EBMUD), Oakland (California) was the first sewage treatment facility in the USA to convert post-consumer food scraps to energy via anaerobic digestion. EBMUD’s wastewater treatment plant has an excess capacity because canneries that previously resided in the Bay Area relocated resulting in the facility receiving less wastewater than estimated when it was constructed. Waste haulers collect post-consumer food waste from local restaurants and markets and take it to EBMUD where the captured methane is used as a renewable source of energy to power the treatment plant. After the digestion process, the leftover material is be composted and used as a natural fertilizer.

The first food waste anaerobic digestion plant in Britain to be built at a sewage treatment plant is the city of Bristol. The plant, located at a Wessex Water sewage works in Avonmouth, process 40,000 tonnes of food waste a year from homes, supermarkets and business across the southwest and generate enough energy to power around 3,000 homes.

How the Biofuel Industry is Growing in the US

drop-in-biofuelsBiofuels were once forgotten in the United States, mainly when huge petroleum deposits kept fuel prices low.  With the increase in oil prices recently, the biofuel industry in the US is rising significantly.  Experts predict that this green energy efficient industry will continue to grow within the next 7 to 10 years.

The Source of Biofuels

Those who are concerned with the prospect of global warming love the potential use of biofuels. Produced either directly or indirectly from animal waste and plant materials, biofuels are less costly than other types of fuel.  Already in the national and global market, the trend for this fuel is rising.

Online Reverse Auction Software

Due to the growth of the biofuel industry, online software for energy brokers and energy suppliers is an available market for entrepreneurs.  The software to efficiently sell energy services to purchasers is a must have for suppliers and brokers.  The reverse auction process effectively conducts online business for those in the biofuel industry.

Both regulated and deregulated gas and electricity markets are involved in the reverse auction process in which the buyer and seller roles are reversed.  The buyer is given the option of testing and evaluating multiple pricing parameters to find a good fit.  Commercial, industrial, and manufacturing facilities take advantage of this platform.

Reverse Auction Benefits

Reverse auctions in the biofuel industry have been said to cut costs tremendously.  Although the seller pays a fee to the service provider, the bidding process cuts costs all around for both buyer and seller.  A situation in which both sides win is seen as a huge benefit by all involved.

As a very lucrative market, the biofuel industry benefits from reverse auctions.  Market efficiency is increased, and the process of obtaining the goods and services is enhanced.  Proper software and other technical aspects of the process is essential thus the reason that the online reverse auction software market is critical.  Quality and professional relationships are enhanced rather than compromised as is often the case in other markets.

Biofuel Market Projections and Uses

According to market research, the biofuel industry is expected to reach approximately 218 billion dollars by 2022.  A 4.5% growth is expected by 2022 as well.  Investors see these projections as an open door of opportunity.  By the year 2025, the increase is predicted to be at approximately 240 billion dollars.

Biofuel is used for other purposes besides first-generation fuel.  It is used in vegetable oil and cosmetics, and it is used to treat Vitamin A deficiency and other health issues. Biofuel is predicted to aid the improvement of economic conditions due to its health benefits and appeal to green energy supporters.  These factors explain the reasons for the projected growth and profit for this industry.

With the continued growth of the biofuel industry, reverse auctions will be a much-needed process.  The efficient software to accompany reverse auctions will keep the market flowing which will further aid the growth of the industry for years to come.

Pyrolysis of Municipal Wastes

Pyrolysis-MSWPyrolysis is rapidly developing biomass thermal conversion technology and has been garnering much attention worldwide due to its high efficiency and good eco-friendly performance characteristics. Pyrolysis technology provides an opportunity for the conversion of municipal solid wastes, agricultural residues, scrap tires, non-recyclable plastics etc into clean energy. It offers an attractive way of converting urban wastes into products which can be effectively used for the production of heat, electricity and chemicals.

Pyrolysis of Municipal Wastes

Pyrolysis process consists of both simultaneous and successive reactions when carbon-rich organic material is heated in a non-reactive atmosphere. Simply speaking, pyrolysis is the thermal degradation of organic materials in the absence of oxygen. Thermal decomposition of organic components in the waste stream starts at 350°C–550°C and goes up to 700°C–800°C in the absence of air/oxygen.

Pyrolysis of municipal wastes begins with mechanical preparation and separation of glass, metals and inert materials prior to processing the remaining waste in a pyrolysis reactor. The commonly used pyrolysis reactors are rotary kilns, rotary hearth furnaces, and fluidized bed furnaces. The process requires an external heat source to maintain the high temperature required. Pyrolysis can be performed at relatively small-scale which may help in reducing transport and handling costs.  In pyrolysis of MSW, heat transfer is a critical area as the process is endothermic and sufficient heat transfer surface has to be provided to meet process heat requirements.

The main products obtained from pyrolysis of municipal wastes are a high calorific value gas (synthesis gas or syngas), a biofuel (bio oil or pyrolysis oil) and a solid residue (char). Depending on the final temperature, MSW pyrolysis will yield mainly solid residues at low temperatures, less than 4500C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 8000C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is a liquid fuel popularly known as bio oil.

Wide Range of Products

Bio oil is a dark brown liquid and can be upgraded to either engine fuel or through gasification processes to a syngas and then biodiesel. Pyrolysis oil may also be used as liquid fuel for diesel engines and gas turbines to generate electricity Bio oil is particularly attractive for co-firing because it can be relatively easy to handle and burn than solid fuel and is cheaper to transport and store. In addition, bio oil is also a vital source for a wide range of organic compounds and specialty chemicals.

Syngas is a mixture of energy-rich gases (combustible constituents include carbon monoxide, hydrogen, methane and a broad range of other VOCs). The net calorific value (NCV) of syngas is between 10 and 20MJ/Nm3. Syngas is cleaned to remove particulates, hydrocarbons, and soluble matter, and then combusted to generate electricity. Diesel engines, gas turbines, steam turbines and boilers can be used directly to generate electricity and heat in CHP systems using syngas and pyrolysis oil. Syngas may also be used as a basic chemical in petrochemical and refining industries.

The solid residue from MSW pyrolysis, called char, is a combination of non-combustible materials and carbon. Char is almost pure carbon and can be used in the manufacture of activated carbon filtration media (for water treatment applications) or as an agricultural soil amendment.

Bioenergy Resources in MENA Countries

The Middle East and North Africa (MENA) region offers almost 45 percent of the world’s total energy potential from all renewable sources that can generate more than three times the world’s total power demand. Apart from solar and wind, MENA also has abundant biomass energy resources which have remained unexplored to a great extent.

According to conservative estimates, the potential of biomass energy in the Euro Mediterranean region is about 400TWh per year. Around the region, pollution of the air and water from municipal, industrial and agricultural operations continues to grow.  The technological advancements in the biomass energy industry, coupled with the tremendous regional potential, promises to usher in a new era of energy as well as environmental security for the region.

The major biomass producing countries are Egypt, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the MENA region, especially in Egypt, Yemen and Jordan. Since most of the region is arid or semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and industrial wastes.

Municipal solid wastes represent the best source of biomass in Middle East countries. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually. Food waste is the third-largest component of generated waste by weight which mostly ends up rotting in landfill and releasing greenhouse gases into the atmosphere. The mushrooming of hotels, restaurants, fast-food joints and cafeterias in the region has resulted in the generation of huge quantities of food wastes.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

The food processing industry in MENA produces a large number of organic residues and by-products that can be used as biomass energy sources. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the region. Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia.

The MENA countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of respective countries. Many millions of live ruminants are imported each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

Overview of Biomass Pyrolysis

Biomass pyrolysis is the thermal decomposition of biomass occurring in the absence of oxygen. It is the fundamental chemical reaction that is the precursor of both the combustion and gasification processes and occurs naturally in the first two seconds. The products of biomass pyrolysis include biochar, bio-oil and gases including methane, hydrogen, carbon monoxide, and carbon dioxide.

The pyrolysis process consists of both simultaneous and successive reactions when organic material is heated in a non-reactive atmosphere. Thermal decomposition of organic components in biomass starts at 350 °C–550 °C and goes up to 700 °C–800 °C in the absence of air/oxygen. The long chains of carbon, hydrogen and oxygen compounds in biomass break down into smaller molecules in the form of gases, condensable vapours (tars and oils) and solid charcoal under pyrolysis conditions. Rate and extent of decomposition of each of these components depends on the process parameters of the reactor temperature, biomass heating rate, pressure, reactor configuration, feedstock etc

Depending on the thermal environment and the final temperature, pyrolysis will yield mainly biochar at low temperatures, less than 450 0C, when the heating rate is quite slow, and mainly gases at high temperatures, greater than 800 0C, with rapid heating rates. At an intermediate temperature and under relatively high heating rates, the main product is bio-oil.

Slow and Fast Pyrolysis

Pyrolysis processes can be categorized as slow or fast. Slow pyrolysis takes several hours to complete and results in biochar as the main product. On the other hand, fast pyrolysis yields 60% bio-oil and takes seconds for complete pyrolysis. In addition, it gives 20% biochar and 20% syngas.  Fast pyrolysis is currently the most widely used pyrolysis system.

The essential features of a fast pyrolysis process are:

  • Very high heating and heat transfer rates, which require a finely ground feed.
  • Carefully controlled reaction temperature of around 500oC in the vapour phase
  •  Residence time of pyrolysis vapours in the reactor less than 1 sec
  • Quenching (rapid cooling) of the pyrolysis vapours to give the bio-oil product.

Advantages of Biomass Pyrolysis

Pyrolysis can be performed at relatively small scale and at remote locations which enhance energy density of the biomass resource and reduce transport and handling costs.  Heat transfer is a critical area in pyrolysis as the pyrolysis process is endothermic and sufficient heat transfer surface has to be provided to meet process heat needs. Biomass pyrolysis offers a flexible and attractive way of converting organic matter into energy products which can be successfully used for the production of heat, power and chemicals.

A wide range of biomass feedstocks can be used in pyrolysis processes. The pyrolysis process is very dependent on the moisture content of the feedstock, which should be around 10%. At higher moisture contents, high levels of water are produced and at lower levels there is a risk that the process only produces dust instead of oil. High-moisture waste streams, such as sludge and meat processing wastes, require drying before subjecting to pyrolysis.

Furthermore, the bio-char produced can be used on the farm as an excellent soil amender as it is highly absorbent and therefore increases the soil’s ability to retain water, nutrients and agricultural chemicals, preventing water contamination and soil erosion. Soil application of bio-char may enhance both soil quality and be an effective means of sequestering large amounts of carbon, thereby helping to mitigate global climate change through carbon sequestration.  Use of bio-char as a soil amendment will offset many of the problems associated with removing crop residues from the land.

Biomass pyrolysis has been garnering much attention due to its high efficiency and good environmental performance characteristics. It also provides an opportunity for the processing of agricultural residues, wood wastes and municipal solid waste into clean energy. In addition, biochar sequestration could make a big difference in the fossil fuel emissions worldwide and act as a major player in the global carbon market with its robust, clean and simple production technology.

7 Crop Health Metrics That Matter to Farmers

Crop health is of paramount importance to farmers; thus, careful and consistent monitoring of crop health is an absolute must. A recent study on coffee yield losses from 2013 to 2015 revealed that pests and diseases led to high primary (26%) and secondary (38%) yield losses in the researcher’s sampled area. This highlights the significance of closely paying attention to such detrimental factors in your crop’s environment. Doing so will ensure maximum yield and profit for farmers come harvest time.

To look at crop health monitoring as governed by just one or two aspects, however, is a serious mistake. Rather, a holistic approach must be adopted; in other words, more factors need to be monitored than just pestilence and disease.

Here are seven of the most important crop health metrics for farmers to monitor, based on the Sustainable Agriculture Research & Education (SARE) Program’s guidelines.

1) Crop appearance

Perhaps the most obvious indicator of crop health is their general appearance. While not an all-in-one, foolproof method of gauging the current condition of a particular set of crops, a farmer possessing the right tools and knowledge can tell quite a lot from simply looking at the state of his or her plants.

Lightness or discoloration in foliage more often than not points to chlorosis, a state in which plants produce insufficient chlorophyll. Modern methods of crop health monitoring, including new technologies that utilize both near-infrared and visible light, allow farmers to actively and accurately monitor chlorophyll content.

2) Crop growth

Among the indicators of poor crop growth are short branches, sparse stand, and the rarity or absence of new shoots. This, of course, will inevitably affect your total yield in a negative way. Under ideal circumstances, there should be robust growth and dense, uniform stand in your crops.

3) Tolerance or resistance to stress

Simply put, crop stress is a decrease in crop production brought about by external factors. An example would be exposure to excess light and high temperatures, which may disrupt photosynthesis (known as photoinhibition). As a result, crops will have insufficient energy to bear fruit or grow, and may even sustain lasting damage to their membranes, chloroplasts, and cells. Healthy crops are stress-tolerant, and can easily bounce back after being exposed to stressors in their environment.

4) Occurrences of pests and/or diseases

An indicator that your crops are extremely susceptible to pests and diseases would be if over 50% of the population ends up getting damaged by said factors. Under the right circumstances, less than 20% of your crops would be negatively affected by any invasion of pests or spread of disease, allowing them to easily recuperate and increase in number once more.

Building crop resistance against harmful insects and diseases can be done in a number of ways, including improving crop diversity, crop rotation, using organic pesticides such as Himalayan salt spray and eucalyptus oil, and even genetic research and enhancement.

5) Weed competition and pressure

Apart from insects and plant diseases, weeds can also spell doom for your crops, if left unchecked. In the event that your farm becomes overpopulated with weeds that will steal the nutrients from your crops, you will certainly notice that your crops are steadily dwindling. Healthy crops, on the other hand, would eventually overwhelm the weed population and reclaim dominance over your field.

6) Genetic diversity

To have only one dominant variety of crop in your farm is tantamount to putting your eggs in a single basket. For instance, you should consider the importance of having multiple disease-resistant crop varieties on your farm. Don’t fall prey to the temptation of replacing them entirely with a single, higher-yielding type.

It is essential to buil crop resistance against harmful insects and diseases

7) Plant diversity and population

In an ideal setting, there should be more than two species of plants in your field. Counting the actual number of trees or plants across your farm, as well as the naturally occurring vegetation on all sides of the area, can also give you a better perspective on your farm’s overall crop health.

Importance of crop management system

Some farmers become overly reliant on insecticides and other chemicals to eliminate their pest problems — a grievous error, as this will likely lead to even more serious problems. Even the indiscriminate application of mineral fertilizers may inadvertently boost pest populations by making conditions ideal for them to thrive.

Ultimately, a combination of the right knowledge and the proper technology is a must in measuring and monitoring crop health metrics. Farmers must always be aware of the current health of their crops, and must be prepared to address any problems with solutions that don’t end up causing more.