Addressing India’s Waste Management Problems

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well-known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term waste management financing program, sorts of which are required to tackle issues like solid waste management.

Are Cities Hands-tied or is Change Possible?

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites.  Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into electricity or fuel oil or gas, or into recycled products. While such conversion is technologically possible with infinite energy and financial sources, that is not the reality.

Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Note: Acknowledgements will be published in the full report “Observations from India’s Crisis” on wtert.org and blog.wtert.org

Newly-Launched Inventions That Can Help Homeowners Save Energy

Domestic energy efficiency has advanced a long way over the last few decades. Despite our overall energy consumption increasing by just over a third since 1980, on average our homes consume around 10% less overall. How can this be the case when we have so many more electrical appliances? Back in 1980, not many homes had more than a single TV, and computers and mobile phones were essentially non-existent. Yet somehow they used more electricity!

The answer to this question comes down to one simple principle. Energy efficiency. Government regulations and technical advances led by the private sector have resulted in appliances that are simply more sustainable. Throw in a better public understanding of the importance of reducing carbon emissions, and also the use of money expert comparison sites to track the expense of powering a home, and it the picture becomes a little clearer.

Expect to see this trend, become ever more prevalent in the near future, as sustainability has become a huge industry sector that continues to rapidly expand.

Here’s a selection of the most recent technologies that are already helping homeowners save money that we can expect to become common place over the coming years.

1. Smart Homes

At first glance, you may wonder what the point is in buying a new domestic appliance that is advertised as ‘internet connected/ready’. After all, who is going to need a web compatible refrigerator or air conditioning unit? It is increasingly common for newly released appliances to boast this feature because in the coming years, our homes are going to be much more connected than at present. Being able to monitor and control energy expenditure remotely via smartphone is a tech that is already with us – but these are still the early days.

The next big step forward is going to be the implementation of wireless sensors throughout the home. These will connect all the appliances in the home to a centralized control panel which will automatically instruct how they interact with the energy supply.

For instance, appliances not in use, but on ‘standby’ mode will be entirely disconnected from the power supply when nobody is at home. Heating and air conditioning use will be precisely measured according to the ambient temperature. Just these two examples – and there are many more in the pipeline – are set to shave a considerable amount of household energy consumption in the very near future.

2. Next Generation Home Insulation

The US Industrial Science & Technology Network takes the approach that heating and cooling costs can best be reduced by simply developing superior insulation. While still at the development stage, these are promised to be far more efficient at preventing heat from escaping.

As may be expected, they are also going to be environmentally sound and most likely comprised of recycled foam materials. Should these be proven to work, there is a very good chance they will become the industry norm for new build and redeveloped housing in the years to come.

3. Reflective Roofing Materials

While insulation is ideal for maintaining an ambient temperature what about those who live in warmer climes? Everyone knows how expensive it is to run air conditioning 24 hours a day, but there have been considerable recent advances in reflective rooftop materials. Currently, these work by using special pigments that are coated onto the roof in order to reflect sunlight and heat.

The next generation in development will use fluorescent pigments that look likely to be up to four times more efficient. So for those who reside in areas where effective air conditioning is essential around the year, these new materials may well be an absolute godsend.

4. Magnetocaloric Refrigerators

A fridge powered by magnets? Close, but not quite. Refrigeration technology has barely changed or advanced since they were first introduced. Modern fridges still rely on vapor compression, which unfortunately requires chemical coolants that are notoriously bad for the environment.

Next generation models are going to be able to make use of water-based coolants that make use of the magnetocaloric effect. In layperson’s terms, this is the use of magnets to alter the magnetic field which can provide an extremely energy efficient cooling effect. Expect this to become commonplace in the coming years, thanks to their potential in enormously reducing energy expenditure and carbon emissions.

5. Much More Efficient Heat Pumps

Considerable progress has been made by the US Building Technologies Office in developing heat pumps that essentially move heat throughout the home. There are three models in design that promise to considerably reduce expenditure on heating while also significantly reduce carbon emissions. Standard gas boilers/furnaces are notoriously expensive and inefficient.

  • A low-cost gas-based heating pump could massively increase efficiency and result in lowering heating costs by a staggering 45%.
  • Multiple function fuel based pumps designed for domestic use can still save an estimated 30% with the added bonus of also providing more efficient water heating.
  • Natural gas based heating pumps connected with air conditioners aim to use a very low emission boiler to cater for all domestic needs regardless of the season. Of all three options, this is the most complete package and the one most likely to become widespread in the coming years.

These styles of heat pumps are also going to be used to significantly reduce the energy used by clothes drying machines. General Electric has been already near completing their first gas pump compatible dryer. This is intended to reduce the energy consumption of perhaps the least efficient appliance in the home by up to 60%.

6. Even Better LED Lighting

Energy saving lighting may have become the accepted norm in many households, and the good news is that it is set to become even better. At present these are up to 85% more efficient than old fashioned incandescent bulbs, but the next generation – scheduled for a few years time – promise to double their efficiency. An improvement up to 230 lumens (from the current 115) is forecast.

8% of all electricity consumption in the USA are due to lighting homes and businesses. Having that figure will make for a huge national saving and reduction of energy costs across the board. (Source:https://www.eia.gov/tools/faqs/faq.php?id=99&t=3)

7. Advanced Window Insulation

While still in development this may not sound like a huge advance, but could well result in enormous net energy savings down the line. Using microprocessors and sensors to measure sunlight and radiant heat, these are going to automatically provide shading to assist with providing ideal natural lighting and also assist with heating. Expect these to be integrated with the general smart home system outlined above in due course.

Final Thoughts

So there we have seven of the most exciting and interesting developments that we can expect to see in the home over the coming years. While some are already in production while others are just passing the prototype phase, the future is looking positive in terms of reducing emissions and better managing energy consumption. Energy efficiency is here to stay and these developments will likely only be the tip of the iceberg compared to what we can look forward to over coming decades.

Don’t Wait Until It’s Too Late – Go Green Today

green-middle-eastIf you are looking to sell your home or are just thinking about doing some upgrades to make it more attractive when you do finally sell it, studies show that making your property more eco-friendly will make it more attractive to potential buyers. If you want to get specific, there are some upgrades that not only help the environment by reducing the home’s energy consumption, but at the same time provide a return on the investment of more than 100%. This is not just an empty promise as every year sees an increase in home construction that includes the latest in environmentally friendly technology.

It is no secret that technology is helping every industry develop at supersonic speeds. With the continued threat that rapid urban development brings to the environment. it only makes sense to use new technology to create better construction methods that are less harmful to the environment and more affordable to the homeowner. Jump on the opportunities available today and commit to making a better tomorrow.

Be Both Ambitious and Realistic

As you might expect, some upgrades are going to cost more than others. Want to add solar panels on top of the roof? First you have to check with your HOA, if you have one. Then you need to check the financials of the project. The upfront cost will vary from one installer to the next, and the rebates and incentives that encourage you to change in the first place will also vary depending on your home state.

If installing solar panels on your roof is not in your budget, there are plenty of other options to choose from. Everything from changing your insulation to never buying bottled water can have an impact. Changing the number of days you water your lawn or the amount of time for each sprinkler. Try reducing the amount of time you spend in the shower by just a few minutes each day.

All of these savings can add up and help reduce your carbon footprint over time and not only do you not spend money, but you can save money when it comes to your utility bills.

Don’t Forget Tax Season

Using your home as a tax write-off is so obvious it’s a huge reason many people buy homes in the first place. The important thing to remember is that you aren’t the only one who has a vested interest in making your home eco-friendly. The IRS has entered the discussion and extends tax credits based on different upgrades made to the home for environmentally friendly purposes. And since employing a special tax attorney may not be in your budget, there are other feasible ways to examine your financial situation as it impacts your taxes, and whether or not there are any discrepancies that need to be taken care of.

Once you have your overall financial situation looking a little clearer, don’t just be content with the usual write-offs consisting of interest payments and the like; consider all of your options and make an upgrade that pays for itself. The point is, being proactive and taking the initiative to make your home more eco-friendly is not only affordable, it is also rewarding.

Titanium – An Environmental Vanguard Among Metals

When titanium was first brought into widespread usage, it was lauded for its strong and weathering-resistant properties. Due to energy costs, production declined over the past 10 years; however, a new process established by the UK’s Dstl has reduced titanium processing time by 50%. The result? Cheap, low-energy titanium production.

Titanium is used in a startlingly diverse array of applications, too. From paint, to bikes, to eco friendly party glitter, you will likely encounter titanium in your day-to-day life more frequently than you’d notice. It’s good news, then, that titanium is being used to support positive environmental change in numerous ways.

Titanium taking over plastic

One of the foremost ways in which titanium is helping to improve our natural environment is through offering alternatives to polluting items. A great example of this is plastic replacement.

According to clean ocean advocates The Ocean Cleanup, there’s over 80m tonnes of plastic in the oceans. A large contributor to this is the plastic straw, which features at 11th in the list of Get Green’s most commonly littered plastics. Many manufacturers, by utilizing the non-rusting and sturdy quality of titanium tubes, have opted to replace drinking straws with titanium. Given the possibility of cheap, low energy tubes, this means ocean cleanliness can be improved and carbon emissions mitigated.

Taking titanium to the next level

The material properties of titanium are being taken to the next level by modern science. Another huge cause of carbon emissions and pollution is the plastic bottle. A key target for environmental plans, the reusable bottle industry grew to $7.6bn last year, according to Nielson.

Titanium has entered the market through a  clever flexible bottle, with titanium a key component. The metal has again been chosen due to its resistant quality and the improving environmental impact of producing it.

Tackling the oxides

Oxides have been the main use of titanium for a while. Paint, ink, sunscreen, medicines, paper – there are countless products that use titanium oxide. Historically, the process for oxide extraction has been environmentally damaging, as has the product itself; for example, the USA’s National Park Service states that various sunscreens with Ti oxide will damage coral.

Many manufacturers are replacing plastic drinking straws with titanium.

Now, Titanium Oxide is likely to be brought into the green sphere, too. A novel new study published in the Journal for Pharmaceutical Sciences found that titanium oxide can be synthesized using bacteria, and that this could spell a much brighter future for the historically damaging extraction.

Conclusion

Titanium is a versatile and well renowned metal used in a huge range of applications. As such it’s not an easy proposition to remove it from the market on the grounds of environmentalism. However, through determined scientific study and consumer action, it’s becoming a figurehead in helping the public to use its quality and simultaneously protect the planet.

Benefits of Biodegradable Packaging for Businesses

Consumers want companies to reflect their values. They’re far more likely to purchase from a business with an identity, whether it manifests in charitable efforts or eco-friendly practices. As a greater number of people show interest in green living, biodegradable packaging presents an opportunity for growth.

That said, the virtues of biodegradable packaging extend beyond an improved public image. While business owners enjoy the superficial advantages of this transition, they often find it’s only a fraction of what the shift entails. Through switching to biodegradable plastics, they see considerable changes elsewhere.

bioplastics

In this article, we’ll detail five of those changes, exploring the subject to lend business owners a better understanding of biodegradable packaging within their operation. As we touch on the benefits, it’ll become clear that eco-friendly materials aren’t only better for the environment, but better for a company’s bottom line.

Free of Toxins & Allergens

Biodegradable packaging options are still somewhat limited, but most of the available materials are non-toxic and allergy-free. This is an essential consideration to consumers who care about the products they’re purchasing and the composition of their packaging. If either is potentially harmful, it hurts a business.

An informed consumer will almost invariably choose products packaged with bioplastic over traditional alternatives, aware of the implications of their purchase. Considering the negative health effects of phthalates — a common chemical in plastic packaging — business owners should be aware of the implications as well.

Require Fewer Resources

Biodegradable packaging has the potential to reduce water usage, solid waste, electricity and emissions. This is beneficial for the environment, of course, but it also lowers expenses associated with the packaging process. Over time, the accumulated savings prove well worth the cost of the transition.

If a company were to replace their standard packaging materials with bioplastic, they would enjoy weight savings on par with regular plastic. Research shows plastic packaging enables weight savings of over 78 percent compared to alternative materials, a notable statistic for business owners looking to convert.

Lower Production Costs

Most biodegradable materials follow the three basic R’s of sustainability.

  1. A business can reduce them, using fewer resources to create thinner and tougher materials which do the same job.
  2. A business can reuse them, taking advantage of materials with special coating which improves their durability.
  3. A business can recycle them, diverting refuse from landfills as they minimize the costs of new materials.

A business owner who invests in biodegradable packaging can cut costs by a significant margin, using fewer resources, reusing their inventory and purchasing inexpensive recycled materials. In doing so, they’ll see reduced packaging expenses over time, and more freely allocate their money elsewhere.

Reduced Footprint

A business owner has financial goals they have to meet, but they have environmental goals as well. Every professional in an upper-management position has a responsibility to ensure their company meets high standards of environmental compliance, and biodegradable packaging can help — outside a legal context.

To reinforce an earlier point, 70 percent of consumers between the ages of 15 and 20 want to buy goods from companies committed to sustainability, and biodegradable plastics affect the appeal of businesses which would otherwise see less attention. To reduce emissions and increase interest, change is necessary.

Convenient Disposal

Recyclable, compostable and biodegradable packaging simplifies disposal for the consumer. It affords them more options in discarding these materials, and companies should always seek to make their products convenient, from start to finish. Biodegradable materials exemplify this mindset.

For example, consumers who prefer to compost their refuse won’t have to make exceptions for packaging. They can add biodegradable packaging to their compost in much the same way they would with any other compost-friendly material, contributing to the product’s value beyond its primary utility.

Looking Toward the Future

When reviewing the benefits listed above, business owners should feel confident in their decision to adopt biodegradable packaging. More than superficial benefits, they’ll enjoy reduced costs and carbon emissions while increasing consumer convenience and reducing plastic pollution. The advantages are clear.

Looking toward the future, it’s safe to speculate more companies will transition toward eco-friendly practices. With this in mind, taking action now is the best option, and though biodegradable packaging is a small step, it’s an important one.

Zena Fly- Feeding the World on Insect

Meeting an ever increasing demand for food/feed/energy and managing waste have become two of the major global challenges. The global world population is estimated to increase from 7.3 billion in 2015 to 9.7 billion in 2050. Approximately one third of the global food produced for human composition is wasted. Currently, approximately 1.3 billion metric tons of waste are disposed with significant environmental impact as far as greenhouse gases and economic footprints and the current waste management practices are not costly sustainable.

Increase in Global Energy Demand

Global energy demand is estimated to increase from 524 Quadrillion btu in 2010, to 820 Quadrillion btu by 2040 (a 56% increase). Similarly, global demand of food and animal products are projected to increase by 70-100% and 50-70%, respectively, by 2050. To cope up with the demand for animal products, a substantial increase in nutritious animal feed is needed.

On one hand, the production of conventional feedstuff such as soybean meal and fish meal is reported as the major contributor to land occupation, ocean depletion, climate change, water and energy consumption. Moreover, such conventional animal feedstuff are not only limited in supply but also are becoming more expensive over the years. Additionally, there is an already strong and increasing competition for resources such as food, feed and biofuel production.

Need for alternative non-conventional source of food, feed, and fuel

Thus there is a pressing need for identifying and exploring the potential of alternative non-conventional source of food, feed, and fuel, which are economically viable, environmentally friendly, and socially acceptable.

By 2030 the Bio-based Economy is expected to have grown significantly. A pillar of this is biorefining, the sustainable processing of biomass into a spectrum of marketable products and energy. To satisfy this demand biorefineries need to be better integrated, flexible and operating more substantially. This means that a major yield, more efficient use of nutrients and water and greater pest and disease resistance should be achieve.

Zena Fly: A Startup Worth Watching

In this context an Italian-based start-up, Zena Fly, designed an innovative process for the future integrated bio-refinery by mimicking nature’s ability. In fact, Zena Fly utilizes the natural insect life cycle to manage large quantity of organic waste produced in urban and industrial context, in order to generate sustainable and valuable by-products. The project of three young entrepreneurs foresees a combined bio-refinery where waste is turned into high-quality by-products by the anaerobic insect digestion.

The Concept

The basic concept is to convert waste into high-valuable products utilizing the black soldier flies (H. illucens), a now globally distributed insect. With a modern technique, the typical insect life cycle of these insects can be utilized in order to manage urban and industrial waste. The voracious larvae can reduce by more than 40-70% (based on the nature of the substrate-waste) the substrate where reared (waste) within 12-14 days.

From the anaerobic waste digestion, large quantity of fine protein meal for feed composition (more than 50-60% in protein), fat, fertilizing oil and other by-products of great interest such as chitin, and high-quality biofuel are then extracted.

Since the adult fly do not feed, and do not fly around for feeding, these animals are exceptionally valuable from a sanitary perspective (larvae has been demonstrate to reduce/eliminate E.coli and Salmonella).

Business Model

Zena Fly business model foresees to replicate their integrated biorefineries next to any waste management companies or industrial production areas where large quantity of waste need to be reduced and transformed. This is a win/win operation, where the waste management cost would be cut in half and the process will generate appealing opportunities for investments in a market where the increasing demand is already way higher than the products availability.

Zena Fly is now seeking for the right partner-investor in order to scale up quickly. For more information, please visit www.zena-fly.com or email us on info@zena-fly.com

Easy Ways to Make Your Business Energy Efficient

Nowadays, smart business owners are taking steps towards making their company more efficient in every way. By establishing more efficient processes, these businesses are capable of getting more done in a shorter amount of time, and they’re also saving money along the way. But, beyond helping their employees perform better, business pros are also working on implementing tools and strategies for becoming increasingly more energy efficient so that their business can be greener and so that they can save money on their energy bill.

If you are ready to take your basic eco-friendly office to the next level, keep reading for some helpful information on how to become more energy efficient at work.

Make the Switch to Laptops

Desktop computers that are always plugged in are always consuming some level of energy, even when they are turned off. Unless you have all of your electronics plugged into a power strip that is turned off at the end of every workday, those devices will continue draining energy, and you will see it on your energy bill. For this reason, a lot of businesses are opting to make the switch to using laptops rather than desktops.

Laptops only need to be plugged in when they are in need of a charge; the rest of the time, they use a built-in battery to function. This can help you save quite a bit of money on your energy bill, and it can also help you save much-needed space because laptops are smaller than desktop computers with separate monitors. This is one of the easiest ways to make your office more energy efficient, and your employees will likely welcome the change to laptops as well.

Purchase Products Having Energy Star Seal

Another way to save money on your energy bill while making your office more energy efficient is by switching to Energy Star appliances and office products that will use up far less energy than their counterparts. Properly dispose of old appliances, such as your office’s refrigerator and microwave, and replace them with Energy Star appliances so that you can start to save money and allocate it towards more important aspects of your day-to-day operations.

Beyond appliances, office products like printers, scanners, copiers, and computers can also come with the Energy Star seal, so be sure to stick with those as well. Because you use these products every day, and for hours on end, making the switch to energy efficient office equipment is wise.

Get Smart About Lighting

Another way to become more energy efficient at work is by focusing on the lighting throughout your office. It is important to replace outdated light bulbs that are less efficient than modern options. So, for example, you could replace incandescent light bulbs with LED bulbs, which do not contain the harmful mercury that compact fluorescent light bulbs contain. Beyond that, you can check to see if there are any light fixtures that you do not really need to have in place after all. Plus, simply turning the lights off when you leave a room can be a great way to save money really easily.

You can even opt to install light fixtures that use sensors to determine when there are people in a room, thereby allowing the lights to turn on and off automatically. And, finally, whenever possible, take advantage of natural light during the day so that you can rely less upon artificial, energy-consuming light.

Keep Your Staff Comfortable, but Save Money Too

What temperature is your office thermostat currently set to? Do you think that you can maybe tweak the temperature a bit so that you could save money, while also keeping everyone comfortable? Many times, office thermostats are set at temperatures that end up costing the business a lot of money. Small changes in temperature can make a big difference in your energy savings, but your staff are not likely to notice the changes because they will still feel comfortable while they work.

For example, you can save money during the summer by setting the thermostat to 78-80°F. When the workday is over, you can allow the office to reach 80°F because no one will be there anyway, so you don’t need to bother keeping the air conditioner going. In the winter, on the other hand, you can keep your thermostat set anywhere from 65-68°F, and you can let it drop to 60°F overnight when no one is in the office. Go ahead and change the temperature setting by a degree or two for a month to see how much you can save.

Conclusion

It is pretty clear to see that it is very important to become more energy efficient at work. The first step involves setting up an eco-friendly office. But, once you have set the foundation, you can go even further by becoming energy efficient for the planet and for your bottom line.

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What Is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Finding the Most Appropriate Renewable Energy

Energy is very important nowadays. Contemporary people can hardly imagine their existence without it. Humans always tried to produce cheaper and safer energy. Nature provides us with the energy we can renew daily. It provides people with the benefit which nobody can argue. It almost has no negative impact on the surrounding and is considered to be rather safe.

The cost of alternative energy systems has dropped sharply in recent years

When the scientists revealed that greenhouse gas effect led to the change of world’s climate they began to look for all possible ways to prevent the catastrophe. Fossil fuel does not give the chance to renew it after the use while sustainable energy can. In addition, fossil fuel is running out. That forces people to search some new ways to restore it. The depletion of sources motivated scientists to develop new methods of energy production.

A country or even some particular geographical area should select a suitable type of renewable energy source. It usually depends on sources the region possesses. For example, countries which are situated on the equator can benefit from solar energy while those regions which lack sunny weather should better provide themselves with hydro energy or biomass energy.

There are regions which experiment trying to find the most appropriate renewable energy type. For instance, Massachusetts varies the use of different renewable energy sources. The state government proves that their region is able to provide the citizens with more wind’s energy than with any other ecologically safe power supply. The use of wind energy is beneficial for the state not only because it is ecologically safe but also because it has an economic advantage. They produce both offshore and onshore winds’ energy.

Yearly industry report manifests that the first one is even cheaper and ranges up to sixteen cents one kilowatt per hour. Such energy is clean and beneficial. In 2009 the government of Massachusetts issued the project of developing offshore ocean energy for a number of its regions. This plan proves the indisputable convenience of wind power use for this concrete state of America.

Despite the fact that wind power is rather sustainable, the US industry report relies greatly on solar energy use. This conclusion is based on three main reasons. The first and most influential is the fact that not all American regions can provide wind energy because of geographical peculiarities. By the way, some scientists and consumers find it rather complicated due to huge transmission lines it requires. That is why solar energy is more effective.

All regions receive the sun energy almost equally and they can depend on it mostly. The next factor that influences the choice of solar energy is its permanency and regularity. Wind turbines are more inconstant than the solar ones. Solar panels are able to generate energy even if there is no sun. Clouds cannot stop the penetration of sun rays completely. Due to that, scientists in Massachusetts also found solar energy to be rather beneficial and constant. The last factor that contributes to the number of advantages of solar panels use is their productivity. They are capable to produce more energy than the turbines which are enabled by winds.

The experiment of solar and wind energy testing lasted during thirteen days in Massachusetts. It took place at the beginning of January. Solar panels managed to produce thirty-five kilowatt-hours of pure electricity. At the same time, the winds turbines had hardly provided the territory with fourteen kilowatt-hours of clean energy. The outcome of the experiment supported the idea of solar panels efficiency compared to the wind turbines productivity on Massachusetts territory.

The investigation reasoned the use of solar and winds’ energy. Even if some type of renewable energy is less effective still it provides humans with ecologically safe power. It is unsound to refuse at least from one of them. All renewable energy gives the chance to save the planet from ecological disaster and improve human lifestyle and health condition.

About the Author

Lauren Bradshaw started academic writing in 2003. Since then she tried her hand in SEO and website copywriting, writing for blogs, and working as a professional writer at CustomWritings professional essay writing service. Her major interests lie in content marketing, developing communication skills, and blogging. She’s also passionate about environment, philosophy, psychology, literature and painting.

Everything You Need to Know About Solar and The Urban Heat Island Effect

As cities grow, open spaces, trees and other greenery, and other naturally occurring surfaces diminish, replaced by concrete and asphalt surfaces. When this happens, the heat absorbed by these surfaces has nowhere to go, and so is radiated and reflected into the immediate surrounding areas. This creates an urban heat island.

This leads to an increase in heat in the immediately surrounding areas, making temperatures a few degrees hotter than the actual weather. This causes discomfort to residents of the area and can also incur damage in the form of heat-damaged structures.

There is also a human cost associated with urban heat islands. Heat-related medical emergencies such as heat stroke become more prevalent in such areas as the heat can go up to dangerous levels. The EPA has taken stock of this phenomenon and is now advising cities to take steps to mitigate it. One such way is the use of Los Angeles solar as a means of making cities cooler and more comfortable to live in.

How does solar minimize this effect?

Cool Roof Strategy

A cool roof strategy is a one that seeks to use heat absorbing and/or dissipating roofing materials and technologies. Typical roofs use materials that either reflect or absorb and radiate back heat. Conversely, cool roofs, like solar, can help absorb sun rays and convert them into beneficial energy.

Solar excels at this because of the way the cells are designed and organized to absorb the maximum amount of sunlight. Solar roofs are also designed to trap this heat rather than radiate it back into the environment, something that can help reduce the amount of secondary heat being released into the environment.

Reduced Construction

When solar roofs are implemented, there is usually a reduced need to construct structures that support the traditional electric grid. Such a scenario can play out in several ways. If a new estate is being built with nothing but solar power, there is a possibility that some open spaces can be retained as fallow ground in places where utility implements would have been installed.

While the gains at this level would be marginal, implementation of this strategy across several thousand estates can help move the needle in reducing the urban heat island effect.

Combination Approach

This approach offers the greatest promise of reducing heat in urban settings. By combining the cool roof strategy with other strategies like green roofing, planting more trees and vegetation, cool paving and general smart city growth, a lot of ground can be covered.

Planting more trees and vegetation will go a long way in reducing heat in urban settings.

All these strategies have one thing in common in that they all absorb and dissipate heat in an efficient and sustainable manner. The EPA recommends these measures, among others, to cities grappling with the urban heat island effect or anticipating it as open spaces and greenery levels go down.

Many cities have a high incentive to deal with this issue because of its effect on residents and visitors to the area. If street-level temperatures are unbearable, it is possible that tourists and potential new residents may shy away from the area in favor of other cooler cities.