The Benefits of Recycling as an Energy Conservation Measure

Recycling is an effective energy conservation measure that translates into avoided emissions alongside other environmental and economic benefits. It saves energy by decreasing or eliminating energy use during extraction, transportation, and processing of raw materials into finished products.

How Recycling Saves Energy

Manufacturing is a labor, waste, and energy-intensive process that is never-ending due to the increasing demand for consumer products. Manufacturing products from scratch requires raw materials to be extracted, transported, and refined. However, when recycling, you are using already refined materials that need less energy to be transformed into usable products.

Recycling also saves time, money, natural resources, conserves the environment, and shrinks landfills. Hence, the more we recycle, the more we save and gain. Because of these benefits, it is essential to sign up for a residential recycling collection service to have your recyclable trash going to the right place.

recycling-in-offices

The amount of energy saved through recycling generally depends on the material being reprocessed. Let’s take a look at the energy savings of four of the most commonly recycled materials.

1. Aluminum

Aluminum manufacturing requires huge amounts of heat and electricity. Despite constant efforts to reduce energy consumption, manufacturing aluminum still costs three times more than the theoretical minimum energy requirement.

Recycling aluminum cans and scrapes requires 6 percent of the energy needed to manufacture aluminum from bauxite ore. Repurposing aluminum saves the energy that would have been used to extract, transport, crush, and combine bauxite with caustic soda. Additionally, extracting aluminum from bauxite requires the ore to be purified and smelted.

Thus, the aluminum recycling process is fast, efficient, and achieves up to 94 percent energy savings. Even better, you can recycle aluminum infinite times without degrading, increasing energy saving in the long run. Besides, introducing new alloys and improved product design along the product chain results in more energy and environmental savings.

2. Glass

Glassmaking is an energy-intensive process that involves melting sand and other minerals at extremely high temperatures. Reprocessing glass still needs lots of energy to melt the glass and make a new product. The U.S. Environmental Protection Agency (EPA) says reprocessing glass results in 30% energy savings. Glass, like aluminum, does not degrade when it is recycled.

Thus, tossing glass in recycling bins will help preserve natural resources, like sand and soda ash, and reduce the energy costs involved with transporting these heavy materials. It also allows glass manufacturers to cut on energy input to their furnaces. The cumulative energy costs decrease by 2 to 3 percent for every 10 percent of broken glass used in the production process.

Moreover, the durability of glass allows for recycling without reprocessing. This means that you can save 100% energy by cleaning and reusing glass around your home and eliminate the need for an energy-intensive manufacturing process.

3. Paper

An average American household throws away 13,000 pieces of paper every year. These translate into almost 1 billion trees worth of paper being thrown away yearly in the U.S. You can recycle all or most of this paper and contribute to 40% energy savings. Recycled paper can be used to make a variety of new paper products.

paper-recycling

However, this is limited by its appearance, which is not as white or smooth as new paper. Fortunately, biodegradable inks and erasable paper promise improved paper recycling efficiency. You could also reduce your paper usage or reuse paper around your home whenever possible to conserve energy and save trees.

4. Plastic

Many plastic products are single-use commodities that are only in use for a few minutes. However, these require hundreds of years to biodegrade. Sadly, approximately 4 percent of America’s total energy consumption goes to producing plastic products.

Recycling plastic requires only about 10% of the energy needed to manufacture one pound of plastic from virgin sources. The recovery process has short-term energy-saving benefits because plastics degrade every time they are recycled.

plastic waste

However, many manufactures have ways of repurposing low-grade plastics to use in less demanding applications, such as carpeting, park benches, auto parts, and insulation.

Other Materials to Recycle Around Your Home

You can recycle many other materials around your home, and you can determine their energy savings using the iWARM tool created by the EPA. Some of these materials include

You can also contribute to energy conservation by purchasing recycled household products. Some of the most common include

  • Egg cartons
  • Newspapers
  • Comic books
  • Trash bags
  • Paper towels
  • Glass containers
  • Car bumpers

Bottom Line

Reduce, reuse, recycle is a lifestyle that leads us to a greener planet. Following these guidelines for a greener planet will also save you some coins because most recycled products cost significantly less than products produced using virgin material. Keep in mind that 75 percent of all waste can be recycled, and doing this will save the planet loads of energy.

4 Ways To Pay Your Electricity Bill Effortlessly

Utilities like water and power can end up costing nearly as much as your rent or house payment in a bad month. Unfortunately, you can’t cut off your water service to save money the way you could cut the cable. Here are a few tips to tame your utility bills and make it easier to pay your electricity bill with ease.

1. Clean Up

Cleaning the coils on your refrigerator helps it work more efficiently. Cleaning the coils on your air conditioner can do the same, but your AC uses far more power than your fridge. Remove any debris from the air intakes, whether it is leaving piles up by the AC or the air vent to your furnace. Rinse the air filters for your room air filters, the air conditioner, and your dehumidifier.

2. Turn It Off

While the appliances that are sleeping may use less energy than when on, the reality is that they use almost as much power in standby as they do when active. The solution is to turn things off. Unless your game station is downloading updates, unplug it to save power. Turn off the TV instead of letting it sit in standby, or worse, use it as background noise.

When gadgets are fully charged, disconnect them from the charging station and turn off the charging station. If you can’t stand to turn off your computer, turn off the monitor instead. Turn off lights when they aren’t in use, and consider when you can utilize natural light instead. Don’t let appliances idly run while you’re busy. Get the clothes out of the dryer instead of letting it run every five minutes to prevent clothes from wrinkling.

Turn off the oven when you’re done with it. The same might be said for your pool pump or air filters. Does it need to be running? If not, consider turning it off for a while. Always aim to improve your habits and to acquire energy-saver appliances. Also, consider that you are still allowed to hire a better energy provider in case the current one is not the best fit regarding your lifestyle. For instance, there are plenty of options when it comes to the most suitable electric companies in dallas.

3. Track Energy Usage

You can get apps that report energy usage in your home. These apps can tap into your smart meter and tell you which appliances are consuming the most energy. If you can’t cut back on energy usage, you could get advice on how to shift energy usage in order to reduce your electric bill.

For example, running the clothes dryer at night may allow you to get utility discounts. One of the advantages of hydroelectric energy is that despite facing daily and seasonal variations, utility companies will still provide discounts when the demand for power is lower.

Set up the dishwasher to run a heavy load when you go to bed, and the cost per kilowatt maybe a third of what you’d pay if it ran during the day. You may also find that the AC is running heavily during the hottest part of the day.

Could you alter the thermal profile of your home so that it uses less energy while keeping you comfortable, such as not trying to keep the house at 65 when you’re at work? If you cannot get the house comfortable without the AC running full blast all the time, you may need to have the air conditioner repaired or replaced with a more powerful unit.

4. Check for Leaks

If you’ve ever heard the joke that you’re not heating the neighborhood, recognize that there is an element of truth to that joke. When you leave the door open while you’re bringing in groceries or getting the mail, you’re wasting the energy used to heat or cool that air. Gaps in your window frame and window stripping cost you the same way.

Leaks in your hot water heater waste both water and the energy used to heat it. Look for water leaks when you suspect them, too. Not only does this damage the structure of your home and wastewater, but damp insulation has a fraction of the thermal value of dry insulation. This is how a water leak could be contributing to your higher energy bills.

There are a number of things you can do to reduce your energy bills and water bills without radically changing your lifestyle. Then you’ll be able to save the Earth’s resources and money at the same time. It is truly a win-win for everyone.

Why You Should Work Towards an Energy-Efficient Home?

An energy-efficient home is something we should all work towards. It will save you money, decrease your carbon footprint, and make your home and lifestyle more environmentally friendly. Most of us think that achieving an energy-efficient home is difficult, expensive, and time-consuming, but it doesn’t have to be. There are so many little things we can do to decrease the amount of energy we waste and to reduce the amount of money we spend on running our homes. Today, we will be taking a look at what you can do to improve the energy efficiency of your home and why this will benefit you in the long run.

Upgrade Appliances

If your home appliances are old, chances are they are not very energy efficient and will be costing you more than they should to run. When you purchase any new appliance, you should look for one that comes with a stamp of approval, also known as an ‘Energy Star’ rating. This means the new appliance is classed as energy-efficient, which means you will save money on energy bills in the future.

Check Boiler Efficiency

In most UK households, the cost of running a boiler will be more than all of the other home appliances combined. To ensure that you aren’t spending too much on your boiler, you should assess its efficiency levels. There are simple tools you can use to do this. If you are spending too much, replacing a boiler is an option, but it’s expensive. Instead, you can look into cheaper ways of improving its efficiency.

Install Insulation

Energy that should be heating your home will be lost through your windows and ceilings when your home is poorly insulated. If your home is properly insulated, you will pay less to heat your home because the building will retain the heat more efficiently. It doesn’t cost too much to do and the money you spend on it will be made back over a couple of years through reduced energy costs.

Switch Energy Supplier

Some energy suppliers are greener than others, and many of the more sustainable ones also offer surprisingly cheap tariffs. By using an energy comparison website you should be able to find a new supplier that can improve your household’s carbon footprint while also lowering your household bills.

Use Renewables

Renewable energy comes from a resource that is naturally replaced on a human timescale. This includes wind, sunlight, waves, tides, rain, and geothermal heat. Using renewable energy is a great way to help the environment and to save money on energy bills. It can be expensive to install, but it comes with many benefits for you, your home, and the environment.

As you can see, the main reason many of us should choose to have a more energy-efficient home is to save us money, but it helps the environment too. We are all aware of the changes taking place in our environment, so protecting it and saving money while doing so is an offer we shouldn’t refuse.

Summary of Biomass Combustion Technologies

Direct combustion is the best established and most commonly used technology for converting biomass to heat. During combustion, biomass fuel is burnt in excess air to produce heat. The first stage of combustion involves the evolution of combustible vapours from the biomass, which burn as flames. The residual material, in the form of charcoal, is burnt in a forced air supply to give more heat. The hot combustion gases are sometimes used directly for product drying, but more usually they are passed through a heat exchanger to produce hot air, hot water or steam.

Combustion_Moving_Grate

The combustion efficiency depends primarily on good contact between the oxygen in the air and the biomass fuel. The main products of efficient biomass combustion are carbon dioxide and water vapor, however tars, smoke and alkaline ash particles are also emitted. Minimization of these emissions and accommodation of their possible effects are important concerns in the design of environmentally acceptable biomass combustion systems.

Biomass combustion systems, based on a range of furnace designs, can be very efficient at producing hot gases, hot air, hot water or steam, typically recovering 65-90% of the energy contained in the fuel. Lower efficiencies are generally associated with wetter fuels. To cope with a diversity of fuel characteristics and combustion requirements, a number of designs of combustion furnaces or combustors are routinely utilized around the world

Underfeed Stokers

Biomass is fed into the combustion zone from underneath a firing grate. These stoker designs are only suitable for small scale systems up to a nominal boiler capacity of 6 MWth and for biomass fuels with low ash content, such as wood chips and sawdust. High ash content fuels such as bark, straw and cereals need more efficient ash removal systems.

Sintered or molten ash particles covering the upper surface of the fuel bed can cause problems in underfeed stokers due to unstable combustion conditions when the fuel and the air are breaking through the ash covered surface.

Grate Stokers

The most common type of biomass boiler is based on a grate to support a bed of fuel and to mix a controlled amount of combustion air, which often enters from beneath the grate. Biomass fuel is added at one end of the grate and is burned in a fuel bed which moves progressively down the grate, either via gravity or with mechanical assistance, to an ash removal system at the other end. In more sophisticated designs this allows the overall combustion process to be separated into its three main activities:

  • Initial fuel drying
  • Ignition and combustion of volatile constituents
  • Burning out of the char.

Grate stokers are well proven and reliable and can tolerate wide variations in fuel quality (i.e. variations in moisture content and particle size) as well as fuels with high ash content. They are also controllable and efficient.

Fluidized Bed Boilers

The basis for a fluidized bed combustion system is a bed of an inert mineral such as sand or limestone through which air is blown from below. The air is pumped through the bed in sufficient volume and at a high enough pressure to entrain the small particles of the bed material so that they behave much like a fluid.

The combustion chamber of a fluidized bed power plant is shaped so that above a certain height the air velocity drops below that necessary to entrain the particles. This helps retain the bulk of the entrained bed material towards the bottom of the chamber. Once the bed becomes hot, combustible material introduced into it will burn, generating heat as in a more conventional furnace. The proportion of combustible material such as biomass within the bed is normally only around 5%. The primary driving force for development of fluidized bed combustion is reduced SO2 and NOx emissions from coal combustion.

Bubbling fluidized bed (BFB) combustors are of interest for plants with a nominal boiler capacity greater than 10 MWth. Circulating fluidized bed (CFB) combustors are more suitable for plants larger than 30 MWth. The minimum plant size below which CFB and BFB technologies are not economically competitive is considered to be around 5-10 MWe.

NatHERS – Tool To Maximize Sustainability of Your Future Home

Short for the Nationwide House Energy Rating Scheme, NatHERS uses a 10-star rating system which is able to easily access the thermal performance of buildings within Australia. Though a NatHERS certification is required for all new developments with multiple dwellings, it is essential for all residents to obtain an assessment to be able to easily evaluate the thermal assessment of their development.

At Certified Energy, our years of experience distinguishes us from our competitors. We work with each client separately, to ensure that each individual project thrives in terms of cost, efficiency and the preservation of design concepts.

We strive to minimize your costs whilst maximizing the sustainability of your future home.

Why is NatHERS assessment required?

NatHERS as outlined above is the Nationwide House Energy Rating Scheme which is able to evaluate the thermal performance of any dwelling. Though this may seem irrelevant and unnecessary when outlining the overall performance of the building, it is a necessity to get a NatHERS assessment in order to ensure a sustainable future for our environment.

Not only this, but NatHERS is essential when obtaining a BASIX assessment. BASIX is a NSW Government initiative striving to improve the environmental sustainability. It comprises of three factors: water, thermal and energy. The thermal component of BASIX can be easily completed through a NatHERS assessment with its thorough, accurate and flexible approach to addressing thermal performance.

Thus, a NatHERS assessment is required not only to contribute towards a sustainable future for the environment but also as a necessity under the BASIX initiative led by the NSW Government.

What does a NatHERS assessment include?

A NatHERS assessment can be obtained by a specialised company that has NatHERS Accredited Software which can be used to determine the thermal efficiency of your home. Within the assessment, each resident will be provided a copy of the key design features and the building materials and the scope used to generate the dwelling’s star rating.

The star rating, also known as the Energy or Thermal Efficiency star rating, is an accurate indicator of the level of heating or cooling your building requires to not only make you feel comfortable, but to ensure that it doesn’t have a detrimental impact on the environment. By following the recommendations and guidelines that will be included in your report, you will also be on the path of having lower energy expenses, by using the appropriate amount of electricity.

How does Certified Energy do it differently?

At Certified Energy, there are two main certification solutions that will help you achieve the lowest cost with the highest efficiency rating. These include the essential solutions (House Energy Rating Scheme, Elemental Provision) or alternative solutions (Verification Using a Reference Building and State Specific Energy Protocols).

In order to give you the best catered advice as per your personal needs, Certified Energy will guide you through the various approval pathways that will help your project achieve energy efficiency and environmental sustainability.

The Future of Gas Boilers – Hydrogen or Heat Pumps?

Due to the international crisis of global warming, the majority of western countries are now set on a course to become carbon neutral and at the Paris Accord, they agreed to achieve this by 2050. This is an impressive feat for countries still so reliant on fossil fuels for major industries like heating and transport.

Residential heating is one area that is currently in the spotlight, for instance, in countries like the UK, it is currently responsible for around one-third of carbon emissions. As a result and understandingly it is set to undergo major reform over the next 10 years.

What’s the problem with current heating?

Heating in the UK is still heavily reliant on fossil fuels, either directly or indirectly. For instance, the vast majority of homes are supplied with natural gas which is burned in fireplaces and gas combi boilers to provide homes with heat.

heating-radiator

The major issue is that burning natural gas releases carbon into the atmosphere, which is a gas that doesn’t leave the atmosphere, resulting in heat being trapped in the atmosphere, leading to global warming.

Therefore, the UK government is looking at low carbon heating alternatives as a route to transforming the current situation, which includes the likes of heat pumps, hydrogen boilers and solar.

As Heatable states, residential boilers have already been under considerable scrutiny and the government has banned non-condensing boilers, driving up the efficiency of boilers to above 90%, as well as a total outlaw on all gas boilers in new homes from 2025.

Yet, it’s important to note that most industry commentators consider replacing gas boilers with solar and heat pumps completely unrealistic. Major concerns include their expensive and disruptive installation, as well as their reliability when compared to conventional boilers.

As a result, replacing the fuel is seen as a much more realistic approach with the fuel of choice being hydrogen. This can be fed into the current infrastructure and used with hydrogen-ready boilers, which are almost identical to current natural gas versions.

Hydrogen Boilers vs. Heat Pumps

There are many issues when it comes to the transition from high to low carbon heating technologies. So much so, that the Environmental Audit Committee (EAC) estimated that it would take almost 1,000 years to make the switch if the current trajectories continued.

Even worse, the Committee on Climate Change (CCC) highlighted that it would cost on average £26,000 for each home to install a low carbon heating alternative, rending the whole idea completely unviable.

hydrogen-boiler

The only sensible solution is the adoption of hydrogen fuel as an alternative to natural gas instead. This fuel is able to make use of the current gas networks infrastructure which is already connected to the vast majority of properties.

From an environmental standpoint, hydrogen is also seen as highly desirable.

Why? When hydrogen is burned it produces only vapour and absolutely no carbon dioxide making it ideal for a carbon-neutral future.

Disadvantages of Heat Pumps

As well as that, there are also other issues with heat pumps, of which there are three main types: air source, ground source and hybrid. All of which works by sucking in heat from the surrounding air, ground or water and are able to supply heat to water and central heating.

Hybrid heat pumps are different in that they utilise a boiler to provide supplemental heat if the weather becomes severely cold.

The good point of heat pumps is that they only use small amounts of electricity to operate and combined with the fact that they absorb heat from the environment, they are extremely efficient. In fact, they can achieve energy efficiency ratings exceeding 300%, compared to modern gas boilers that are around 94%.

However, it’s not all positive sadly and heat pumps are unable to provide the same, consistent heat output that gas boilers are able to. For this reason, they are usually installed with oversized radiators and/or underfloor heating and only in properties that are extremely well insulated.

Conclusion

Heating is without a doubt going to change and countries like the UK are going to transition away from gas boilers, but what will win – heat pumps or hydrogen?

It seems that hydrogen has the advantage from a feasibility standpoint, but there’s little doubt that heat pumps will be part of the mix too.

It’s becoming more common for gas boilers to be installed with a hybrid heat pump system.

The first homes fitted with hydrogen boilers and appliances are going to be installed in Fife, Scotland from next year, so progression is certainly accelerating.

How Companies Can Streamline Energy Consumption

Recent projections show that the world’s energy demands are about to increase by close to 25% between now and 2030. Population and wealth growth are the leading factors behind the increased need for energy. Additionally, issues related to pollution and climate change are compelling companies and investors alike with respect to how they produce and use energy.

energy-company

Grs a global resource solutions company offers a plethora of services that could help industries reshape and streamline their energy consumption.

Energy efficiency is playing a vital role in helping the world achieve its power needs and progress.

Increase in Fuel Prices

The prices of energy have kept rising over the years even when oil prices have dropped as was the case in 2014-2015. Such sudden fluctuations can be difficult for businesses to deal with. Also, declines in energy prices have called into question whether the efforts in energy conservation and efficiency are worth it.

According to various financial analyses, energy costs form a considerable chunk of operating expenses. Worldwide, cement, chemical, mining and metal companies, for instance, spend almost 30% of their operating budget on energy. Additionally, the percent of the budget spent on energy is higher in developing nations due to the cheap cost of labor.

Energy Efficiency

Statistics and research show that operational upgrades can cut energy consumption by approximately 20%. Nonetheless, investment in energy efficiency technologies can reduce energy usage by even 50%.

The reports and findings show that it is not a pipe dream for manufacturing entities, which account for almost half of the world’s energy usage, to meet energy requirements in a way that is environmentally friendly and economical as well. Advanced technology could substantially reduce energy usage and save companies more than six hundred billion dollars per year.

reduce-energy-use

There are technologies currently in place that can help companies reduce energy consumption. The ideas cover a range of manufacturing and production companies like cement, mining, oil refining and chemicals. Nonetheless, firms are facing the challenge of how to put energy efficiency technology in place how to renew the technology so that it stays relevant year in and year out.

1. Think Circular

Consider your product to be a future source that can be used many times. In other words, when developing a product, strive to move away from the traditional linear supply chain. Take, for example, a data services provider. Put in place the think circular standard by using an analytics system to develop a facility that restructures energy to its core function. This results in more capacity and less operational expenses.

Circular-Economy

2. Profit Per Hour

Whenever making any changes, remember to create a comprehensive review of the full profit equation. During the study, evaluate aspects such as yield, throughput and energy. Nonetheless, profit should be of the highest priority before effecting any changes.

3. Think Lean

It is vital for an organization to create a resource productivity plan. Lean thinking and green thinking are based on similar principles and will blend in together well.

4. Think Holistic

When making changes, ensure that they not only focus on a specific aspect. Instead, you should also focus on the management system, behavior and mindsets.

6 Easiest Ways to Save Money on Your Utility Bills

As the climate warms, it’s more important than ever to consider how you can lower your carbon footprint as a homeowner.And lowering your carbon footprint has another huge benefit: you can often save money as a result of green upgrades to your home. For example, solar energy can save you around $600 a year in energy costs. Of course, there are many other reasons why you should use solar energy, but the primary reason to use it is that it is a renewable source, i.e., it will last for billions of years.

Besides making structural changes—like adding solar panels, for example, to your home, there are other ways to save on your utility bills such as turning off lights you’re not using. Below, we’ve gathered our tops tips for saving money on utility bills – and helping out the planet, too!

1. Take advantage of sunshine during the winter

The sun is basically free heat for your home. Homeowners can take advantage of what’s called passive solar design. During the day, open the curtains on south-facing windows to let the sunshine inside so it can warm up your house. This will keep your home considerably hotter during the colder months.

Don’t forget to close the curtains when the sun sets so you can keep as much of that trapped solar heat as possible. Consider investing in thick, insulated curtains, which will help keep heat inside your living spaces.

2. Pay attention to your ceiling fan’s rotation in winter and summer

As you may know, warm air rises. Instead of letting that warm air go up, up and away, you can leverage your ceiling fan to keep that warm air close to you and your family. Reverse your ceiling fan’s rotation so that it turns clockwise instead of counterclockwise. This will keep the hot air in your living spaces. And during the hotter months, make sure the fan is spinning counterclockwise to pull hot air away from you. It is also advisable to hire reputed electricians like ADC Electric who provide quality service and safety to electrical systems in residential properties.

3. Get a new roof

A new roof can make a huge difference in your energy savings. Best of all? Energy-efficient roofing helps you save money in both the colder and warmer months. Many new types of roofing are “cool roofs” which reflect more of the sun’s rays instead of allowing solar heat to permeate into the home. This means that you don’t have to run the AC as low or as often. In the winter, a new roof helps prevent warm air from escaping.

Plus, in many areas, you might be eligible for a government tax incentive for replacing an old roof with an energy-efficient version.

4. Seal drafts around windows, doors, and other areas of your home

One of the best methods for determining what areas of your home can be more energy-efficient is by conducting a DIY energy audit. To do an energy audit, light an incense stick and watch to see if smoke is pulled to cracks in the windows or under the doors. You can also sometimes feel drafts by simply putting your palm up around the edges of windows and doors. Once you find drafty areas, it’s important to seal up those holes with weather stripping or caulking.

Fixing air leaks will benefit you both in the summer and the winter because it helps keep your HVAC system from working overtime.

5. Invest in a smart thermostat

A smart thermostat is a prudent investment, especially if you regularly forget to turn off the A/C or heat when you leave for work or errands. That wasted energy can add up to a big utility bill at the end of the month. A smart thermostat regulates the temperature and automatically programs a specific range to keep you comfortable but turns off in unoccupied rooms.

6. Schedule regular maintenance

Routine maintenance is essential to promote the longevity of your HVAC system and to ensure that your home isn’t wasting energy. Make sure to replace filters at least once a month and keep tabs on how old your HVAC system is, most systems need to be replaced every 15-20 years.

Takeaways

There are a variety of reasons as to why it’s in your best interest to find ways to make your home greener. Not only do green upgrades ultimately save you money, they also help the planet during a time when a climate emergency is threatening our very existence. If you want to see a smaller utility bill and live a more eco-friendly life, utilize some of the tips mentioned in this article. You’ll save money and help save earth, too.

5 Things You Can Do About Pigeons Under Your Solar Panels

Solar paneling has changed the way we look at renewable energy sources today. In addition to the increasing power charges, solar paneling provides a workable solution with a one-time investment. Like everything, there are pros and cons attached with solar panels. Birds are attracted to solar panels that act as a source of shade and protection. Being a bird lover, I would have been happy about it. However, that is not the case here. Bird droppings can cause a lot of damage to solar panels over extended periods of time.

We list some of these damages below:

  • Bird dropping deposits eat on the solar panels’ surface.
  • The accumulation of bird droppings over time can cause a lot of damage.
  • It blocks sunlight and reduces the overall efficiency of panels.
  • Nesting materials deposited under panels can hinder airflow, causing it to overheat and cause more damage.

How to Keep Solar Panels Safe from Pigeons?

So how do we deal with this problem? There are several ways to take care of this. We list 5 things you can do about pigeons under your solar panels below:

solar-panels-pigeon-issue

1. Meshing or netting

Meshing or netting is a very convenient way of keeping the solar panel safe from pigeons. All you need to do is first have the area under the solar panels cleaned. After that, it’s as simple as putting the mesh clips onto the solar panels. The meshing runs over the edges and seals off the way for the pigeons to enter.

The meshing or the netting serves precisely the desired  purpose–it keeps the pigeons out of the area below the solar panel. Also, it provides enough ventilation for the solar panels to dissipate heat.

However, one essential thing that you need to keep in mind is not damaging the panels during the mesh installation. In case the panels get damaged, the warranty would be void.

2. Roof spikes

Installing roof spikes around the solar panel is another way to keep the pigeons at bay. The logic is to make the birds so uncomfortable so that they do not dare to sit long enough to make nests on the solar panel.

3. Plastic predators

The birds cannot distinguish between an actual bird or an artificial one. Setting decoys on your rooftop is like having scarecrows in the field. Set up a bird of prey on the rooftop, preferably like a weathervane, so that it moves. The movement of the bird gives an impression of another bird being present. Plastic predators is a very traditional, however, effective method to keep pigeons and other birds away.

4. Cleanliness

We always talk about cleanliness and how important it is to maintain hygiene. Here is a perfect example of the same. Most of the time, the primary reason for the attraction of birds is if they find food. Hence, keeping away all sources of food makes the place inhabitable. Keep the rubbish bins covered with lids.

If there are pets in the house, ensure that all the pet food is being cleaned. Use tightly sealed plastic bags wherever possible. The cleaner your yard and roof is, the lesser is the chance of bird inhabiting the place. Also, with regards to the a flat roof, ensure that you don’t have any edible garbage lying around.

5. Solar panel maintenance

And finally, let’s come to the last part, which is the maintenance of your solar panels. Cleaning up the panels regularly and taking care of any cracks or any mountings issues is extremely important. Ensure that you get the solar panels cleaned and serviced correctly at regular intervals. Clean solar panels don’t attract a lot of birds.

Conclusion

It is extremely crucial to maintain clean conditions around the panels and even around your house. Cleanliness ensures that pigeons or other birds are not attracted to your home. Along with cleanliness, regular maintenance of the solar panels will ensure that fewer birds inhabit your home. Also, it ensures that the efficiency of your solar panels does not dip. There are various companies that offer solar panel pigeon proofing. It is advisable to get a professional maintenance of the solar panels done once a year, if you don’t live in a highly polluted area.

How Can Oil-Free Air Compressors Benefit The Environment?

If you already have an air compressor, you will be aware of how they are an incredibly valuable tool for industries and DIY enthusiasts. Commonly used to power pneumatic tools but can be used for a variety of applications. Air compressors provide you with complete power over spraying, nailing, sanding and hammering at a fraction of the time it would take with manual tools.

You can also find these smaller sized air compressors everywhere that are very portable and best at doing small work. Bob Robinson of BestOfMachinery swears by these portable tools. “Small air compressors essentially push air from the tank in the unit, into the tools that you want to use for either DIY, hobbies or work purposes without the need to lug heavy stuff.”, he commented.

These machines can also be used for inflating tyres, auto repairs and even creating home-made snow machines. Sandblasters, impact wrenches, grease guns, die grinders and angle disc grindles can also be attached.

We all love our power tools and would be lost without them; however, we are becoming more aware regarding the issue of carbon emissions. Reducing our carbon footprint is one of the most important things companies and individuals can do in their lifetime. Small changes within your business and homes can be a great start to decrease our carbon emissions and help save the planet.

If you are looking to purchase your first air compressor or to update an existing model, Direct Air has created a guide on why an oil-free air compressor is a great choice, not just for the environment, but to help you save on energy bills. You can see their full range of oil-free air compressors at https://www.directair.co.uk/products/oil-free-air-compressors/.

Every air compressor requires lubrication in order to efficiently and safely draw in air to its cylinder, commonly using a piston movement. The traditional method to achieve this is using oil, while oil-based air compressors do have their benefits as they are more robust and can handle large-scale applications, they are higher in initial cost, harder to maintain and far heavier than their oil-free counterparts.

Oil-free air compressors gain lubrication through a non-stick coating, generally Teflon. As extra elements to hold oil are eradicated from these machines, they are far lighter and smaller than oil-based air compressors which make them ideal for applications that are not static. Due to less components, oil-free air compressors are often cheaper to purchase.

Oil-based air compressors must remain static and upright when in use, oil-free are far more versatile. As you do not need to consider the oil flow, they can be positioned wherever you see fit. They are also operatable at any temperature, oil can become viscous in cooler climates and can cause problems when attempted to start the motor, oil-free erases this issue.

With these benefits in mind, you can achieve even more with your oil-free air compressor by helping to reduce the use of fossil fuels maintain the planet’s natural resources. You can also make a direct impact on your running costs, saving you and your business money on your energy bills.

With an oil-free air compressor, all costs to collect and dispose of oil-laden condensate will be removed, not to mention the initial cost of the oil itself. These compressors are less wasteful as they do not require the replacement of the air/oil separator and filtration elements which are required to get rid of oil aerosols, these parts are notorious for wearing down quickly. You will not needlessly be sending these parts to landfill and be bearing the cost of new ones on a regular basis.

If you are worried about direct harmful emissions from your air compressor, oil-free air compressors produce the purest form of air which will reduce any negative impact into the atmosphere, great for the planet and for those working around it. You will also not have the trouble of potentially contaminated products from oil spills during projects.

A big bonus of oil-free air compressors is that they are safer than their counterparts, as there is no oil, you eliminate the risk of compressed air pipeline fires. An incredibly important factor to consider for the safety of you, your staff and your premises.

Oil-free air compressors can dramatically reduce your energy bills compared to the oil-based counterpart as they require less energy to run which will cut down your environmental impact. Oil-free air compressors do not need increased forces of power when the unit has a drop in the filtration in the downstream pressure, unlike oil-based. Oil-free units can, on average, unload in 2 seconds of your command which only uses around 18% of its full load horsepower.

Of course, all machines come with their downsides and oil-free air compressors are no exception. Oil-free air compressors are known to generate more noise which can be an annoyance and hazard to those using it and those around them.

There is a solution, you can invest in a low-noise air compressor. These reduce noise levels to around 40dB. The lowest safe level is considered 60 dB and anything over 80dB can cause long-term problems with hearing.

With the addition of an acoustic cylinder to contain this noise, opting for a low-noise air compressor is an investment worth making. It is recommended when using any power tool that protective gear is worn to eliminate lasting damage and long-term effects, even with a low-noise machine.

If you were considering purchasing a new air compressor or have simply been doing research on them, you should now have a comprehensive understanding of the benefits an oil-free air compressor possesses.