About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.

Biomass Resources from Sugar Industry

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most sugarcane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop. The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.

According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil.   Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable renewable energy resource.

Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugarcane which normally lasts 6 to 7 months.

Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection/transportation.

On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced. Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.

Importance of Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Renewable energy supplies around one-fifth of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Some of the recent predictions suggest that biomass energy is likely to make up one third of the total world energy mix by 2050. Infact, biofuel provides around 3% of the world’s fuel for transport.

biomass_feedstock

Biomass energy resources are readily available in rural and urban areas of all countries. Biomass-based industries can foster rural development, provide employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions.

Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

Advantages of Biomass Energy

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil.

Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably.

Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermochemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

Consistent and reliable supply of biomass is crucial for any biomass project

When compared with wind and solar energy, biomass power plants are able to provide crucial, reliable baseload generation. Biomass plants provide fuel diversity, which protects communities from volatile fossil fuels. Since biomass energy uses domestically-produced fuels, biomass power greatly reduces our dependence on foreign energy sources and increases national energy security.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production.

The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.

Biofuels from Lignocellulosic Biomass

Lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide containing large reservoirs of energy that provide real potential for conversion into biofuels. Lignocellulosic biomass consists of a variety of materials with distinctive physical and chemical characteristics. It is the non-starch based fibrous part of plant material.

Straw_Bales

First-generation biofuels (produced primarily from food crops such as grains, sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product substitution, climate change mitigation, and economic growth. Their sustainable production is under scanner, as is the possibility of creating undue competition for land and water used for food and fibre production.

The cumulative impacts of these concerns have increased the interest in developing biofuels produced from non-food biomass. Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and purpose-grown energy crops such as vegetative grasses and short rotation forests. These second-generation biofuels could avoid many of the concerns facing first-generation biofuels and potentially offer greater cost reduction potential in the longer term.

The largest potential feedstock for biofuels is lignocellulosic biomass, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantlylignocellulosic feedstocks do not interfere with food security. Moreover, bioethanol is very important for both rural and urban areas in terms of energy security reason, environmental concern, employment opportunities, agricultural development, foreign exchange saving, socioeconomic issues etc.

Lignocellulosic biomass consists mainly of lignin and the polysaccharides cellulose and hemicellulose. Compared with the production of ethanol from first-generation feedstocks, the use of lignocellulosic biomass is more complicated because the polysaccharides are more stable and the pentose sugars are not readily fermentable by Saccharomyces cerevisiae. 

In order to convert lignocellulosic biomass to biofuels the polysaccharides must first be hydrolysed, or broken down, into simple sugars using either acid or enzymes. Several biotechnology-based approaches are being used to overcome such problems, including the development of strains of Saccharomyces cerevisiae that can ferment pentose sugars, the use of alternative yeast species that naturally ferment pentose sugars, and the engineering of enzymes that are able to break down cellulose and hemicellulose into simple sugars.

Lignocellulosic processing pilot plants have been established in the EU, in Denmark, Spain and Sweden. The world’s largest demonstration facility of lignocellulose ethanol (from wheat, barley straw and corn stover), with a capacity of 2.5 Ml, was first established by Iogen Corporation in Ottawa, Canada. Many other processing facilities are now in operation or planning throughout the world.

Economically, lignocellulosic biomass has an advantage over other agriculturally important biofuels feedstocks such as corn starch, soybeans, and sugar cane, because it can be produced quickly and at significantly lower cost than food crops. Lignocellulosic biomass is an important component of the major food crops; it is the non-edible portion of the plant, which is currently underutilized, but could be used for biofuel production. In short, lignocellulosic biomass holds the key to supplying society’s basic needs for sustainable production of liquid transportation fuels without impacting the nation’s food supply.

The Easiest Ways to Save Money on Your Utility Bills

As the climate warms, it’s more important than ever to consider how you can lower your carbon footprint as a homeowner. And lowering your carbon footprint has another huge benefit: you can often save money as a result of green upgrades to your home. Besides making structural changes—like adding solar panels, for example, to your home, there are other ways to save on your utility bills such as turning off lights you’re not using. Below, we’ve gathered our tops tips for saving money on energy – and helping out the planet, too!

Take advantage of sunshine during the winter

The sun is basically free heat for your home. Homeowners can take advantage of what’s called passive solar design. During the day, open the curtains on south-facing windows to let the sunshine inside so it can warm up your house. This will keep your home considerably hotter during the colder months.

Don’t forget to close the curtains when the sun sets so you can keep as much of that trapped solar heat as possible. Consider investing in thick, insulated curtains, which will help keep heat inside your living spaces.

Pay attention to your ceiling fan’s rotation in winter and summer

As you may know, warm air rises. Instead of letting that warm air go up, up and away, you can leverage your ceiling fan to keep that warm air close to you and your family. Reverse your ceiling fan’s rotation so that it turns clockwise instead of counterclockwise. This will keep the hot air in your living spaces.

And during the hotter months, make sure the fan is spinning counterclockwise to pull hot air away from you.

Get a new roof

A new roof can make a huge difference in your energy savings. Best of all? Energy-efficient roofing helps you save money in both the colder and warmer months. Many new types of roofing are “cool roofs” which reflect more of the sun’s rays instead of allowing solar heat to permeate into the home. This means that you don’t have to run the AC as low or as often. In the winter, a new roof helps prevent warm air from escaping.

Plus, in many areas, you might be eligible for a government tax incentive for replacing an old roof with an energy-efficient version.

Seal drafts around windows, doors, and other areas of your home

One of the best methods for determining what areas of your home can be more energy-efficient is by conducting a DIY energy audit. To do an energy audit, light an incense stick and watch to see if smoke is pulled to cracks in the windows or under the doors. You can also sometimes feel drafts by simply putting your palm up around the edges of windows and doors. Once you find drafty areas, it’s important to seal up those holes with weather stripping or caulking.

Fixing air leaks will benefit you both in the summer and the winter because it helps keep your HVAC system from working overtime.

Invest in a smart thermostat

A smart thermostat is a prudent investment, especially if you regularly forget to turn off the A/C or heat when you leave for work or errands. That wasted energy can add up to a big utility bill at the end of the month. A smart thermostat regulates the temperature and automatically programs a specific range to keep you comfortable but turns off in unoccupied rooms.

Schedule regular maintenance

Routine maintenance is essential to promote the longevity of your HVAC system and to ensure that your home isn’t wasting energy. Make sure to replace filters at least once a month and keep tabs on how old your HVAC system is, most systems need to be replaced every 15-20 years.

Takeaways

There are a variety of reasons as to why it’s in your best interest to find ways to make your home greener. Not only do green upgrades ultimately save you money, they also help the planet during a time when a climate emergency is threatening our very existence. If you want to see a smaller utility bill and live a more eco-friendly life, utilize some of the tips mentioned in this article. You’ll save money and help save earth, too.

Ethanol Production via Biochemical Route

Ethanol from lignocellulosic biomass is produced mainly via biochemical route. The three major steps involved in ethanol production via biochemical route are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Bioethanol-production-process

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass.

Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc).

The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

The pretreated biomass is subjected to enzymatic hydrolysis using cellulase enzymes to convert the cellulose to fermentable sugars. Cellulase refers to a class of enzymes produced chiefly by fungi and bacteria which catalyzes the hydrolysis of cellulose by attacking the glycosidic linkages. Cellulase is mixture of mainly three different functional protein groups: exo-glucanase (Exo-G), endo-glucanase(Endo-G) and ?-glucosidase (?-G).

The functional proteins work synergistically in hydrolyzing the cellulose into the glucose. These sugars are further fermented using microorganism and are converted to ethanol. The microorganisms are selected based on their efficiency for ethanol productivity and higher product and inhibitors tolerance. Yeast Saccharomyces cerevisiae is used commercially to produce the ethanol from starch and sucrose.

Escherichia coli strain has also been developed recently for ethanol production by the first successful application of metabolic engineering. E. coli can consume variety of sugars and does not require the complex growth media but has very narrow operable range of pH. E. coli has higher optimal temperature than other known strains of bacteria.

Lower GHG emissions and empowerment of rural economy are major benefits associated with bioethanol

The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Enzyme cost is the prime concern in full scale commercialization. The trend in enzyme cost is encouraging because of enormous research focus in this area and the cost is expected to go downward in future, which will make bioethanol an attractive option considering the benefits derived its lower greenhouse gas emissions and the empowerment of rural economy.

Palm Kernel Shells as Biomass Resource

Biomass residue from palm oil industries are attractive renewable energy fuel in Southeast Asia. The abundance of these biomass resources is increasing with the fast development of palm oil industries in Malaysia, Indonesia and Thailand. In the Palm Oil value chain there is an overall surplus of by-products and the utilisation rate of these by-products is low.

Palm kernel shells (or PKS) are the shell fractions left after the nut has been removed after crushing in the palm oil mill. Palm kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

 

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and kernel shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Most palm oil mills in the region are self-sufficient in terms of energy by making use of kernel shells and mesocarp fibers in cogeneration. The demand for palm kernel shells has increased considerably in Malaysia, Indonesia and Thailand resulting in price close to that of coal. Nowadays, cement industries are using palm kernel shells to replace coal mainly because of CDM benefits. PKS has also emerged as a hot biomass commodity in the Asia-Pacific region, especially in South Korea and Japan, where PKS is being used to power huge biomass power plants. PKS is also getting traction in Europe as an attractive alternative fuel.

The problems associated with the burning of these solid fuels are the emissions of dark smoke and the carry-over of partially carbonized fibrous particulates due to incomplete combustion of the fuels can be tackled by commercially-proven technologies in the form of high-pressure boilers.

Dual-fired boilers capable of burning either diesel oil or natural gas are the most suitable for burning palm Oil waste since they could also facilitate the use of POME-derived biogas as a supplementary fuel. However, there is a great scope for introduction of high-efficiency CHP systems in the industry which will result in substantial supply of excess power to the public grid.

Energy Potential of Coconut Biomass

Coconuts are produced in 92 countries worldwide on about more than 10 million hectares. Indonesia, Philippines and India account for almost 75% of world coconut production with Indonesia being the world’s largest coconut producer. A coconut plantation is analogous to energy crop plantations, however coconut plantations are a source of wide variety of products, in addition to energy. The current world production of coconuts has the potential to produce electricity, heat, fiberboards, organic fertilizer, animal feeds, fuel additives for cleaner emissions, eco-friendly cutlery, health drinks, etc.

coconut-shell-biomass

The coconut fruit yields 40 % coconut husks containing 30 % fiber, with dust making up the rest. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium. Coconut dust has high lignin and cellulose content. The materials contained in the casing of coco dusts and coconut fibers are resistant to bacteria and fungi.

Coconut husk and shells are an attractive biomass fuel and are also a good source of charcoal. The major advantage of using coconut biomass as a fuel is that coconut is a permanent crop and available round the year so there is constant whole year supply. Activated carbon manufactured from coconut shell is considered extremely effective for the removal of impurities in wastewater treatment processes.

Coconut Shell

Coconut shell is an agricultural waste and is available in plentiful quantities throughout tropical countries worldwide. In many countries, coconut shell is subjected to open burning which contributes significantly to CO2 and methane emissions.

Coconut shell is widely used for making charcoal. The traditional pit method of production has a charcoal yield of 25–30% of the dry weight of shells used. The charcoal produced by this method is of variable quality, and often contaminated with extraneous matter and soil. The smoke evolved from pit method is not only a nuisance but also a health hazard.

The coconut shell has a high calorific value of 20.8MJ/kg and can be used to produce steam, energy-rich gases, bio-oil, biochar etc. It is to be noted that coconut shell and coconut husk are solid fuels and have the peculiarities and problems inherent in this kind of fuel.

Coconut shell is more suitable for pyrolysis process as it contain lower ash content, high volatile matter content and available at a cheap cost. The higher fixed carbon content leads to the production to a high-quality solid residue which can be used as activated carbon in wastewater treatment. Coconut shell can be easily collected in places where coconut meat is traditionally used in food processing.

Coconut Husk

Coconut husk has high amount of lignin and cellulose, and that is why it has a high calorific value of 18.62MJ/kg. The chemical composition of coconut husks consists of cellulose, lignin, pyroligneous acid, gas, charcoal, tar, tannin, and potassium.

The predominant use of coconut husks is in direct combustion in order to make charcoal, otherwise husks are simply thrown away. Coconut husk can be transformed into a value-added fuel source which can replace wood and other traditional fuel sources. In terms of the availability and costs of coconut husks, they have good potential for use in power plants.

How to Incorporate Sustainability into Your Business

Since catapulting to the frontlines of news headlines and global consciousness, climate change is one of the most talked about and concerning topics of the modern age. Fortunately with this shift in cognition, manufacturers all across the globe have banded together to create green products in hopes of a more eco-friendly future. It’s these very products that can transform any business from a wasteful guzzler to a green success. With this guide, we’ll walk you through how you can incorporate sustainability into your daily business practice.

Switch out the incandescent light bulbs with CFL or LED bulbs for a longer-lasting and more energy-efficient brilliance. Compact-fluorescent (CFL) and LED light bulbs tend to carry higher price tags than the average fluorescent bulb, however they offer a far more attractive projected lifespan than typical fluorescent bulbs which tend to offer 1,200 hours of  light.

LED bulbs, on average, cost around $5 and offer 25,000 hours of light, while CFL light bulbs cost about $2 and offer 10,000 hours of projected lifespan. Not only are CFL and LED lights more practical from a sustainability standpoint, but they will also save you thousands on your business’s electric bill.

Using biodegradable kitchen supplies to save on plastic waste. Unless your office is the type of place where employees keep personal dishes in the kitchen cupboard, you will likely need to keep a stash of utensils, cups, and plates on deck for any catered lunches or work parties. Instead of giving into the cheap prices of eco-unfriendly plastic ware, invest in biodegradable kitchen packaging for a greener feast. With fewer resource requirements, these biodegradable forks, spoons, and knives will leave your business with a reduced carbon footprint.

Green SMEs

Recycling ink cartridges is a great practice to put in place for businesses equipped with a number of printers. Believe it or not, the vast majority of discarded ink cartridges end up in harmful, toxic landfills that eventually end up in our oceans. Ink cartridge recycling is the most eco-friendly solution to this preventable problem. There are a number of simple ways to take those empty cartridges off your hands and into the hands of a trusted recycler:

  • Find a local recycling facility: You may not even know where your local recycle center is located. Luckily Earth911 can guide you to the nearest location for easy cartridge recycling.
  • Find a local office supply store: Did you know most office supply stores offer recycle programs? Check online or call in to see if they accept ink cartridges.
  • Consider refilling original cartridges: Do a bit of research on the brand of your empty ink cartridge. You may find that they are able to refill your cartridge and you won’t ever have to worry about tossing them!

Opening up windows is an easy solution to a stuffy, warm office. When people are packed like sardines into their tiny cubicles, the air can quickly become stale and stifling. Instead of wasting money and energy on air conditioning, open a few windows to let fresh air flow in. Air conditioners put hydrofluorocarbons, a type of greenhouse gas emission, into the environment—so while you may feel refreshed, the earth is further harmed. Reduce your business’ contribution by saving the AC for the more-unbearable summer days.

Invest in renewable energy sources for a long-term, energy-efficient, and eco-friendly power solution. Every year, we see more and more solar panels sitting atop rooftops, which means the time to invest in solar panels is now. By converting sunlight into a sustainable power source, solar panels are the greenest source of energy on the planet today. Solar energy can be used heat buildings and provide energy to power lights on.

Turning to post-consumer waste to escape the cycle of high-volume paper waste is an exceptional solution for any company that uses a lot of paper. PCW paper is paper re-made at recycling facilities. According to the Environmental Paper Network Paper Calculator, PCW paper saves on

  • 5,610 gallons of water
  • 5,000,000 BTU of energy
  • 376 pounds of solid waste
  • 1,035 pounds of CO2 greenhouse gas emissions

In 2019, there are no more excuses for why a business is stuck in the past. The future can be a bright one if we all put our best foot forward and make the effort to make our spaces greener!

Water Conservation: How to Save Water at Your Home

The importance of saving water cannot be understated, especially as many countries around the world are facing drought conditions. Of course, there is an endless list of small changes you can make as a homeowner to improve the water-saving efficiency of your home, and they add up to a potentially significant difference in the long-term.

Re-Purpose Water

A staggering amount of water literally goes down the drain each day, when there are plenty of smart, safe ways to conserve as much of it as possible. Your bathroom is a key contributor to single-use wastage, and by keeping a container on the floor of your shower you can collect liters with each use. Meanwhile, in the kitchen, even seemingly small things like using a container to catch the water used in washing fresh produce can make a difference over time.

Get Smart About Lawn Care

It’s a common misconception that maintaining a healthy lawn requires a plentiful supply of water. Even during water-restricted periods, keeping your grass green is possible – you just have to get clever about your lawn care practices. Depending on the severity of restrictions, you may only be allowed to water your garden and lawn on certain days and at set times of day, and this will probably be enough, as long as you follow a few guidelines.

If possible, it’s best to water your plants and grass in the evening so that the water has plenty of time to soak into the soil and roots without the threat of evaporation. In case you’re unsure whether to water or not, feeling the topsoil for dryness will give you the best indication.

Use the Half-flush

The second button on the toilet is more than just an aesthetic feature. In fact, the half-flush button can save as much as 70% of the water used in a full flush, owing to the difference in flushing design. A wash-down design and a large trap way make it easier for waste to flow down the drain, meaning less water is required. If you can afford to replace an old, inefficient system, you stand to save a lot of water (and by extension, money) in the long-term.

Use Dual Sinks

Washing dishes by hand gets a bad rap in terms of water efficiency, and it often uses more water than a dishwasher, but it’s possible to prevent a great deal of wastage by using your sink effectively. If you have a double-barreled sink, using one side for washing and the other for rinsing will allow you to wash an unlimited load without needing to refresh the water.

Check the Ratings

Every water-using device has an efficiency rating, and choosing a well-rated model will help you prevent unnecessary wastage at the source. In some countries, large devices like dishwashers and washing machines come with a star rating to give an indication of their efficiency, and even if they don’t, you can still do your own comparative checks.

In the US, the toilet is typically the biggest source of water wastage, followed by the shower and faucets, but with modern water-efficient designs like water-saving vacuum toilets and low-flow showerheads, much of that water could be preserved.

Install Water-Saving Faucets

The only thing more efficient than collecting and re-using run-off from the shower is using less water at the source, and the right faucet can help with that. Just like dishwashers and washing machines, faucets often come with a water-efficiency rating, but they can also be made more eco-friendly through simple add-ons like aerators. An aerator installation is a perfect project for eco-conscious lovers of DIY – once it’s done, the difference will be practically undetectable, and you’ll be saving liters without even trying.

Buy Smaller Machines

Devices like dishwashers and washing machines are becoming more water-efficient with each passing year, but the fact remains that large machines tend to use much more water than their smaller counterparts. A smaller device will also make it easier to commit to only running full loads, since it will take less time to fill.

You might even consider investing in a double-gallon dishwashers, designed to run smaller loads with half the amount of water – there’s plenty of technology available to help in your quest to use less.

Install a Water Tank

If you have the money and the space available on your property, a water tank is one of the best long-term water-saving investments you can make. Even the average backyard water tank allows for the collection of several hundred liters, which is more than enough to keep your yard in good condition or fill your bathtub many times over. Tanks can be expensive to buy, but the savings you stand to make on your water bills will make it all worthwhile.

Fresh drinking water is a precious resource, and developing efficient usage habits has never been more important. The bottom line is that saving water isn’t difficult, and with a few tips and tricks up your sleeve, you’re fully-equipped to start doing your bit for the environment and the world as a whole.

Overview of Biomass Logistics

Biomass logistics include all the unit operations necessary to move biomass feedstock from the land to the biomass energy plant and to ensure that the delivered feedstock meets the specifications of the conversion process. The packaged biomass can be transported directly from farm or from stacks next to the farm to the processing plant.

Biomass may be minimally processed (i.e. ground) before being shipped to the plant, as in case of biomass supply from the stacks. Generally the biomass is trucked directly from farm to biorefinery if no processing is involved.

Another option is to transfer the biomass to a central location where the material is accumulated and subsequently dispatched to the energy conversion facility. While in depot, the biomass could be pre-processed minimally (ground) or extensively (pelletized). The depot also provides an opportunity to interface with rail transport if that is an available option.

The choice of any of the options depends on the economics and cultural practices. For example in irrigated areas, there is always space on the farm (corner of the land) where quantities of biomass can be stacked. The key components to reduce costs in harvesting, collecting and transportation of biomass can be summarized as:

  • Reduce the number of passes through the field by amalgamating collection operations.
  • Increase the bulk density of biomass
  • Work with minimal moisture content.
  • Granulation/pelletization is the best option, though the existing technology is expensive.
  • Trucking seems to be the most common mode of biomass transportation option but rail and pipeline may become attractive once the capital costs for these transport modes are reduced.

The logistics of transporting, handling and storing the bulky and variable biomass material for delivery to the bioenergy processing plant is a key part of the supply chain that is often overlooked by project developers. Whether the biomass comes from forest residues on hill country, straw residues from cereal crops grown on arable land, or the non-edible components of small scale, subsistence farming systems, the relative cost of collection will be considerable.

Careful development of a system to minimize machinery use, human effort and energy inputs can have a considerable impact on the cost of the biomass as delivered to the processing plant gate.

The logistics of supplying a biomass power plant with sufficient volumes of biomass from a number of sources at suitable quality specifications and possibly all year round, are complex. Agricultural residues can be stored on the farm until needed. Then they can be collected and delivered directly to the conversion plant on demand. Infact, this requires considerable logistics to ensure only a few days of supply are available on-site but that the risk of non-supply at any time is low.