A Glance at Biggest Dumpsites in Nigeria

Waste dumping is the predominant method for solid waste disposal in developing countries worldwide, and Nigeria is no exception. Nigeria is home to six of the biggest dumpsites in Africa, according to Waste Atlas 2014 report on World’s 50 Biggest Dumpsites published by D-Waste. These dumpsites are located in three most important cities in Nigeria namely, Lagos, Port Harcourt and Ibadan.

Let us have a quick look at these notorious waste dumps:

Olusosun

Olusosun is the largest dumpsite not only in Lagos but in Nigeria and receives about 2.1 million tonnes of waste annually comprising mostly of municipal solid waste, construction waste, and electronic waste (e-waste). The dumpsite covers an area of about 43 hectares and it is 18 meters deep.

The dumpsite has been in existence since 1992 and has housed about 24.5 million tonnes of waste since then. A population of about 5 million people lives around 10km radius from the site and numerous health problems like skin irritation, dysentery, water-related diseases, nausea etc. have been reported by residents living around 3km radius from the site.

Solous 2

It is located in Lagos and occupies around 8 hectares of land along Lasu-Iba road. The dumpsite receives about 820,000 tonnes of waste annually and has since its existence in 2006 accepted around 5.8 million tonnes of MSW.

Solous is just 200 meters away from the nearest dwellings and almost 4 million people live within 10km radius from the site. Due to the vulnerable sand formation of the area, leachate produced at the dumpsite flows into groundwater causing its contamination.

Epe

Epe dumpsite also in Lagos occupies about 80 hectares of land. The dumpsite was opened in 2010 and has an annual input of 12,000 tonnes of MSW. Epe is the dumpsite which the Lagos State government is planning to upgrade to an engineered landfill and set to replace Olusosun dumpsite after its closure.

Since its existence, it has received about 47,000 tonnes of waste and it is just 500 meters away from the nearest settlement. The dumpsite is also just 2km away from Osogbo River and 7km away from Lekki Lagoon.

Awotan (Apete)

The dumpsite is located in Ibadan and has been in existence since 1998 receiving 36,000 tonnes of MSW annually. It covers an area of 14 hectares and already has in place almost 525,000 tonnes of waste.

The dumpsite is close to Eleyele Lake (2.5km away) and IITA Forest Reserve (4.5km away). The nearest settlement to the dumpsite is just 200 meters away and groundwater contamination has been reported by nearby residents.

Lapite

Lapite dumpsite is also located in Ibadan occupies an area of 20 hectares receiving around 9,000 tonnes of MSW yearly. Since its existence in 1998, it has housed almost 137,000 tonnes of MSW. It is 9km away from IITA Forest Reserve and surrounded by vegetations on both sides of the road since the dumpsite is directly opposite a major road.

Olusosun is the largest dumpsite in Nigeria

The nearest settlement is about 2km away but due to the heavy metals present in the leachate produced in the waste dump, its leakage poses a great threat to groundwater and biodiversity in the area.

Eneka

It is located in Port Harcourt, the commercial hub of South-South, Nigeria along Igwuruta/Eneka road and 9km from Okpoka River and Otamiri River. It receives around 45,600 tonnes of MSW annually and already has about 12 million tonnes of waste in place.

The site lies in an area of 5 hectares and it is flooded almost all year round as rainfall in the area exceeds 2,500mm per annum. Due to this and the resultant flow of the flood which would have mixed with dumpsite leachate; groundwater, surface water, and soil contamination affect the 1.2 million people living around 10km radius from the site as the nearest building is just 200 meters away.

Note: Note: The original version of the article was published on Waste Watch Africa website at this link.

Behavioral Drivers Behind Food Wastes

food-waste-behaviorBy 2075, the United Nations estimates the global population will peak at 9.5 billion, an extra 3 billion mouths to feed by the end of the century. Meanwhile, while we produce about four billion tonnes of food annually, it is estimated that 30-50% of this never reaches our plates. Of the food that does reach us, some western societies throw away up to a third of all food purchased. This has enormous implications for the global environment, from wasting the water used to grow the food to adverse effects on climate, land and biodiversity.

The drivers behind these phenomenal levels of food waste are complex and include food pricing, logistical and storage issues. However, given the significant level of waste that happens within the households of societies like the UK and US, it is useful and informative to consider those behaviours that drive this level of waste.

The quality of data around food waste, as with much of waste data, has historically been poor. To this end, WRAP commissioned groundbreaking research in the UK in 2006/7 to act as a baseline to their Love Food Hate Waste campaign. This came up with the alarming statistic that 1/3 of food bought by a UK household was thrown away. Until this time, there had been no comprehensive research, either by food manufacturers, retailers or interest groups, suggesting the importance of government, or some other dis-interested party, taking a lead on the issue.

Back to Basics

There may be a link between the amount of time spent preparing food, and the skill and effort that goes into this, and the amount of food waste produced. This has led to a loss of confidence in the kitchen, with individuals losing basic skills that allow them to cook with leftovers, understand food labeling, including Best Before and Use By, even basic storing. WRAP had found little evidence of best practice storage advice so carried out the research themselves – leading the (surprising for many) conclusion that fruit such as apples and pears are best stored in the fridge wrapped in a plastic cover. However, this has masked a larger trend of less time spent in the kitchen, due to demographic changes. This of course begs the question – how should we use this when trying to reduce food waste? Should we encourage people to cook from scratch as a principle?

Although waste prevention and recycling are clearly separated within the waste hierarchy, there are apparent links between the two when considering food waste. There is an urgent need for legislation to enforce separate food waste collections, not only to ensure it was diverted to anaerobic digestion or composting, but also as it led to greater self awareness around food waste. WRAP research has clearly showed a fall in food waste when separate food waste collections were introduced.

Role of Packaging

Historically, packaging has always been a high priority to the public when asked about priorities for reducing waste. However, as awareness of food waste has grown, a more nuanced position has developed among waste managers. While excess packaging is clearly undesirable, and, within the UK for instance, the Courtauld Commitment  has helped reduced grocery packaging by 2.9 million tonnes of waste so far, there is a realization of the importance of food packaging in preserving food and hence reducing food waste.

Making food easily accessible and affordable by many, it could be argued, is one of the crowning achievements of our age. Over the last century, the proportion of household income that is spent on food has plummeted, and there is a direct link to malnutrition and food prices, particularly for children. But does cheap food mean that it is less valued and hence greater wastage? Is the answer expensive food? The evidence from WRAP in the UK is that food waste is still a serious economic issue for households, and underlining the economic case for reducing food waste a major incentive for households, especially as food prices are not entering an era of increase and instability, providing added economic urgency

Political Persuasions

Different political persuasions often differ in the approaches they take to changing behaviours and food waste is no different. In the UK, the Courtauld Commitment is a voluntary agreement aimed at encouraging major retailers to take responsibility mainly for packaging, later growing to encompass food waste, voluntary and so far has seen a 21% reduction in food waste post-consumer.

Meanwhile Wales (in the UK) effectively banned food waste from landfill. Scotland has ensured that businesses make food waste available for separate collection – again it’s only once you see it, you can manage it. Campaigns like the UK’s Love Food Hate Waste have been successful but measuring food waste prevention, as with all waste prevention, is notoriously difficult. But, people are now widely aware of food waste as an issue – we even see celebrity chefs actively talking about food waste reduction and recipes involving leftovers or food that is about to go off.

There is clearly a balance between food waste and food safety, with a commitment to reducing food waste throughout the retail and catering world, not just at home. By engaging environmental health officers to help deliver this, a potentially conflicting message can be delivered in a nuanced and balanced way. Indeed, environmental health officers in Scotland will be responsible for ensuring that Scottish food businesses present their food waste for separate collection.

Role of Communication

It is worth considering how the message should be communicated, and by whom. The community sector are more trusted by the public than government and the private sector are more effective at imparting personal, deeply held beliefs – the sort of beliefs that need to change if we are to see long term changes in attitudes towards consumption and hence waste production.

Furthermore, communications can engage wider audiences that hold an interest in reducing food waste that is perhaps not primarily environmental. The health and economic benefits of issues and behaviours that also result in food waste prevention may be the prevalent message that fits with a particular audience. So whilst the main aim of a training session might be food waste prevention, this is may not be the external message. And this has wider implications for waste prevention, and how we engage audiences around it.

Municipal authorities tasked with waste prevention will need to engage with new groups, in new ways. They will have to consider approaches previously considered to be beyond their powers to engage new audiences – should they be partnering with public health authorities with an interest in nutrition, or social housing providers that are focused on financial inclusion.

Should waste prevention even be a discipline in itself? After all, across material streams it is a motley assortment of behaviours with different drivers. Furthermore, with the knots that one can tie oneself in trying to measure waste that doesn’t get generated, – therefore doesn’t exist – should we integrate waste prevention in to other socio-economic programmes and position it as an “added benefit” to them?

Note: The article is being republished with the permission of our collaborative partner be Waste Wise. The unabridged version can be found at this link. Special thanks to the author Mike Webster.

Recycling of EPS Foam Packaging

Municipalities and organisations are facing a growing problem in disposal and recycling of EPS foam packaging and products. EPS foam (Encapsulated Poly-Styrene) packaging is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. EPS foam (also known as polystyrene) is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc. However, being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often.

Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world.

Environmental Hazards of EPS Foam

While it is estimated that EPS foam products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.

Even when already disposed of in landfills, polystyrene can easily be carried by the wind and litter the streets or end up polluting water bodies. When EPS foam breaks apart, the small polystyrene components can be eaten by marine organisms which can cause choking or intestinal blockage.

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.

Styrene is derived from either petroleum or natural gas, both of which are non-renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Trends in EPS Foam Recycling

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively.

Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling.

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground.

More Reasons To Check Out Alternative Energy Sources

In recent years, the world has seen significant economic progress, which greatly relied on energy fueled by coal and petroleum among others. With the continuously growing demand for energy, it is a fact that these energy sources may be depleted in the near future. Apart from this, there are several other reasons why humankind already needs to find alternative energy sources.

Global Warming

It is a known fact that different manufacturing processes and human activities, such as using vehicles, cause pollution in the atmosphere by releasing carbon dioxide. Carbon dioxide traps heat in the earth, and this phenomenon is known as global warming. Global warming has several harmful impacts such as stronger and more frequent storms, as well as drought and heat waves. Renewable energy sources such as wind, solar, geothermal, hydroelectric, and biomass to name a few, all generate minimal global warming emissions.

Wind power, for instance, has the capability to supply energy with a significantly lower emission compared to burning coal for fuel. This is the reason why wind energy is more beneficial compared to carbon-intensive energy sources. Still, the emissions generated by wind power are even lower compared to other renewable energy sources such as solar, geothermal, and hydroelectric power sources. This makes a huge potential for wind power to sustain the world’s energy demands, while preserving the environment.

Public Health

It goes without saying that the pollution caused by burning coal and fuel not only has an environmental impact, but it also has a significant effect on public health. Various diseases and ailments can be attributed to pollution, which usually affects the respiratory tract. Contaminated water also causes various bacterial infections. Wind power, solar energy, and hydroelectric systems have the capability to generate electricity without emitting air pollutants. Additionally, wind and solar energy sources do not need water to operate, thereby, eliminating the probability of polluting water resources. Clean air and water that is free from pollutants, will have a significant positive impact on public health.

Constant Energy Source

While coal and fossil fuels are on the threshold of depletion, renewable energy sources are inexhaustible. Wind can be a constant energy source and no matter how high the demand for energy will be, the wind will not be depleted. In the same manner, as long as the sun shines bright on earth, there will always be an abundant solar energy source. Fast-moving water that can be translated into hydroelectric energy, the earth’s heat that can be converted into a geothermal power source, as well as abundant plant matter that can be used as biomass, can all be constantly replenished. These can never be fully exhausted no matter how great the energy demand will be. The utilization of a combination of each of these energy sources will prove to be even more beneficial. Additionally, with its continued use, there will no longer be a need for combustible energy sources.

Lower Energy Costs

The cost of electricity continues to be a burden on the earth’s greater population. The use of renewable energy sources to light up the earth is considerably cheaper and inexpensive compared to the cost of burning fossil fuels for electricity and other energy needs. Apart from a cheaper cost, renewable energy sources can help stabilize to cost of energy in the long run, with an unlimited supply being able to cater to greater demand. While it cannot be denied that setting up clean energy technologies comes with a cost, it can be noted that the cost of its operation is significantly lower. Conversely, the cost of coal and fossil fuels for energy consumption fluctuates over a wide range and is greatly affected by the economic and political conditions of its country of origin.

Economic Benefits

Fossil fuel technologies, often, revolve around the capitalistic market. Hence, the use of combustible fuels is often linked to unfavorable labor conditions, and even child labor and slavery. On the other hand, the use of renewable energy sources provides decent jobs, contributing to several economic benefits. For instance, workers are needed to install and maintain solar panels. In the same manner, wind farms employ technicians for maintenance. Thus, jobs are created directly in parallel with the unit of energy produced. This means that more jobs will be produced if more renewable energy sources are utilized.

Reliability

Clean energy sources, specifically wind and solar power, are less susceptible to large-scale failures. The reason behind this is that both wind and solar power both employ distributed and modular systems. This means that electricity will not be totally cut off in instances of extreme weather conditions because the energy sources powering up the electricity is spread out over a wider geographical area. In the same manner, there will still be a continuous supply of energy even if certain equipment in the entire system is damaged because clean fuel technologies are made up of modules such as a number of individual wind turbines or solar panels.

With all the reasons to check out alternative energy sources, it still holds true that there remain several barriers that hinder the full implementation of renewable energy technologies. Some of these challenges are capital costs because of reliability misconceptions, as well as a difficult market entry due to an unequal playing field. Because renewable energy sources are cheap to operate, the bulk of the expenses in its implementation is building the technology. Thereby, the rate of return for capitalists and investors in the market entails a longer waiting period. Adding to this barrier is the hidden political agenda that most governments need to overcome.

Economic progress and advancement in technology are not at all bad. On the contrary, it has brought forth a lot of benefits such as cures for ailments and diseases, resources for deep-sea or space explorations, as well as meaningful collaboration and communication. However, this progress came with a price, and unfortunately, it’s the world’s energy resources that are on the brink of exhaustion. Hence, mitigation has been already necessary and finding alternative energy sources is just one of the probable solutions.

Why Biofuels Should Be a Key Part in America’s Future

Biofuels are one of the hottest environmental topics, but they aren’t anything new. When discussing these fuels, experts frequently refer to first, second-and third-generation biofuels to differentiate between more efficient and advanced ones currently in development and more traditional biofuels in use for decades.

Biofuels are increasingly being used to power vehicles around the world

First-generation biofuels are things like methanol, ethanol, biodiesel and vegetable oil, while second-generation biofuels are produced by transforming crops into liquid fuels using highly advanced chemical processes, such as mixed alcohols and biohydrogen. Third-generation, or “advanced” biofuels, are created using oil that is made from algae or closed reactors and then refined to produce conventional fuels such as ethanol, methane, biodiesel, etc.

Cleaner Air and Less Impact on Climate Change

As biofuels come from renewable materials, they have less of an impact on climate change as compared to gasoline, according to multiple studies. Ethanol in gasoline has been helping to decrease smog in major cities, keeping the air cleaner and safer to breathe. Starch-based biofuels can reduce carbon dioxide emissions by around 30- to 60-percent, as compared to gasoline, while cellulosic ethanol can lessen emissions even further, as much as 90 percent.

Reduced Danger of Environmental Disaster

Can you imagine buying one of the oceanfront Jacksonville condos in Florida, looking forward to enjoying peaceful beach strolls every morning only to find injured or killed animals and globs of oil all over the sand? Not exactly the vision of paradise you dreamed of.

A major benefit of using biofuels is the risk of environmental disaster is dramatically reduced. The 2010 Deepwater Horizon Spill that occurred in the Gulf of Mexico released millions of gallons of oil. It not only cost BP nearly $62 billion but caused extensive damage to wildlife and the environment. Biofuels are much safer. For example, a corn field won’t poison the ocean.

More Jobs and an Economic Boom

Numerous studies, including one conducted by the Renewable Fuels Association (RFA), have found that biofuels lead to more jobs for Americans. In 2014, the ethanol industry was responsible for nearly 84,000 direct jobs and over 295,000 indirect and induced jobs – all jobs that pay well and are non-exportable. The industry also added nearly $53 billion to the national GDP, $27 billion to the national GDP and over $10 billion in taxes, stimulating local, state and national economies.

Many experts predict that these figures will increase with significant job creation potential in biorefinery construction, operation and biomass collection. If the potential for producing cellulosic ethanol from household waste and forestry residues were utilized at commercial scale, even more jobs are likely to be added.

Energy Independence

When a nation has the land resources to grow biofuel feedstock, it is able to produce its own energy, eliminating dependence on fossil fuel resources. Considering the significant amount of conflict that tends to happen over fuel prices and supplies, this brings a net positive effect.

Municipal Solid Waste Management in Oman

Municipal solid waste management is a challenging issue for the Sultanate of Oman because of its adverse impacts on environment and public health. With population of almost 3 million inhabitants, the country produces about 1.9 million tons of solid waste each year. The per capita waste generation in Oman is more than 1.5 kg per day, among the highest worldwide.

Prevalent Scenario

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream.

The predominant waste disposal method in Oman is landfilling. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in Oman is marked by lack of collection and disposal facilities, as well as lack of public awareness about waste in the country. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat Sanitary Landfill

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater).

All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

The Way Forward

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish 16 engineered landfills, 65 waste transfer stations and 4 waste treatment plants in different parts of the country.

Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place. Oman is also seriously exploring waste-to-energy as a tool to manage garbage in a sustainable manner.

Medical Waste Management in Developing Countries

medical-waste-managementHealthcare sector is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation in developing countries, especially by hospitals, clinics and other healthcare establishments. The quantity of healthcare waste produced in a typical developing country depends on a wide range of factors and may range from 0.5 to 2.5 kg per bed per day.

For example, India generates as much as 500 tons of biomedical wastes every day while Saudi Arabia produces more than 80 tons of healthcare waste daily. The growing amount of medical wastes is posing significant public health and environmental challenges across the world. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. The urgent need of the hour is to healthcare sustainable in the real sense of the word.

Hazards of Healthcare Wastes

The greatest risk to public health and environment is posed by infectious waste (or hazardous medical waste) which constitutes around 15 – 25 percent of total healthcare waste. Infectious wastes may include items that are contaminated with body fluids such as blood and blood products, used catheters and gloves, cultures and stocks of infectious agents, wound dressings, nappies, discarded diagnostic samples, swabs, bandages, disposal medical devices, contaminated laboratory animals etc.

Improper management of healthcare wastes from hospitals, clinics and other facilities in developing nations pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

Inadequate healthcare waste management can cause environmental pollution, growth and multiplication of vectors like insects, rodents and worms and may lead to the transmission of dangerous diseases like typhoid, cholera, hepatitis and AIDS through injuries from syringes and needles contaminated with human.

In addition to public health risks associated with poor management of biomedical waste, healthcare wastes can have deleterious impacts on water bodies, air, soil as well as biodiversity. The situation is further complicated by harsh climatic conditions in many developing nations which makes disposal of medical waste more challenging.

The predominant medical waste management method in the developing world is either small-scale incineration or landfilling. However, the WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste in the form of particulate matter, heavy metals, acid gases, carbon monoxide, organic compounds, pathogens etc.

In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators.

Alternative Treatment Technologies

The alternative technologies for healthcare waste disposal are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, biological treatment and plasma gasification.

Nowadays, steam sterilization (or autoclaving) is the most common alternative treatment method. Steam sterilization is done in closed chambers where both heat and pressure are applied over a period of time to destroy all microorganisms that may be present in healthcare waste before landfill disposal. Among alternative systems, autoclaving has the lowest capital costs and can be used to process up to 90% of medical waste, and are easily scaled to meet the needs of any medical organization.

Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. Advanced steam systems have higher capital costs than standard autoclaves of the same size. However, rigorous waste segregation is important in steam sterilization in order to exclude hazardous materials and chemicals from the waste stream.

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. A typical microwave treatment system consists of a treatment chamber into which microwave energy is directed from a microwave generator. Microwave units generally have higher capital costs than autoclaves, and can be batch or semi-continuous.

Chemical processes use disinfectants, such as lime or peracetic acid, to treat waste. Alkaline digestion is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Plasma gasification is an emerging solution for sustainable management of healthcare waste. A plasma gasifier is an oxygen-starved reactor that is operated at the very high temperatures which results in the breakdown of wastes into hydrogen, carbon monoxide, water etc. The main product of a plasma gasification plant is energy-rich syngas which can be converted into heat, electricity and liquids fuels. Inorganic components in medical wastes, like metals and glass, get converted into a glassy aggregate.

Solid Waste Management in Kuwait

Kuwait, being one of the richest countries, is among the highest per capita waste generators in the world. Each year more than 2 million tons of solid waste is generated in the tiny Arab nation. High standards of living and rapid economic growth has been a major factor behind very high per capita waste generation of 1.4 to 1.5 kg per day.

Waste Disposal Method

The prevalent solid waste management method in Kuwait is landfill burial. Despite being a small country, Kuwait has astonishingly high number of landfills. There are 18 landfills, of which 14 sites are closed and 4 sites are still in operation. These landfills act as dumpsites, rather than engineered landfills.

Menace of Landfills

Infact, landfill sites in Kuwait are notorious for causing severe public health and environmental issues. Besides piling up huge amounts of garbage, landfill sites generate huge amount of toxic gases (methane, carbon dioxide etc) and plagued by spontaneous fires. Due to fast paced urban development, residential areas have expanded to the edges of landfill sites thus causing grave danger to public health.

The total land area of Kuwait is around 17,820 sq. km, out of which more than 18 sq. km is occupied by landfills. Area of the landfill sites ranges from tens to hundreds of hectares with waste deposition depth varying from 3 to 30 meters.

All kind of wastes, including municipal wastes, food wastes, industrial wastes, construction and demolition debris etc are dumped at these sites. Infact, about 90 percent of the domestic waste is sent to landfills which imply that more landfills will be required to tackle rapidly increasing volumes of solid wastes.

Most of the landfill sites have been closed for more than 20 years due to operational problems and proximity to new residential, commercial and industrial areas. These sites include Sulaibiyah, Kabed, Al Qurain, Shuaiba, Jleeb AI Shuyoukh, West Yarmouk, AI Wafra among others. Migration of leachate beyond landfill site boundaries is a frequent problem noticed across Kuwait. Groundwater contamination has emerged as a serious problem because groundwater occurs at shallow depths throughout the country.

The major landfill sites operated by municipality for solid waste disposal are Jleeb AI Shuyoukh, Sulaibiyah and Al-Qurain. The Qurain landfill, with area of 1 sq. km, was used for dumping of municipal solid waste and construction materials from 1975 until 1985 with total volume of dumped waste being 5 million m3.

The Sulaibiyah landfill site received more than 500 tons of waste per day from 1980 to 2000 with area spanning 3 sq. km. Jleeb AI Shuyoukh, largest landfill site in Kuwait with area exceeding 6 sq. km, received 2500 tons per day of household and industrial waste between 1970 and 1993. Around 20 million m3 of wastes was dumped in this facility during its operational period.

Over the years, most of the dumpsites in Kuwait have been surrounded by residential and commercial areas due to urban development over the years. Uncontrolled dumpsites were managed by poorly-trained staff resulting in transformation of dumpsites in breeding grounds for pathogens, toxic gases and spontaneous fires.

Most of the landfill sites have been forced to close, much before achieving their capacities, because of improper disposal methods and concerns related to public health and environment. Due to fast-paced industrial development and urban expansion, some of the landfills are located on the edges of residential, as is the case of Jleeb Al-Shuyoukh and Al-Qurain sites, endangering the lives of hundreds of thousands of people.

How to Reduce Your Digital Carbon Footprint?

Roughly 2.5 billion people around the globe use the internet. Experts predict the energy used to power the internet — as well as the number of greenhouse gases produced — will soon exceed air travel. Your digital carbon footprint is comprised of a number of activities, not just checking email.

Digital activities that have an impact on the environment include:

  • Streaming music
  • Watching Netflix
  • Posting on Twitter
  • Buying an e-book
  • Reading online news

Today’s eco-conscious consumers and developers are looking for ways to reduce their digital carbon footprints and implement sustainable practices.

1. Reach Out to Tech Companies

Tech companies like YouTube can reduce their digital carbon footprint by changing how their design. In 2016, people streamed about 1 billion hours of YouTube videos each day, producing 10 million metric tons of carbon dioxide equivalent (CO2e) — the same as the City of Glasgow.

For users who only listen to YouTube for the audio, the option to turn off the video could save 100 to 500 Kilotons of CO2e each year — comparable to the carbon footprint of 30,000 homes in the U.K. For consumers, it’s imperative to reach out to your favorite brands and request eco-conscious features.

2. Unsubscribe from Unwanted Emails

In 2018, more than 281 billion emails were sent and received each day, a number that’s expected to grow to more than 347 billion by 2022. Like anyone else, you probably have multiple brands who send you unwanted emails. To reduce your carbon footprint, make use of the unsubscribe button.

Look through your inbox for any unwanted emails you’ve yet to delete. You should also go through your promotions and spam folder. The unsubscribe button is typically at the very bottom of the email. Some brands attempt to hide it by making the text a similar color as the background.

3. Optimize Your Charging Routine

How many digital devices do you charge? There’s the laptop, cellphone, tablet and smartwatch. To reduce your carbon footprint, optimize your charging routine. Once a device is fully charged, unplug the power supply. Not only can you reduce your energy consumption, but you’ll also improve the lifetime of your battery.

Reduce your reliance on fossil fuels by investing in a solar charger. There are many solar charging stations available that range in capability and price. You can find a quality set-up under $50 for a smartphone, tablet and watch. If you want to power heavy-duty devices like laptops and film equipment, you’ll want to research options $75 and above.

4. Hang Onto Your Old Device

In the U.S., 44% of smartphone users said they replace or upgrade their phone as often as their provider allows, typically every two years. Many of these working devices end up cluttering landfills, while others are broken down into usable materials. Consumers and businesses alike can reduce their digital footprint by holding onto devices longer.

If you have a cracked screen, look into DIY tools online, or visit a local shop. The cost is remarkably affordable compared to the latest phone model. If your device is running slow, delete unused or unwanted apps, photos, videos, files and more. Most smartphones have a built-in storage cleaner that can free up space.

5. Download Instead of Stream

Video streaming makes up a large chunk of internet traffic. Data centers that host streaming sites like Netflix, YouTube and Facebook consume around 1% of the world’s electricity each year, a number that’s expected to grow. More demand for this type of technology means more consumed energy.

To minimize carbon output, data centers need to be fed by renewable energy sources, such as solar, hydroelectric or nuclear power. As a consumer, you can reduce the amount of time you spend streaming videos and music each day. Try to download content ahead of time, which puts less strain on networks. If you do stream video, connect to Wi-Fi instead of 4G to consume less energy.

Most of the resources we rely on are finite. It’s crucial to make sustainable choices and reduce your carbon footprint. Reach out to your favorite tech companies and request eco-friendly alternatives. Pare down your inbox and delete any offers for a phone upgrade. You can also invest in a solar charger and reduce your streaming time.

For most of us, it’s impossible to cut out internet use entirely. However, it’s still possible to make eco-friendly decisions.

3 Ways Zero Valent Iron Can Help in Environment Protection

Zero Valent Iron (ZVI) was developed to eliminate chlorinated hydrocarbon solvents in the soil. Industrial solvents are replete with chlorinated hydrocarbon, so much toxic and bad for the environment. They get disposed in the soil along with other toxic elements to cause harm to our surrounding. In the current years, significant improvements have taken place in the realm of iron-based technology.

Zero Valent Iron can be effectively used in soil remediation

The result of years of research and significant improvement in the iron-based technology is the advent of nanoscale or polymer-supported iron-containing nanoparticles to remove contaminants from solvents and soil. This is all due to the high surface area to the volume ratio of such nanoscale particles that favor the reaction kinetics and sorption.

But, know one thing that high pressure drops may restrict fixed-bed column application. This is why we now have modified nanosized ferrous particles to facilitate arsenic removal. The fabulous reducing agent helps in pollution recovery, and thus it benefits our environment.

Applications of Zero Valent Iron

ZVI in recent times is used widely for wastewater treatment, groundwater, and soil treatment. If made through the physico-chemical process in combination, the ZVI may be very small particles, having a large surface area. ZVI is beneficial for the environment, for it has a strong reductibility, great purity, long aging property, and similar features.

Zerovalent Iron can boost the chlorine removal efficiency of the soil, groundwater, and six valent chromium. Thus, it reduces the time required for environmental remediation. Acting as a fabulous reducing agent, it facilitates pollution recovery. Indeed, you may also combine it to bioremediation to further improve the efficacy of environment pollution recovery. Use it in the soil, solvents and industrial wastewater confidently to get rid of the contaminants. The use of ZVI paves the way for pure water and soil.

What you should look for in ZVI?

Are you planning to procure zero valent elemental metallic ions for wastewater treatment or soil remediation? Zerovalent metals or ZVI has a wide range of applications that range from electrodes and trenches to filters. Yes! It helps in the water filtration process, and thus we have pure drinking water. It gets rid of every trace of impurity or contaminant from the solvent or soil. It is important to look for a reliable company to procure ZVI.

Watch out for the following properties of ZVI

  • The particles must be fine enough to be customized as per your application
  • Look for the great adsorption performance and sound chemical activity
  • A large surface area for that very strong reductibility
  • Make sure the duration of its effect is very long to reduce the injections
  • Very fine ZVI particles to remediate pollution and to save remediation time and effort
  • Must be environment-friendly, deprived of any toxic compound

Enhanced nitrate-removing potential

Zero-valent metal has an enhanced nitrate removal capacity. It eliminates nitrate from the groundwater to facilitate remediation. Hence, biochar-supported ZVI can facilitate nitrate removal while the ones with wider pH can remove larger nitrates. Biochar composite eliminates nitrate from the groundwater without leaving any harmful by-products. But, biochar has a variable nitrate-removal capacity.

ZVI biochar has a potential to reduce nitrate by mediating the redox potential, the electron transfer, pH and thus facilitates enhanced removal or reduction of nitrate from the solvent or soil. Everything revolves around the logic of intensifying chemical reduction in order to eliminate nitrate from the soil or groundwater.

Nitrate and How it Accumulates

Nitrate is the form of nitrogen, which lies beneath the cultivable land. Nitrate is water soluble and may move through the soil quite easily. Owing to its high mobility, it moves to the groundwater table. Once it has moved to the groundwater table, it persists there and deposits to a very high level.

Thus, shallow groundwater is also at a risk of contamination from chemicals of land surfaces. This is a matter of concern, and indeed, nitrate in water may harm human health, aquatic life, livestock life and contaminate the surface water. We can say that it is not that harmful to adult humans, but it can significantly affect the health of the infants. It may reduce the level of oxygen in the blood to cause ‘blue baby’ disorder.

Hence, biological denitrification, ion exchange, and reverse osmosis are the treatment processes to handle this issue. The use of ZVI is a way to denitrification and the key to attaining a safe nitrate level in the water. A zero-valent metallic reduction is an effective way to refine dirty and polluted water. As soon as ZVI is placed in the flowing water or is added to the flowing water, there starts the process of oxidizing. The resultant chain reaction will purify water or remove the contaminants.

A Tool to Remediate Acid Mine Drainage

AMD or Acid Mine Drainage is the most common source of metal in places like the Appalachians, Tennessee, and Kentucky. It is important to remediate acid mine drainage for it is highly acidic and toxic. It is the major contributor to the arsenic environment and something needs to be done. AMD is a rich source of heavy and corrosive metals, acidic in nature. Biological treatment of Acid Mine Drainage is cost-effective, efficient and environment-friendly.

Biotechnological processes are an asset when it comes to treating Acid Mine Drainage in an effective manner. ZVI is environmentally sustainable. When it is very complicated and difficult to treat or remediate Acid Mine Drainage, ZVI eases the process. It gets rid of harmful elements or potentially hazardous substances from AMD to separate metal from acid and toxic compounds. There isn’t a need to abandon a mine site just because there are acidic metal deposits. Mine metals can be reclaimed with ZVI, and herein lays the environmental benefit.

Recycling of metallurgical waste

It is important to treat AMD or Acid Mine Drainage. The ecological solution to separate toxic metals, to reclaim water in large quantities is gaining a lot of attention. ZVI and zero valent metals save our natural resources and prepare the toxic metals for the recycling process. This is only possible through the separation of the acidic part.

We can recycle gallons of water that lay in the pond and other water bodies. It drops the acid level in the water and metal while also prevents heavy metallic reactions. When Acid Mine Drainage is one of the serious concerns in the realm of coal mining, zero valent metals prevent any exposure of sulfur-rich mineral to the water and atmospheric oxygen.

Final Thoughts

Zero-valent metals can help in the treatment of contaminated zones through the process of remediation. Zero valent iron is the highly reactive powder for remediation of wastewater and soil and works fabulously on environmentally contaminated areas. This remediation solution is highly efficient and benefits our environment in multiple ways.