How An Increase in Demand of Epoxy Resin Can Fuel the Need for Clean Energy

Epoxy resin is a kind of reactive prepolymer and polymer that contains epoxide groups. It is important to note that epoxy resin is different from other polyester resins in terms of curing. Unlike other resins, instead of using a catalyst as a curing agent, it is cured by an agent known as the hardener. It possesses many desirable properties such as high tensile strength, high adhesive strength, high corrosion resistance, and excellent moisture & chemical resistance. It is also resistant to fatigue, has a long shelf life, and has good electrical and insulating properties. The ability of epoxy resins to be used in various combinations and reinforcements makes it the foundation of a plethora of industries, including clean energy systems.

Applications of Epoxy Resins

Because of the versatile properties of epoxy resins, it is used widely in adhesives, potting, encapsulating electronics, and printed circuit boards. It is also used in the form of matrices for composites in the aerospace industries. Epoxy composite laminates are commonly used for repairing both composite as well as steel structures in marine applications.

Due to its high reactivity, epoxy resin is preferred in repairing boats that have been damaged by impact. Its low shrinking properties and ease of fabrication make it well suited for many tooling applications such as metal-shaping molds, vacuum-forming molds, jigs, patterns etc.

Use of Epoxy Resins in Clean Energy

A variety of industries have been actively trying to find a path that’s moving towards a society that puts less load on the the environment and also contributes towards reducing the carbon footprint. The accelerated use of epoxy resins in generating renewable energy has lead to a rise in its production demand. This is why the epoxy resin market is projected to witness a high demand and growth rate by 2022. Here are some of the sectors contributing to the production of clean energy and how they utilize epoxy resin for their functioning:

  • Solar Energy

The harnessing of solar energy dates back to 700 B.C, when people used a magnifying glass to focus the sun’s rays to produce fire. Today solar power is a vigorously developing energy source around the globe. It not only caters to the rising energy requirements but also the need to protect the environment from the exploitation of exhaustible energy resources.

A piece of average solar equipment endures intense environmental conditions such as scorching heat, UV radiations, bitter cold,  pouring rain, hail, storms, and turbulent winds. To withstand such conditions, the sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment.

With their high mechanical strength, impressive dimensional stability and excellent adhesion properties, they are used to protect the solar panels from a wide range of temperatures. Epoxies are cheap, less labor-intensive and easy to apply.

  • Wind Energy

The global wind industry has quickly emerged as one of the largest sources of renewable energy around the world. The wind energy in the U.S. alone grew by 9% in 2017 and today is the largest source for generating clean energy in the country. With such a tremendous demand for wind power, the need for fabricating bigger and better wind turbine blades is also rising. The industry is in a dearth of long-lasting blades, that endure the harsh climatic conditions and wear tear and are able to collect more wind energy at a time.

Sealing and mounting application of epoxy resins increase the environmental tolerance of the solar equipment

Epoxy thermosets are used for making the blades more durable because of their high tensile strength and high creep resistance. Mixing of epoxy resins with various toughening agents and using them on the blades have shown positive results towards making the blades corrosion resistant and fatigue-proof.

  • Hydropower

Hydropower is an essential source of renewable and clean energy. As the hydropower industry is developing rapidly, the solution for protecting the hydropower concrete surfaces against low temperatures and lashing water flow has also been looked into.

As a solution to this issue, epoxy mortar, a mixture of epoxy resins, binder, solvent, mineral fillers, and some additives has proven to be the most effective material used for surface protection. Owing to the properties like non-permeability, adhesive strength, anti-erosive nature, and non-abrasiveness, epoxy mortar paste has been used as a repairing paste in the hydropower industry.

Over the last few decades, epoxy resins have contributed immensely in the maintenance and protection of clean energy sources, helping them to become more efficient and productive.

Final Thoughts

While many argue that factors like a relatively high cost when compared to petroleum-based resins and conventional cement-mortar alternatives has affected the epoxy resin market growth, the fact remains that epoxy resin never fails to deliver top-notch and unmatchable results in the areas of application.

Municipal Waste Management in Poland

waste-dump-warsawMunicipal waste management in Poland has changed dramatically since the early ’90s when, as part of Poland’s privatisation program, municipal authorities were freed of their waste management obligations. The combined Polish recycling rate for dry recyclables and organic waste has increased from 5% in 2004 to 21% in 2010, according to a Copenhagen Resource Institute (CRI) study Municipal Waste Management in Poland (2013). Another source provides similar, corroborating statistics, putting the dry recycling rate in Poland at 14% and the composting rate at 7%.

The latest Eurostat data (for 2011) shows that the upward trend continuing, with the total recycled and composted reaching 28%. That is rapid rate of improvement, but leaves Poland well below the latest EU-27 average of 40% (25% recycled and 15% composted) – so what prospect is there of Poland reaching the EU’s mandatory 50% target by 2020?

Responsibility for waste disposal shifted to householders, who were left to individually contract any waste collection company of their choice. In the hard economic climate a ‘cheaper-the-better’ mentality prevailed, which did little to encourage sustainable practices. There wasn’t even an obligation on householders even to sign up for waste collection.

Landfilling was – and remains – the most common way of handling waste, but accompanying reporting and tracking methods were inadequate. Statistically, quantities of waste produced were usually larger than those collected, with the missing tonnages usually being dumped in forests or burned in domestic boilers to avoid waste disposal costs. As a result, waste management became largely uncontrolled, with a 2011 report concluding that ‘’waste management is one of the most badly neglected and at the same time one of the most urgent environmental issues for Poland.’’

Waste Management Legislation

Even after joining the EU in 2005, Poland didn’t rush to introduce reforms to improve practices and help to meet recycling targets. Only recently has Poland introduced several pieces of new waste related legislation, including:

  • Act on maintaining cleanliness and order in municipalities (2012);
  • Act on Waste (2012); and
  • Act on management of packaging and packaging waste (2013).

The first of these was revolutionary in that it gave responsibility for municipal waste collection and disposal back to municipalities. Now they are required to organise garbage collection and the separate collection of biodegradable waste and recyclable materials such as paper, metal, glass and plastic. It is expected that the new law will improve waste management control measures on a local level and greatly reduce the illegal dumping and trash burning.

The Act on Waste helps tackle the previous ‘free for all’ amongst collectors – it obliges waste handlers to act in a manner consistent with waste management principles and plans adopted at national level (by the Council of Ministers), regional level (Voivodeship) and local level (Municipality).

Poland has also this year adopted a new National Waste Management Plan, which states that an essential step towards improving the recycling rate in Poland is to increase landfill fees for recyclable, compostable or recoverable material. If acted upon, this could greatly increase the incentive to divert important municipal waste streams from landfill. The Polish market is clearly responsive to cost: in 2008 after landfill tax was significantly raised, there was a substantial reduction in waste being landfilled.

Declaration of bin-dependence

Although Polish citizens have always had to pay directly for waste collection, the new legislation has made some substantial changes to the payment system. There are now three different calculation methods. Each household is subject to a standard fee, which is then adjusted to reflect either:

  • The number of people living in a household;
  • The number of square metres covered by the property; or
  • The number of cubic metres of water used by the household per month.

The first of these options seems to be the most reasonable and has proven the most popular.

Municipalities are left to determine the standard collection fee, which as a result varies from region to region. Some municipalities charge at little as 3 Polish Zloty (around £0.56) per household, per person, per month, while some charge 20 Zloty (around £3.75).

The standard charge is also affected by a declaration made by the householder regarding waste segregation. If a property owner declares that they have separated out recyclable materials then they pay considerably lower fees. In some municipalities, this could be as low as 50% of the usual charge. Only those who declare that they don’t want to recycle pay full price. It’s rare that people do so: who would pick the most expensive option?

The problem is that some householders declare that they recycle their waste while in reality they don’t. Unfortunately, abusing the system is easy to get away with, especially since the new scheme is still in its early stages and is not yet stable. Monitoring recycling participation in order to crack down on such abuses of the system represents quite a challenging task.

Future Perspectives

Transformation periods are always hard and it is common that they bring misunderstanding and chaos. It isn’t surprising that there are problems with the new system which require ironing out, and the new legislation is nevertheless welcome. However, there is still much work to be done to provide sufficient and sustainable waste management in Poland. This will include such measures as educating the population, improving waste separation at source and securing waste treatment capacity.

Perhaps most importantly, Poland needs to take immediate action to develop its municipal waste treatment capacity across the board. If the 2020 recycling target is to be met, the country will require material recovery facilities, anaerobic digestion and in vessel composting sites, and household waste and recycling centres; and if more waste is to be diverted from landfill it will also need energy from waste (EfW) incinerators and mechanical biological treatment facilities.

According to Eurostat, only 1% of waste in Poland was incinerated in 2011. It has been confirmed so far that an EfW plant will be developed in each of Poland’s 11 biggest cities. Fortunately for Poland, the development of waste treatment installations is quite generously funded by the EU, which covers up to 80% of the total cost: EU subsidy agreements have already been signed for three of the planned EfW plants. The remaining cost will be covered by central, regional and local government.

The CRI paper presents three different scenarios for the future recycling rate in Poland. One of them is very optimistic and predicts that Poland has a chance to meet the 2020 recycling requirements, but each is based simply on a regression analysis of recent trends, rather than an analysis of the likely impact of recent and planned policy measures. What it does make clear, though, is that if Poland continues to progress as it has since 2006, it will reach the 2020 target. How many EU countries can claim that?

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original version of the article can be found at this link.

The Specifics of A Shipping Container Environment

The use of recycled shipping containers has found excellent footing in today’s society. There are so many different ways that the current modern system has created a new dichotomy of agriculture. If you are curious to understand the concept of the these containers and the specifics that come with them, keep reading!

Concept of Shipping Container Environment

This is the environment where old shipping boxes get used. They get planted crops and make sure that the food production would reach the market fresh and in the right order. There are many advantages to using such environment.

Advantages of Shipping Container Farming

A shipping container is an environment created to provide a complete farming experience and crop production system that aims to create a system that works all year round.

The yearly production is genuinely a pleasant experience as the countries can produce internally and importation of products as well as smuggling activities could be reduced.

The system uses an intelligent and super-efficient LED lights or grow lights that can substitute the sun’s rays. The entire container is equivalent to a farm that can produce up to two acres of crops.

The inside of the farm allows the produce to grow in an insulated environment that is around 40′ by 8′ by 9.5′. Most of the regions that would benefit from the farm system are the cold weather system countries. In these countries, producing food crops is a big problem. Shipping is also costly since importation is the only source of food.

With the use of farming containers, importation is cut down. The cost of using and maintaining a farming container is still cheaper by at least three times compared to the average consumption of most industrial food crop producers. It takes an average of kilowatts per hour of energy daily to maintain the farm. However, it is still more cost-effective to do it this way, especially for cold countries or those countries that have less agricultural lands available for them.

The price of obtaining a shipping container farm is not low. However, this price is worth the investment as the production is either increase or made possible. It is also more advantageous because it is less expensive to maintain a shipping container for him than one that is land-based or is naturally and agricultural land. On average, you should expect to spend around $50,000 to $85,000 to purchase one shipping container.

Some countries are considering requiring old shipping companies to donate or sell their old shipping containers to the governments in exchange for tax breaks. However, this policy is only a suggestion for most countries and is not yet get implemented.

Another great advantage of a shipping container for him is the fact that it is often compact. Because of its size or at least of its portability, there is a great advantage to it. It is easier to get transported from one place to another. It is also easier to have less footprint than using land-based crop production.

Zoning is also not a problem when it comes to containing her forms. Most of the companies that use this process can place their containers in both rural and urban areas. The reason behind this is the fact that there are no zoning laws against maintaining a repository in most areas.

Container farms also do not use new water. The creators of this modern technology got able to use recycled water to maintain the irrigation system within the container farms.

Vertical Growing: The Best Part of Container Farming

The best part of container farming is the fact that it uses a vertical system to grow the crops. Environmental sensors get used during the cycle of growth of the plants. These sensors allow for the farm system to control all of the essential factors in growing the crops.

The factors such as temperature, airflow, nutrient levels, humidity, as well as the oxygen and carbon dioxide levels get controlled.

The Future of Agriculture

Container farming can get considered as the future of agriculture. It provides for a modern and straightforward approach to crop production that reduces waste and cost for food suppliers. Importation could be a problem of the past for countries that are unable to produce their crops. However, since trade is a fundamental economic aspect of most countries, that will not fully illuminate the land-based agricultural production of crops.

More Reasons To Check Out Alternative Energy Sources

In recent years, the world has seen significant economic progress, which greatly relied on energy fueled by coal and petroleum among others. With the continuously growing demand for energy, it is a fact that these energy sources may be depleted in the near future. Apart from this, there are several other reasons why humankind already needs to find alternative energy sources.

Global Warming

It is a known fact that different manufacturing processes and human activities, such as using vehicles, cause pollution in the atmosphere by releasing carbon dioxide. Carbon dioxide traps heat in the earth, and this phenomenon is known as global warming. Global warming has several harmful impacts such as stronger and more frequent storms, as well as drought and heat waves. Renewable energy sources such as wind, solar, geothermal, hydroelectric, and biomass to name a few, all generate minimal global warming emissions.

Wind power, for instance, has the capability to supply energy with a significantly lower emission compared to burning coal for fuel. This is the reason why wind energy is more beneficial compared to carbon-intensive energy sources. Still, the emissions generated by wind power are even lower compared to other renewable energy sources such as solar, geothermal, and hydroelectric power sources. This makes a huge potential for wind power to sustain the world’s energy demands, while preserving the environment.

Public Health

It goes without saying that the pollution caused by burning coal and fuel not only has an environmental impact, but it also has a significant effect on public health. Various diseases and ailments can be attributed to pollution, which usually affects the respiratory tract. Contaminated water also causes various bacterial infections. Wind power, solar energy, and hydroelectric systems have the capability to generate electricity without emitting air pollutants. Additionally, wind and solar energy sources do not need water to operate, thereby, eliminating the probability of polluting water resources. Clean air and water that is free from pollutants, will have a significant positive impact on public health.

Constant Energy Source

While coal and fossil fuels are on the threshold of depletion, renewable energy sources are inexhaustible. Wind can be a constant energy source and no matter how high the demand for energy will be, the wind will not be depleted. In the same manner, as long as the sun shines bright on earth, there will always be an abundant solar energy source. Fast-moving water that can be translated into hydroelectric energy, the earth’s heat that can be converted into a geothermal power source, as well as abundant plant matter that can be used as biomass, can all be constantly replenished. These can never be fully exhausted no matter how great the energy demand will be. The utilization of a combination of each of these energy sources will prove to be even more beneficial. Additionally, with its continued use, there will no longer be a need for combustible energy sources.

Lower Energy Costs

The cost of electricity continues to be a burden on the earth’s greater population. The use of renewable energy sources to light up the earth is considerably cheaper and inexpensive compared to the cost of burning fossil fuels for electricity and other energy needs. Apart from a cheaper cost, renewable energy sources can help stabilize to cost of energy in the long run, with an unlimited supply being able to cater to greater demand. While it cannot be denied that setting up clean energy technologies comes with a cost, it can be noted that the cost of its operation is significantly lower. Conversely, the cost of coal and fossil fuels for energy consumption fluctuates over a wide range and is greatly affected by the economic and political conditions of its country of origin.

Economic Benefits

Fossil fuel technologies, often, revolve around the capitalistic market. Hence, the use of combustible fuels is often linked to unfavorable labor conditions, and even child labor and slavery. On the other hand, the use of renewable energy sources provides decent jobs, contributing to several economic benefits. For instance, workers are needed to install and maintain solar panels. In the same manner, wind farms employ technicians for maintenance. Thus, jobs are created directly in parallel with the unit of energy produced. This means that more jobs will be produced if more renewable energy sources are utilized.

Reliability

Clean energy sources, specifically wind and solar power, are less susceptible to large-scale failures. The reason behind this is that both wind and solar power both employ distributed and modular systems. This means that electricity will not be totally cut off in instances of extreme weather conditions because the energy sources powering up the electricity is spread out over a wider geographical area. In the same manner, there will still be a continuous supply of energy even if certain equipment in the entire system is damaged because clean fuel technologies are made up of modules such as a number of individual wind turbines or solar panels.

With all the reasons to check out alternative energy sources, it still holds true that there remain several barriers that hinder the full implementation of renewable energy technologies. Some of these challenges are capital costs because of reliability misconceptions, as well as a difficult market entry due to an unequal playing field. Because renewable energy sources are cheap to operate, the bulk of the expenses in its implementation is building the technology. Thereby, the rate of return for capitalists and investors in the market entails a longer waiting period. Adding to this barrier is the hidden political agenda that most governments need to overcome.

Economic progress and advancement in technology are not at all bad. On the contrary, it has brought forth a lot of benefits such as cures for ailments and diseases, resources for deep-sea or space explorations, as well as meaningful collaboration and communication. However, this progress came with a price, and unfortunately, it’s the world’s energy resources that are on the brink of exhaustion. Hence, mitigation has been already necessary and finding alternative energy sources is just one of the probable solutions.

Why Biofuels Should Be a Key Part in America’s Future

Biofuels are one of the hottest environmental topics, but they aren’t anything new. When discussing these fuels, experts frequently refer to first, second-and third-generation biofuels to differentiate between more efficient and advanced ones currently in development and more traditional biofuels in use for decades.

Biofuels are increasingly being used to power vehicles around the world

First-generation biofuels are things like methanol, ethanol, biodiesel and vegetable oil, while second-generation biofuels are produced by transforming crops into liquid fuels using highly advanced chemical processes, such as mixed alcohols and biohydrogen. Third-generation, or “advanced” biofuels, are created using oil that is made from algae or closed reactors and then refined to produce conventional fuels such as ethanol, methane, biodiesel, etc.

Cleaner Air and Less Impact on Climate Change

As biofuels come from renewable materials, they have less of an impact on climate change as compared to gasoline, according to multiple studies. Ethanol in gasoline has been helping to decrease smog in major cities, keeping the air cleaner and safer to breathe. Starch-based biofuels can reduce carbon dioxide emissions by around 30- to 60-percent, as compared to gasoline, while cellulosic ethanol can lessen emissions even further, as much as 90 percent.

Reduced Danger of Environmental Disaster

Can you imagine buying one of the oceanfront Jacksonville condos in Florida, looking forward to enjoying peaceful beach strolls every morning only to find injured or killed animals and globs of oil all over the sand? Not exactly the vision of paradise you dreamed of.

A major benefit of using biofuels is the risk of environmental disaster is dramatically reduced. The 2010 Deepwater Horizon Spill that occurred in the Gulf of Mexico released millions of gallons of oil. It not only cost BP nearly $62 billion but caused extensive damage to wildlife and the environment. Biofuels are much safer. For example, a corn field won’t poison the ocean.

More Jobs and an Economic Boom

Numerous studies, including one conducted by the Renewable Fuels Association (RFA), have found that biofuels lead to more jobs for Americans. In 2014, the ethanol industry was responsible for nearly 84,000 direct jobs and over 295,000 indirect and induced jobs – all jobs that pay well and are non-exportable. The industry also added nearly $53 billion to the national GDP, $27 billion to the national GDP and over $10 billion in taxes, stimulating local, state and national economies.

Many experts predict that these figures will increase with significant job creation potential in biorefinery construction, operation and biomass collection. If the potential for producing cellulosic ethanol from household waste and forestry residues were utilized at commercial scale, even more jobs are likely to be added.

Energy Independence

When a nation has the land resources to grow biofuel feedstock, it is able to produce its own energy, eliminating dependence on fossil fuel resources. Considering the significant amount of conflict that tends to happen over fuel prices and supplies, this brings a net positive effect.

A Glance at College Recycling Programs

Just one look at your local landfill is enough to convince you that there is a need for more recycling programs. Recycling should be a priority for all institutions across the country. College recycling programs ensure that such institutions make a contribution to environmental conservation.

Every student should have a recycle bin where they dispose of recyclable materials like paper, batteries, water bottles, and so much more. The world is going through a green resource transition, and college institutions should not be left behind.

 

Local communities can also borrow a leaf from college institutions and recycle their waste. The internet is quite resourceful when it comes to researching how a recycling program should work. Students can also use online resources to make their school life easier. For instance, thesis writing services ensure students get the marks they need to graduate.

1. American University

American University strives to be 100% waste-free. Its zero waste policy was adopted in 2010, and since then, the institution has had significant milestones. The system ensures that all university wastes are diverted from landfills. AU uses only renewable materials to ensure no waste is going into the environment.

The university’s environmental conservation efforts ensure it maintains a healthy student community. AU’s fraternity practices sustainable purchasing to maintain an environmentally-friendly campus.

AU makes paper towels from restrooms as well as kitchen wastes. The elimination of water bottles and food trays also helps cut down on wastes. The kitchen grease is recycled for electricity to help manage utility bills.

This institution has one of the finest recycling systems in America’s academic scene. In 2012, the school beat over 600 other universities at a RecycleMania contest.

2. Valencia College

Valencia College has a decade-old recycling system that’s updated each year. The institution has established itself as the model for university sustainability by bagging RecycleMania gold for waste minimization from 2012 through to 2014.

The school encourages students to reduce their waste output. It has a seamless paper, aluminum, plastic, and e-waste management system in place. The school no longer uses water bottles as this is the source of plastic waste in many institutions. Valencia College recycling program aims to reduce the institution’s carbon footprint.

3. College of the Atlantic

College of the Atlantic is well known as the greenest university college in the country. The institution’s recycling system is a comprehensive program that offers outlets for all types of waste.

Aside from outlets for food, the university also has units for composting disposable flatware and kitchen napkins. For foods that cannot be recycled, the campus uses these as a source of renewable energy. The recycling program is run by students to teach them the importance of environmental conservation.

4. University of California

One of University California’s goals is to achieve zero waste by 2020. A 90% waste diversion from landfills will have a significantly positive impact on the environment. The campus also aims to phase out procurement and distribution of Expanded Polystyrene.

Within the institution, is a hub for repurposing items. Students also collect leftover food in their rooms. The school rethinks daily operations to achieve a comprehensive diversion campaign.

5. Kalamazoo College

Kalamazoo College is another higher learning institution with comprehensive waste management and recycling program. The school not only recycles but also donates stationery, mirrors, lamps, and so much more to the surrounding community.

The school’s recycling department handles the exportation of food waste to a local pig farm. Kalamazoo College also recycles e-wastes like batteries, calculators and electric motors.

In addition to recycling, the department also takes up reuse and waste reduction responsibilities. The recycling department is run by students under the supervision of staff in charge. This way, students can understand just how much waste goes into the environment. The campus has two dedicated electric-powered golf carts that help with transportation of waste.

6.     Harvard University

Harvard University is one of the institutions that adopted the single-stream recycling. This means that all recyclable materials are mixed together in one receptacle. This is an effective system because it eliminates any confusion or guesswork.

The school runs a recycling program for different kinds of waste, including e-waste, food, ink, paper, and cartridges. Over the years, the recycling program has evolved and improved in efficacy. The school uses competitions to encourage students to reduce waste.

Conclusion

College recycling programs ensure students learn the importance of environment conservation. Institutions of higher learning are an excellent platform to teach students about environmental friendliness. Diverting waste from landfills ensures they don’t overflow with items that can be reused or recycled.

How to Reduce Your Digital Carbon Footprint?

Roughly 2.5 billion people around the globe use the internet. Experts predict the energy used to power the internet — as well as the number of greenhouse gases produced — will soon exceed air travel. Your digital carbon footprint is comprised of a number of activities, not just checking email.

Digital activities that have an impact on the environment include:

  • Streaming music
  • Watching Netflix
  • Posting on Twitter
  • Buying an e-book
  • Reading online news

Today’s eco-conscious consumers and developers are looking for ways to reduce their digital carbon footprints and implement sustainable practices.

1. Reach Out to Tech Companies

Tech companies like YouTube can reduce their digital carbon footprint by changing how their design. In 2016, people streamed about 1 billion hours of YouTube videos each day, producing 10 million metric tons of carbon dioxide equivalent (CO2e) — the same as the City of Glasgow.

For users who only listen to YouTube for the audio, the option to turn off the video could save 100 to 500 Kilotons of CO2e each year — comparable to the carbon footprint of 30,000 homes in the U.K. For consumers, it’s imperative to reach out to your favorite brands and request eco-conscious features.

2. Unsubscribe from Unwanted Emails

In 2018, more than 281 billion emails were sent and received each day, a number that’s expected to grow to more than 347 billion by 2022. Like anyone else, you probably have multiple brands who send you unwanted emails. To reduce your carbon footprint, make use of the unsubscribe button.

Look through your inbox for any unwanted emails you’ve yet to delete. You should also go through your promotions and spam folder. The unsubscribe button is typically at the very bottom of the email. Some brands attempt to hide it by making the text a similar color as the background.

3. Optimize Your Charging Routine

How many digital devices do you charge? There’s the laptop, cellphone, tablet and smartwatch. To reduce your carbon footprint, optimize your charging routine. Once a device is fully charged, unplug the power supply. Not only can you reduce your energy consumption, but you’ll also improve the lifetime of your battery.

Reduce your reliance on fossil fuels by investing in a solar charger. There are many solar charging stations available that range in capability and price. You can find a quality set-up under $50 for a smartphone, tablet and watch. If you want to power heavy-duty devices like laptops and film equipment, you’ll want to research options $75 and above.

4. Hang Onto Your Old Device

In the U.S., 44% of smartphone users said they replace or upgrade their phone as often as their provider allows, typically every two years. Many of these working devices end up cluttering landfills, while others are broken down into usable materials. Consumers and businesses alike can reduce their digital footprint by holding onto devices longer.

If you have a cracked screen, look into DIY tools online, or visit a local shop. The cost is remarkably affordable compared to the latest phone model. If your device is running slow, delete unused or unwanted apps, photos, videos, files and more. Most smartphones have a built-in storage cleaner that can free up space.

5. Download Instead of Stream

Video streaming makes up a large chunk of internet traffic. Data centers that host streaming sites like Netflix, YouTube and Facebook consume around 1% of the world’s electricity each year, a number that’s expected to grow. More demand for this type of technology means more consumed energy.

To minimize carbon output, data centers need to be fed by renewable energy sources, such as solar, hydroelectric or nuclear power. As a consumer, you can reduce the amount of time you spend streaming videos and music each day. Try to download content ahead of time, which puts less strain on networks. If you do stream video, connect to Wi-Fi instead of 4G to consume less energy.

Most of the resources we rely on are finite. It’s crucial to make sustainable choices and reduce your carbon footprint. Reach out to your favorite tech companies and request eco-friendly alternatives. Pare down your inbox and delete any offers for a phone upgrade. You can also invest in a solar charger and reduce your streaming time.

For most of us, it’s impossible to cut out internet use entirely. However, it’s still possible to make eco-friendly decisions.

Combating Concrete: Alternative and Sustainable Building Materials

Around 5% of the world’s CO2 emissions are caused by concrete production, so finding sustainable alternatives is essential to slowing down climate change. Fortunately, there are plenty of materials out there which are perfect for mass home construction, without the same ecological damage. If you want to continue to do meaningful things, such as travel the world or live in safe and comfortable accommodation, then finding alternative building materials is the route to doing this sustainably.

Hemp Concrete Substitute

By compacting hemp and lime, it is possible to create a building block comparable to concrete. Unlike concrete, however, hemp absorbs carbon dioxide rather than emits it. This means that during the production process, 1m3 of hemp concrete wall will suck up 165kg of CO2. It is just as durable and robust as regular concrete, but will require cannabis legalisation before manufacture can begin.

Nigerians are building fireproof, bulletproof, and eco-friendly homes with plastic bottles and mud

In countries where the plant is already legal to produce, then the switch to hemp alternative building material should begin immediately. Hemp plastic is an attractive sustainable building material which holds great potential worldwide.

Bamboo and Straw

Wood has long been a popular home building material, but not all plants are equally green. Bamboo has the quickest regrowth time of any plant, meaning that it can be replaced as quickly as it is cut down. It is strong and durable. Meanwhile, straw, when packed tightly, is a perfect eco-friendly insulation material. Together, this makes the most environmentally conscious wooden cabin.

In the debate of manufactured vs modular cabins, the latter tends to be preferred due to its rigidity and durability, while the former is more affordable. By constructing modular bamboo cabins, however, you are able to produce a long-lasting, energy efficient home at a much cheaper cost.

Reused Plastic Waste

The world purchases a million plastic bottles a minute or 480 billion a year. We need to seriously start thinking about how we can reduce our consumption of single use plastics, but also what to do with the waste in the meantime.

One thing that the bottles can be used for is the construction of houses. When filled with sand and stacked together, they form a durable and insulating wall. In some countries, this is being used as a way to bring affordable housing to those living in poverty. It is certainly a creative way to build homes without using more of the Earth’s precious resources.

Final Thoughts

There are so many alternatives to concrete out there. Governments and construction companies need to come together to move towards sustainable building practices. This will help to ensure that everyone has a safe place to call home, while recycling resources and cleaning the carbon dioxide out of the atmosphere.

3 Ways Zero Valent Iron Can Help in Environment Protection

Zero Valent Iron (ZVI) was developed to eliminate chlorinated hydrocarbon solvents in the soil. Industrial solvents are replete with chlorinated hydrocarbon, so much toxic and bad for the environment. They get disposed in the soil along with other toxic elements to cause harm to our surrounding. In the current years, significant improvements have taken place in the realm of iron-based technology.

Zero Valent Iron can be effectively used in soil remediation

The result of years of research and significant improvement in the iron-based technology is the advent of nanoscale or polymer-supported iron-containing nanoparticles to remove contaminants from solvents and soil. This is all due to the high surface area to the volume ratio of such nanoscale particles that favor the reaction kinetics and sorption.

But, know one thing that high pressure drops may restrict fixed-bed column application. This is why we now have modified nanosized ferrous particles to facilitate arsenic removal. The fabulous reducing agent helps in pollution recovery, and thus it benefits our environment.

Applications of Zero Valent Iron

ZVI in recent times is used widely for wastewater treatment, groundwater, and soil treatment. If made through the physico-chemical process in combination, the ZVI may be very small particles, having a large surface area. ZVI is beneficial for the environment, for it has a strong reductibility, great purity, long aging property, and similar features.

Zerovalent Iron can boost the chlorine removal efficiency of the soil, groundwater, and six valent chromium. Thus, it reduces the time required for environmental remediation. Acting as a fabulous reducing agent, it facilitates pollution recovery. Indeed, you may also combine it to bioremediation to further improve the efficacy of environment pollution recovery. Use it in the soil, solvents and industrial wastewater confidently to get rid of the contaminants. The use of ZVI paves the way for pure water and soil.

What you should look for in ZVI?

Are you planning to procure zero valent elemental metallic ions for wastewater treatment or soil remediation? Zerovalent metals or ZVI has a wide range of applications that range from electrodes and trenches to filters. Yes! It helps in the water filtration process, and thus we have pure drinking water. It gets rid of every trace of impurity or contaminant from the solvent or soil. It is important to look for a reliable company to procure ZVI.

Watch out for the following properties of ZVI

  • The particles must be fine enough to be customized as per your application
  • Look for the great adsorption performance and sound chemical activity
  • A large surface area for that very strong reductibility
  • Make sure the duration of its effect is very long to reduce the injections
  • Very fine ZVI particles to remediate pollution and to save remediation time and effort
  • Must be environment-friendly, deprived of any toxic compound

Enhanced nitrate-removing potential

Zero-valent metal has an enhanced nitrate removal capacity. It eliminates nitrate from the groundwater to facilitate remediation. Hence, biochar-supported ZVI can facilitate nitrate removal while the ones with wider pH can remove larger nitrates. Biochar composite eliminates nitrate from the groundwater without leaving any harmful by-products. But, biochar has a variable nitrate-removal capacity.

ZVI biochar has a potential to reduce nitrate by mediating the redox potential, the electron transfer, pH and thus facilitates enhanced removal or reduction of nitrate from the solvent or soil. Everything revolves around the logic of intensifying chemical reduction in order to eliminate nitrate from the soil or groundwater.

Nitrate and How it Accumulates

Nitrate is the form of nitrogen, which lies beneath the cultivable land. Nitrate is water soluble and may move through the soil quite easily. Owing to its high mobility, it moves to the groundwater table. Once it has moved to the groundwater table, it persists there and deposits to a very high level.

Thus, shallow groundwater is also at a risk of contamination from chemicals of land surfaces. This is a matter of concern, and indeed, nitrate in water may harm human health, aquatic life, livestock life and contaminate the surface water. We can say that it is not that harmful to adult humans, but it can significantly affect the health of the infants. It may reduce the level of oxygen in the blood to cause ‘blue baby’ disorder.

Hence, biological denitrification, ion exchange, and reverse osmosis are the treatment processes to handle this issue. The use of ZVI is a way to denitrification and the key to attaining a safe nitrate level in the water. A zero-valent metallic reduction is an effective way to refine dirty and polluted water. As soon as ZVI is placed in the flowing water or is added to the flowing water, there starts the process of oxidizing. The resultant chain reaction will purify water or remove the contaminants.

A Tool to Remediate Acid Mine Drainage

AMD or Acid Mine Drainage is the most common source of metal in places like the Appalachians, Tennessee, and Kentucky. It is important to remediate acid mine drainage for it is highly acidic and toxic. It is the major contributor to the arsenic environment and something needs to be done. AMD is a rich source of heavy and corrosive metals, acidic in nature. Biological treatment of Acid Mine Drainage is cost-effective, efficient and environment-friendly.

Biotechnological processes are an asset when it comes to treating Acid Mine Drainage in an effective manner. ZVI is environmentally sustainable. When it is very complicated and difficult to treat or remediate Acid Mine Drainage, ZVI eases the process. It gets rid of harmful elements or potentially hazardous substances from AMD to separate metal from acid and toxic compounds. There isn’t a need to abandon a mine site just because there are acidic metal deposits. Mine metals can be reclaimed with ZVI, and herein lays the environmental benefit.

Recycling of metallurgical waste

It is important to treat AMD or Acid Mine Drainage. The ecological solution to separate toxic metals, to reclaim water in large quantities is gaining a lot of attention. ZVI and zero valent metals save our natural resources and prepare the toxic metals for the recycling process. This is only possible through the separation of the acidic part.

We can recycle gallons of water that lay in the pond and other water bodies. It drops the acid level in the water and metal while also prevents heavy metallic reactions. When Acid Mine Drainage is one of the serious concerns in the realm of coal mining, zero valent metals prevent any exposure of sulfur-rich mineral to the water and atmospheric oxygen.

Final Thoughts

Zero-valent metals can help in the treatment of contaminated zones through the process of remediation. Zero valent iron is the highly reactive powder for remediation of wastewater and soil and works fabulously on environmentally contaminated areas. This remediation solution is highly efficient and benefits our environment in multiple ways.

Top 3 Reasons Why You Should Have a Dehumidifier at Home

Air quality is one of those things that many homeowners frequently overlook. We assume that the air indoors is better or less polluted than the air outdoors because we’re not dealing with things like car fumes and pollution.

However, your indoor air can be just as bad as the atmosphere outdoors, particularly when you have problems with humidity. Too much humidity in your air can increase the risk of things like respiratory problems, mould, and even an overflow of dust. Here are 3 reasons to consider bringing a dehumidifier into your property.

1. They Combat Mould, Mildew and Dust

Damp in your home caused by humidity can lead to mould and mildew. Often, these problems are the root cause of health issues, such as asthma, respiratory conditions, and asthma. What’s more, constant exposure to mildew and mould may even increase your chances of nervous system disorders.

Taking steps to avoid your risk of moisture build-up by keeping your sewer line clear and fixing leaky pipes is great. However, homeowners can consistently keep their risk to a minimum by investing in a dehumidifier. These crucial tools remove the extra unnecessary moisture from the air, so that it can no longer feed mould spores in your home.

Having a dehumidifier can also help you to get rid of other pesky substances like dust on your mattresses, bedspreads, and other furniture too. That’s because it’s easier for dust to cling to your surfaces when there’s moisture in the air. When the air is dry, regularly vacuuming your home will get rid of a larger portion of dust, keeping the risk of allergy to a minimum. Dehumidifiers even eliminate the risk of dust mites by keeping humidity levels at a inhospitable level for those critters.

2. They Reduce Damp and Condensation

Too much humidity in your home causes a “damp” atmosphere. When the air is moist, the most obvious result is discomfort. You might notice that your breathing feels more laboured just because you’re breathing moisture-laden air. Damp doesn’t just stay in the air however, when it reaches excessive levels, it also begins to build up on the surfaces around your home, particularly in the winter when the cold of the outdoors interacts with the warm humidity indoors.

Humidity causes long-term damage to your woodwork and soft furnishings through damp and condensation. Although it’s common to have condensation in your home from time to time, humidity exacerbates it to dangerous levels, potentially causing peeling wall papers, shrinking wood, and stains on your sofas and curtains.

A dehumidifier will reduce the moisture in the air to reasonable levels again, protecting your belongings and your comfort.

3. They Improve Air Quality for Better Health

Finally, the most important reason to invest in a dehumidifier is that they allow you to improve your air quality and eliminate common health problems. Humidity in your home can lead to an increased risk of respiratory conditions, allergens, and even problems with coughs and stuffy noses. As mould and mildew begin to build up, the effects on your health grow even greater.

Placing a dehumidifier into your home does more than just get rid of musty smells throughout your property. It also absorbs the excess moisture that could be harming your health over time. Remember, the quality of the air in your home isn’t just measured by the amount of toxins that you could be exposed to. Your air quality also depends on the level of humidity in the air too.

Dry air is less likely to feed the bacteria in the atmosphere, reducing your risk of catching bugs and respiratory illnesses. According to studies, dehumidifiers are even useful in preventing asthma attacks because they remove asthma triggers like dust mites, mould, VOCs and building wastes.

Should You Get a Dehumidifier?

In a world where indoor air quality isn’t much better than the polluted air that we find outside, it’s important to take steps to protect yourself, your family and even your home. A dehumidifier can help you to improve the air quality that you’re exposed to every day.

By eliminating the unnecessary moisture in your home, your domestic dehumidifier will improve your quality of life, reduce the risk of mould and mildew, and even protect your health.