Electricity Prices Drop 19% in 2 Days Due to Wind Power

Americans are spending over $100 a month on electricity, leading to many poorer people having to go without when cash is running low. Anything that can be done to reduce costs will help people to live comfortably and meet their basic electricity needs. One way to do this is by increasing the production of wind energy. Fortunately, this is exactly what is happening across the European Union and latest figures confirm this.

renewable-energy-germany

AleaSoft is a forecaster of energy production and usage. They regularly do in depth analysis into the energy sector, so that governments and businesses can determine which source of energy is most effective at lowering costs and creating a cleaner atmosphere.

Consistently, research from AleaSoft has shown that as wind power production increases, the overall price of electricity goes down. In the two days between October 7 and October 10 2019, the cost of the average electric bill fell by 19% and further analysis showed that this was as a direct result of investment in wind energy.

Change Between October 7 and October 10

There has been a general trend across the European continent suggesting a fall in prices. However, during the weekdays between Monday October 7 and Thursday October 10, the decline in costs was most significant. The average fall in the price of electricity markets was 19%, although there was significant variation between countries.

Most strikingly, Belgium was able to slash prices by 32%, cutting the cost of the average Belgian’s electricity bill by a third. Other electricity markets showed less of a price fall, such as in Spain and Germany were costs fell by just 7%. Wherever you happen to live in Europe, however, the news is hugely positive. Any drop in prices helps ordinary and low income people to power their homes without feeling restricted.

What is Driving the Fall in Price?

A fall in electricity costs can be for many reasons, so AleaSoft’s research delved into the possible causes of such a significant decline in the energy markets. The sudden drop in prices came at the same time that wind energy production has been ramped up. When wind turbine usage fell, electricity market prices increased. The correlation is so close that this is the only reasonable explanation for the fluctuations in price. 

14% of energy provided in the European Union is produced by wind farms, but 95% of new energy source investments are put towards renewables. This suggests that the overall percentage of electricity from wind will rise exponentially. The UK, Ireland, Germany, and Denmark are the main countries where wind farms are located.

Improved Maintenance Techniques

One of the reasons that European countries are so capable of building new wind farms is improved maintenance techniques. The aerial platform is the easiest way to clean and repair wind turbines, so a dedication to the aerial life has helped to provide turbines which function more efficiently. New generations of aerial lift equipment, skylifts and other aerial platforms are making it easier and cheaper to produce wind power consistently and over long periods of time.

Wind turbines have a reputation of being inefficient. Many believe that their construction is harmful to the environment and that they spend most of their lives switched off and inactive. This is no longer the case, however, and the spike in wind energy production detected by AleaSoft supports the view that maintenance is improving and so too are the capabilities of wind farms.

Even if the environment isn’t a priority, all homeowners long for cheaper electricity. This new report showing the direct link between wind power and lower costs is a great sign. It should boost investment in the technology and ensure a long term and consistent decline in energy costs, as well as a cleaner environment.

The Development of Backup Batteries for Renewable Energy

Renewable energy is a force that can help combat climate change. However, without the right proactive steps, there can be pitfalls. For instance, solar power is becoming more widely available but can use some improvements. Solar backup batteries are a critical solution when renewable energy fails.

solar-battery-storage

The Need for Renewability

Renewability is one of the keys to stopping and reversing the climate crisis. It’s time to phase out fossil fuels and harmful environmental practices and focus on sustainable energy sources. There are various deadlines when people must act, and stopping climate change becomes more pressing every day.

However, while renewable energy is a solution, these sources may need a backup system. Often, resources like solar and wind energy are durable and hold up through harsh weather and high demands. When they fail, though, it can leave millions without power. A full renewable system requires constant clean energy.

During the 2020 California wildfires, residents reported their photovoltaic (PV) panels were no longer working, and they were losing power. The ash from the fires was covering the panels, and the smog in the sky was disrupting the transfer of sunlight. During instances like these, a backup plan is necessary.

Battery power is the solution. If solar fails, then the backup system can kick in and keep residents’ homes, schools and companies running.

Integrating Backup Batteries

A backup battery system will most prominently help solar energy setups. While PV panels are versatile, they can nevertheless use assistance. Microgrids will especially benefit from solar backup batteries. The ultimate goal is to keep emissions low at all times — but people will still need power. If a solar system fails, like those in California during the wildfires, then it’s not operating on a fully renewable level.

Experts can integrate batteries into the electrical setup with the proper enclosing tools to prevent surges and stalling. They’ll connect to the lights, HVAC system and other necessities of the building. For schools, internet access may be required to contact parents during blackouts. Businesses may need to keep computers running to prevent data loss.

solar-microgrid

Each system will depend on the supply demands of the location. A smaller home may not need a large network. However, if a solar microgrid powers a university, then the backup battery system will need to account for that demand. Experts must consider the power level of the PV panels, too. That is what will bring solar backup batteries to the next level.

Battery systems can generate power when renewables can’t. It maintains a sustainable impact while still providing people with electricity at all times.

Why It Matters

Renewable energy is groundbreaking. It shows the way forward with no carbon emissions, lower pollution and benefits for public health as well as the environment. While there can be power outages and mishaps with fossil fuels, renewable energy can draw more people in with foolproof generation.

Batteries don’t produce any emissions, so the renewability continues — as does the consistent supply of power. Outages and surges can become less common and not as much of a setback if they do happen.

The partnership of batteries and renewable energy opens up the future. From here, experts will want to work on scalability. Microgrids are a prime area for integrating backup batteries with renewable energy. On larger scales, though, the possibilities could be endless.

Better system setups mean bigger solar and wind farms could also use battery power. While these operations have less chance of failure due to the amount of energy going into them, batteries could still facilitate optimal energy flows and provide backup assistance.

In Development

With energy companies expanding their renewable energy services and integration, every step must receive a backup. Batteries are long-lasting and durable. Adding them to renewable energy setups will create a more foolproof dynamic — one that’s sustainable and always providing power.