About Emily Folk

Emily Folk is freelance writer and blogger on topics of renewable energy, environment and conservation. You may read more of her work on http://www.conservationfolks.com. Follow her on Twitter @EmilySFolk

The Impact of Machine Learning on Renewable Energy

Machine learning, as well as its endgame, artificial intelligence, is proving its value in a wide variety of industries. Renewable energy is yet another sector that can benefit from machine learning’s smart data analysis, pattern recognition and other abilities. Here’s a look at why the two are a perfect match.

Predicting and Fine-Tuning Energy Production

One of the biggest misconceptions about solar power is that it’s only realistic in parts of the world known for year-round heat and intense sunshine. According to Google, around 80% of rooftops they’ve analyzed through their Sunroof mapping system “are technically viable for solar.” They define “viable” as having “enough unshaded area for solar panels.”

Even with this widespread viability, it’s useful to be able to predict and model the energy yield of a renewable energy project before work begins. This is where machine learning enters the equation.

Based on the season and time of day, machine learning can produce realistic and useful predictions for when a residence or building will be able to generate power and when it will have to draw power from the grid. This may prove even more useful over time as a budgeting tool as accuracy improves further. IBM says their forecasting system, powered by deep learning, can predict solar and wind yield up to 30 days in advance.

Machine learning also helps in the creation of solar installations with physical tracking systems, which intelligently follow the sun and angle the solar panels in order to maximize the amount of power they generate throughout the day.

Balancing the Smart Energy Grid

Predicting production is the first step in realizing other advantages of machine learning in clean energy. Next comes the construction of smart grids. A smart grid is a power delivery network that:

  • Is fully automated and requires little human intervention over time
  • Monitors the energy generation of every node and the flow of power to each client
  • Provides two-way energy and data mobility between energy producers and clients

A smart grid isn’t a “nice to have” — it’s necessary. The “traditional” approach to building energy grids doesn’t take into account the diversification of modern energy generation sources, including geothermal, wind, solar and hydroelectric. Tomorrow’s electric grid will feature thousands and millions of individual energy-generating nodes like solar-equipped homes and buildings. It will also, at least for a while, contain coal and natural gas power plants and homes powered by heating oil.

Machine learning provides an “intelligence” to sit at the heart of this diversified energy grid to balance supply and demand. In a smart grid, each energy producer and client is a node in the network, and each one produces a wealth of data that can help the entire system work together more harmoniously.

Together with energy yield predictions, machine learning can determine:

  • Where energy is needed most and where it is not
  • Where supply is booming and where it’s likely to fall short
  • Where blackouts are happening and where they are likely
  • When to supplement supplies by activating additional energy-generating infrastructure

Putting machine learning in the mix can also yield insights and actionable takeaways based on a client’s energy usage. Advanced metering tools help pinpoint which processes or appliances are drawing more power than they should. This helps energy clients make equipment upgrades and other changes to improve their own energy efficiency and further balance demand across the grid.

Automating Commercial and Residential Systems

The ability to re-balance the energy grid and respond more quickly to blackouts cannot be undersold. But machine learning is an ideal companion to renewable energy on the individual level as well. Machine learning is the underlying technology behind smart thermostats and automated climate control and lighting systems.

Achieving a sustainable future means we have to electrify everything and cut the fossil fuels cord once and for all. Electrifying everything means we need to make renewable energy products more accessible. More accessible renewable energy products means we need to make commercial and residential locations more energy-efficient than ever.

Machine learning gives us thermostats, lighting, and other products that learn from user preferences and patterns and fine-tune their own operation automatically. Smart home and automation products like these might seem like gimmicks at first, but they’re actually an incredibly important part of our renewable future. They help ensure we’re not burning through our generated power, renewable or otherwise, when we don’t need to be.

Bottom Line

To summarize all this, machine learning offers a way to analyze and draw actionable conclusions from energy sector data. It brings other gifts, too. Inspections powered by machine learning are substantially more accurate than inspections performed by hand, which is critical for timely maintenance and avoiding downtime at power-generating facilities.

Machine learning also helps us predict and identify factors that could result in blackouts and respond more quickly (and with pinpoint accuracy) to storm damage.

Given that the demand for energy is only expected to rise across the globe in the coming years, now is an ideal time to use every tool at our disposal to make our energy grids more resilient, productive and cost-effective. Machine learning provides the means to do it.

Biomethane from Food Waste: A Window of Opportunity

For most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

food-waste-behavior

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Benefits of Biodegradable Packaging for Businesses

Consumers want companies to reflect their values. They’re far more likely to purchase from a business with an identity, whether it manifests in charitable efforts or eco-friendly practices. As a greater number of people show interest in green living, biodegradable packaging presents an opportunity for growth.

That said, the virtues of biodegradable packaging extend beyond an improved public image. While business owners enjoy the superficial advantages of this transition, they often find it’s only a fraction of what the shift entails. Through switching to biodegradable plastics, they see considerable changes elsewhere.

bioplastics

In this article, we’ll detail five of those changes, exploring the subject to lend business owners a better understanding of biodegradable packaging within their operation. As we touch on the benefits, it’ll become clear that eco-friendly materials aren’t only better for the environment, but better for a company’s bottom line.

Free of Toxins & Allergens

Biodegradable packaging options are still somewhat limited, but most of the available materials are non-toxic and allergy-free. This is an essential consideration to consumers who care about the products they’re purchasing and the composition of their packaging. If either is potentially harmful, it hurts a business.

An informed consumer will almost invariably choose products packaged with bioplastic over traditional alternatives, aware of the implications of their purchase. Considering the negative health effects of phthalates — a common chemical in plastic packaging — business owners should be aware of the implications as well.

Require Fewer Resources

Biodegradable packaging has the potential to reduce water usage, solid waste, electricity and emissions. This is beneficial for the environment, of course, but it also lowers expenses associated with the packaging process. Over time, the accumulated savings prove well worth the cost of the transition.

If a company were to replace their standard packaging materials with bioplastic, they would enjoy weight savings on par with regular plastic. Research shows plastic packaging enables weight savings of over 78 percent compared to alternative materials, a notable statistic for business owners looking to convert.

Lower Production Costs

Most biodegradable materials follow the three basic R’s of sustainability.

  1. A business can reduce them, using fewer resources to create thinner and tougher materials which do the same job.
  2. A business can reuse them, taking advantage of materials with special coating which improves their durability.
  3. A business can recycle them, diverting refuse from landfills as they minimize the costs of new materials.

A business owner who invests in biodegradable packaging can cut costs by a significant margin, using fewer resources, reusing their inventory and purchasing inexpensive recycled materials. In doing so, they’ll see reduced packaging expenses over time, and more freely allocate their money elsewhere.

Reusing packaging is proving to be not only environmentally friendly, but an excellent marketing advantage. From Pinterest to Instagram, users are finding a way to re-purpose packaging. Business owners who are vocal in encouraging their customers to prioritize environmentally friendly choices can earn more goodwill and local business as a result. ToolTally is a good example of a blog that focuses on helping DIYers reuse products, and is growing an organic following as a result.

Reduced Footprint

A business owner has financial goals they have to meet, but they have environmental goals as well. Every professional in an upper-management position has a responsibility to ensure their company meets high standards of environmental compliance, and biodegradable packaging can help — outside a legal context.

To reinforce an earlier point, 70 percent of consumers between the ages of 15 and 20 want to buy goods from companies committed to sustainability, and biodegradable plastics affect the appeal of businesses which would otherwise see less attention. To reduce emissions and increase interest, change is necessary.

Convenient Disposal

Recyclable, compostable and biodegradable packaging simplifies disposal for the consumer. It affords them more options in discarding these materials, and companies should always seek to make their products convenient, from start to finish. Biodegradable materials exemplify this mindset.

For example, consumers who prefer to compost their refuse won’t have to make exceptions for packaging. They can add biodegradable packaging to their compost in much the same way they would with any other compost-friendly material, contributing to the product’s value beyond its primary utility.

Looking Toward the Future

When reviewing the benefits listed above, business owners should feel confident in their decision to adopt biodegradable packaging. More than superficial benefits, they’ll enjoy reduced costs and carbon emissions while increasing consumer convenience and reducing plastic pollution. The advantages are clear.

Looking toward the future, it’s safe to speculate more companies will transition toward eco-friendly practices. With this in mind, taking action now is the best option, and though biodegradable packaging is a small step, it’s an important one.

Renewable Energy for Water Reuse

Water is essential to life, making it one of the most valuable resources on the planet. We drink it, use it to grow food and stay clean. However, water is of increasingly short supply and the Earth’s population only continues to expand. Many of the countries with the largest populations are also ones that use the most water. For instance, in the United States, the average person uses 110 gallons of water each day. Meanwhile, three-fourths of those living in Africa don’t have access to clean water.

To ensure we have enough water to survive — and share with those in need — the best approach is to conserve this resource and find sustainable ways of recycling it. Currently, conventional methods or water purification use about three percent of the world’s energy supply. This isn’t sustainable long-term and can have adverse effects on the environment.

Recently, however, major steps have been made to reduce both the collective water and carbon footprint. Now, there are multiple, sustainable ways to both save energy and reuse water.

Anaerobic Digestion

Anaerobic digestion — or AD — is the natural process in which microorganisms break down organic materials like industrial residuals, animal manure and sewage sludge. This process takes place in spaces where there is no oxygen, making it an ideal system for cleaning and reusing wastewater. This recycled water can provide nutrients for forest plantations and farmland alike.

For example, in Yucatan, Mexico, the successful implementation of AD systems has provided water to promote reforestation efforts. This system has also helped accelerate the search for a sustainable solution to water-sanitation issues in rural Latin American communities.

Additionally, AD also reduces adverse environmental impacts. As the system filters water, it creates two byproducts — biogas and sludge. The biogas can be used as energy to supply electricity or even fuel vehicles. And the sludge is used as fertilizers and bedding for livestock. In poor countries, like Peru, 14 percent of primary energy comes from biogas, providing heat for food preparation and electricity to homes that would not have access to it otherwise.

Vapor Compression Distillation

In this process, the vapor produced by evaporating water is compressed, increasing pressure and temperature. This vapor is then condensed to water for injection — highly purified water that can be used to make pharmaceutical-grade solutions.

Vapor compression distillation is incredibly sustainable because it can produce pure water on combustible fuel sources like cow dung — no chemicals, filters or electricity necessary. This makes it water accessible to even the most rural communities. The system only needs enough energy to start the first boil and a small amount to power the compressor. This energy can be easily supplied by a solar panel, producing roughly 30 liters of water an hour using no more energy than that of a handheld hairdryer.

Solar Distillation

Utilizing solar energy for water treatment may be one of the most sustainable solutions to the water crisis, without sacrificing the environment or non-renewable resources. Between 80 and 90 percent of all energy collected through commercial solar panels is wasted, shed into the atmosphere as heat. However, recent advancements in technology have allowed scientists to capture this heat and use it to generate clean, recycled water.

By integrating a solar PV panel-membrane distillation device behind solar panels, researchers were able to utilize heat to drive water distillation. This panel also increases solar to electricity efficiency. This device can even be used to desalinate seawater, providing a sustainable solution to generating freshwater from saltwater.

Environmental and Economic Benefits

Finding sustainable methods of recycling water is essential to reducing energy consumption and helping the planet, and all those dependent upon it, thrive. Using methods like anaerobic digestion and environmentally-friendly distillation processes can reduce toxic emissions and provide purified, recycled water to those who need it most.

Sustainable reuse of water can also benefit the economy. The financial costs of constructing and operating desalination and purification systems are often high compared to the above solutions. Furthermore, using recycled water that is of lower quality for agricultural and reforestation purposes saves money by reducing treatment requirements.

Why Should Your Company Commit to Renewable Power?

Roughly one-third of U.S. greenhouse gas emissions come from burning fossil fuels to create electricity, according to Climate Collaborative. Using non-renewable gas, oil and coal adds to a rapidly growing carbon footprint, increases global warming and spells disaster for our fragile planet’s future. Companies and large corporations have the ability to change this, however, by committing to transition to renewable energy in the coming months and years. Not only will this benefit our planet, but it also promises success for companies who choose to commit to it.

Reduce energy costs by producing your own energy

Utility bills are a huge expense for businesses, many of which are at the mercy of utility companies that could raise their rates at any moment. Renewable energy is an attractive alternative to electricity and the bills that come with it. Wind installations are one option, but solar panels are even better as they are more predictable, efficient and affordable.

In fact, the cost of renewable energy is dropping at an incredibly rapid rate. The total cost of developing wind power has dropped 55% in the last five years while solar energy has dropped a shocking 74%. These low prices stem from massive global investment and rapid technological advancement. And major corporations that are already using clean energy are only looking to buy more in the coming months.

renewables-investment-trends

Boosting public relations

An increasing number of companies are committing to renewable power to boost public image. Smart businesses know that, in today’s world, renewable power is a source of competitive advantage. Social pressure to reduce emissions continues to rise as consumers look for ways to be involved in saving the planet. This green movement has driven a demand for green products. And companies that can sustainably create these products are winners in the public eye.

Renewable power is also reliable and predictable

Unlike coal or oil, we’ll never run out of wind or sun. This makes the cost and savings of wind and solar power quite stable. Solar panels installed on top of business structures will produce a consistent amount of energy year after year as long as they are properly maintained. This strong reliability makes budgeting easier and ensures a less volatile bottom line.

Reducing carbon emissions

Every one killowatt-hour of energy produced keeps 300 pounds of carbon out of the atmosphere. So, replacing non-renewable energy with renewable resources naturally decreases global warming emissions. And that’s good news for everyone on earth because if we’re left with more carbon than oxygen, it’s going to be a little difficult to breathe.

How Can You Commit to Renewable Power?

The first step in committing to renewable power is shifting your perspective. Take time to personally research these benefits of renewable power. Once you decide sustainable energy is worth implementing, on both an individual and global scale, you can begin to look for ways to create your own strategy.

The best way to brainstorm and execute strategy is to develop a team with specific goals in mind. This team should include members from different departments such as legal, financial, environmental, sustainability and operations. Once there is a team in place, you can begin to integrate energy into the company’s vision and operations.

The team should begin by assessing current energy impacts and how they might change them. Analyzing impact and comparing your own to competitors’ will reveal performance opportunities and gaps. The team can then develop a plan of action. Aggressive targets should reflect the degree and pace of emission reductions necessary to mitigate climate change.

Once goals are outlined, the team must create incentives for employees and consumers alike to make energy an actionable priority. From there, they can measure and manage energy usage as the company transitions from non-renewable to renewable energy sources.

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What Is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

How to Reduce Your Digital Carbon Footprint?

Roughly 2.5 billion people around the globe use the internet. Experts predict the energy used to power the internet — as well as the number of greenhouse gases produced — will soon exceed air travel. Your digital carbon footprint is comprised of a number of activities, not just checking email.

Digital activities that have an impact on the environment include:

  • Streaming music
  • Watching Netflix
  • Posting on Twitter
  • Buying an e-book
  • Reading online news

Today’s eco-conscious consumers and developers are looking for ways to reduce their digital carbon footprints and implement sustainable practices.

1. Reach Out to Tech Companies

Tech companies like YouTube can reduce their digital carbon footprint by changing how their design. In 2016, people streamed about 1 billion hours of YouTube videos each day, producing 10 million metric tons of carbon dioxide equivalent (CO2e) — the same as the City of Glasgow.

For users who only listen to YouTube for the audio, the option to turn off the video could save 100 to 500 Kilotons of CO2e each year — comparable to the carbon footprint of 30,000 homes in the U.K. For consumers, it’s imperative to reach out to your favorite brands and request eco-conscious features.

2. Unsubscribe from Unwanted Emails

In 2018, more than 281 billion emails were sent and received each day, a number that’s expected to grow to more than 347 billion by 2022. Like anyone else, you probably have multiple brands who send you unwanted emails. To reduce your carbon footprint, make use of the unsubscribe button.

Look through your inbox for any unwanted emails you’ve yet to delete. You should also go through your promotions and spam folder. The unsubscribe button is typically at the very bottom of the email. Some brands attempt to hide it by making the text a similar color as the background.

3. Optimize Your Charging Routine

How many digital devices do you charge? There’s the laptop, cellphone, tablet and smartwatch. To reduce your carbon footprint, optimize your charging routine. Once a device is fully charged, unplug the power supply. Not only can you reduce your energy consumption, but you’ll also improve the lifetime of your battery.

Reduce your reliance on fossil fuels by investing in a solar charger. There are many solar charging stations available that range in capability and price. You can find a quality set-up under $50 for a smartphone, tablet and watch. If you want to power heavy-duty devices like laptops and film equipment, you’ll want to research options $75 and above.

4. Hang Onto Your Old Device

In the U.S., 44% of smartphone users said they replace or upgrade their phone as often as their provider allows, typically every two years. Many of these working devices end up cluttering landfills, while others are broken down into usable materials. Consumers and businesses alike can reduce their digital footprint by holding onto devices longer.

If you have a cracked screen, look into DIY tools online, or visit a local shop. The cost is remarkably affordable compared to the latest phone model. If your device is running slow, delete unused or unwanted apps, photos, videos, files and more. Most smartphones have a built-in storage cleaner that can free up space.

5. Download Instead of Stream

Video streaming makes up a large chunk of internet traffic. Data centers that host streaming sites like Netflix, YouTube and Facebook consume around 1% of the world’s electricity each year, a number that’s expected to grow. More demand for this type of technology means more consumed energy.

To minimize carbon output, data centers need to be fed by renewable energy sources, such as solar, hydroelectric or nuclear power. As a consumer, you can reduce the amount of time you spend streaming videos and music each day. Try to download content ahead of time, which puts less strain on networks. If you do stream video, connect to Wi-Fi instead of 4G to consume less energy.

Most of the resources we rely on are finite. It’s crucial to make sustainable choices and reduce your carbon footprint. Reach out to your favorite tech companies and request eco-friendly alternatives. Pare down your inbox and delete any offers for a phone upgrade. You can also invest in a solar charger and reduce your streaming time.

For most of us, it’s impossible to cut out internet use entirely. However, it’s still possible to make eco-friendly decisions.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

Share of Renewables in Energy Supply of UK

The Earth is facing a climate crisis, as the burning of fossil fuels to generate electricity and power our cars overloads the atmosphere with carbon dioxide, causing a dangerous atmospheric imbalance that’s raising global temperatures.

A report from the UN’s Intergovernmental Panel on Climate Change (IPCC) released earlier this month cautioned that the planet has just 12 years to dramatically curb greenhouse gas emissions, by overhauling our energy systems and economies and likely, our societies and political systems. Even a half degree rise beyond that would cause catastrophic sea level rises, droughts, heat, hunger, and poverty, spelling disaster for our species.

UK’s Commitment to Climate Change Mitigation

The UK government has committed to reducing carbon emissions by 80% of 1990 levels by 2050, a process that will involve overhauling our energy supply, which is responsible for 25% of greenhouse emissions in the country, just behind transport (26% of all emissions). But it may be too little too late. The government has already said it is reviewing these targets in light of the IPCC report and in the spring began consulting on a net-zero carbon emissions target for 2050.

But despite these dire prognoses and the enormity of the task facing us as a species, there’s reason to be optimistic. The UK has already managed to cut greenhouse gas emissions by 43% on 1990 levels, with much of the reduction coming from a 57% decline in emissions from energy generation. This is in part thanks to several providers offering you the chance to have a 100% renewable domestic energy supply.

Reduction in Coal Usage

The use of coal has plunged nearly overnight in the UK. In 2012, 42% of the UK’s electricity demand was met by coal. Just six years later, in the second quarter of 2018, that figure had fallen to just 1.6%. Emissions from coal-fired power stations fell from 129 million tonnes of CO2 to just 19 million tonnes over the same period.

A coal-free Britain is already on the horizon. In April 2017, the UK logged its first coal-free day since the Industrial Revolution; this past April we extended the run to 76 consecutive hours. In fact, in the second quarter of 2018, all the UK’s coal power stations were offline for a total of 812 hours, or 37% of the time. That’s more coal free hours than were recorded in 2016 and 2017 combined and in just three months.

When the UK does rely on coal power, it’s primarily to balance supplies and to meet demand overnight and during cold snaps, such as during the Beast from the East storm in March. The UK is so certain that coal is a technology of the past, that the government has plans to mothball all seven remaining coal-fired power stations by 2025.

Share of Renewables in Energy Supply

The decline in coal has been matched by an explosion in renewable energy, particularly in wind power. In the second quarter of 2018, renewables generated 31.7% of the UK’s electricity, up from under 9% in 2011. Of those, wind power produced 13.3% of all electricity (7.1% from onshore turbines farms and 6.2% from offshore wind farms), biomass energy contributed another 11% of the UK’s electricity, solar generated 6% and hydro power made up the rest of renewables’ pie share.

The UK’s total installed renewables capacity has exploded, hitting 42.2GW in the second quarter of 2018, up from under 10GW in 2010. That includes 13.7GW of onshore wind capacity and 7.8GW of offshore wind capacity—a figure which will get a boost with the opening in September of the world’s largest wind farm, the Walney Extension, off the coast of Cumbria, itself with a capacity of nearly 0.7GW. Solar panels contributed another 13GW of renewable capacity, and installed plant biomass infrastructure reaching 3.3GW.

However, while renewables are transforming electricity generation in the UK, our energy system consists of more than simply electricity. We also have to account for natural gas and the use of fuel in transport, and renewables have made fewer in roads in those sectors.

The UK is meeting just 9.3% of its total energy needs from renewable sources, short of the 15% it has earmarked for 2020 and far behind its peers in the EU, where Sweden is already running on 53.8% renewable energy.

Conclusion

Emissions are dropping overall in the UK, largely due to an ongoing revolution in electricity generation and a decisive move away from coal. But these reductions have concealed stagnant and even increasing levels of greenhouse gas emissions from other sectors, including transport and agriculture.

Our transition to a sustainable economy has begun but will require more than wind farms and the shuttering of coal-fired power stations. It must encompass electric vehicles, transformed industries, and ultimately changing attitudes toward energy and the environment and our responsibility toward it.

Use of Big Data in Achieving Sustainable Development Goals

Big data is everywhere, and all sorts of businesses, non-profits, governments and other groups use it to improve their understanding of certain topics and improve their practices. Big data is quite a buzzword, but its definition is relatively straightforward — it refers to any data that is high-volume, gets collected frequently or covers a wide variety of topics. If you want to learn big data and data science then you can take data science courses that are offered by Intellipaat.

This kind of data when organized and analyzed adequately can be quite valuable. Marketing teams use it to learn more about their customer base, healthcare professionals can use it to calculate someone’s chance of contracting a given disease, and cities can use it to optimize traffic flow, and it can also help in saving wildlife.

Big data also has the potential to help significantly improve the quality of life for much of the world’s population. The United Nations, governments, not-for-profits and other groups are using big data to help achieve the UN’s sustainable development goals or SDGs — a set of 17 targets related to protecting the natural environment, reducing inequality, improving health outcomes and other things that will make life better around the world.

How Can We Use Big Data to Achieve SDGs?

There are many ways in which we could use data to improve our understanding of our progress towards the SDGs, determine how best to meet those targets and ensure accountability. The United Nations has set up a task team to explore how to use big data to help achieve the SDGs. A survey by the task team found that big data projects most frequently focused on the “no poverty” goal and that mobile phone data was the most common data source.

Pulse Lab Jakarta, a joint effort between the United Nations and the government of Indonesia, is working on various big data projects related to the SDGs. One of their projects is the Vulnerability Analysis Monitoring Platform for Impact of Regional Events (VAMPIRE) platform, which analyzes satellite imagery and creates maps that incorporate anomalies related to climate and rainfall to help track slow-onset climate changes.

Another project, the Manitoba Bioeconomy Atlas, comes from the International Institute for Sustainable Development and involves that creation of a web-based spatial inventory of biomass sources. Biomass producers can use the data to optimally locate biomass refineries, and biomass consumers can use it to source biomass and calculate costs.

There are many other potential uses for big data related to the SDGs. Mobile phone data, for instance, could be used to track the movement of populations, such as refugees, to improve preparations. Data analysis could help predict changes in food prices. The possibilities are virtually endless.

What Are the Challenges and Risks?

The opportunities related to big data are plentiful, but there are also numerous challenges and risks. Collecting, storing and analyzing large amounts of data is in itself challenging. It requires advanced technology and infrastructure, which can be expensive. This limits the access of less developed countries to this technology. In the survey by the UN’s bid data task team, the team received much higher response rates from high-income countries than lower-income ones.

Privacy is another significant concern. It’s essential that those processing respect the rights of those they collect data from. The fact that much data is collected passively can complicate this. Even removing sensitive information from data sets may not always be enough to guarantee privacy, since people could be identified by combining information from multiple data sets. Those handling personal data need to take steps to protect subjects’ privacy.

The UN, through several of its groups, has issued recommendations and guidelines for the use of big data related to SDGs. Among the goals of these guidelines is ensuring privacy and increasing access to data worldwide. The private and public sectors, as well as countries and organizations from around the world, will have to work together to accomplish the UN’s SDGs and to ensure that we can take full advantage of the benefits big data can provide related to achieving them.