Global Trends in Solar Energy Sector

Many countries around the world have switched to solar power in order to supplement or provide an alternative source of energy that is cheaper, more reliable and efficient, and friendly to the environment. Generally speaking, to convert solar energy to electricity, there are two kinds of technologies used by the solar power plants – the PV (photovoltaic) systems which use solar panels to convert sunlight directly into electricity, and the CSP (Concentrated Solar Power) that indirectly uses the solar thermal energy to produce electricity.

The solar PV systems, which are either placed in ground-mounted solar farms or on rooftops are considered cheaper than CSP and constitutes the majority of solar installations, while CSP and large-scale PV accounts for the majority of the general solar electricity-generation-capacity, across the globe.

Global Trends in Solar Energy

In 2017, photovoltaic capacity increased by 95 GW, with a 34% growth year-on-year of new installations. Cumulative installed capacity exceeded 401 GW by the end of the year, sufficient to supply 2.1 percent of the world’s total electricity consumption. This growth was dramatic, and scientists viewed it as a crucial way to meet the world’s commitments to climate change.

“In most countries around the world there is still huge potential to dramatically increase the amount of energy we’re able to get from solar. The only way to achieve this is through a combination of both governance and individual responsibility.” Alastair Kay, Editor at Green Business Watch

Both CSP and PV systems are undergoing a considerable amount of growth and experts claim that by 2050, solar power will become the greatest source of electricity in the whole world. To achieve this goal, the capacity of PV systems should grow up to 4600 gigawatts, of which 50% or more would come from India or China. To date, the capacity of solar power is about 310 gigawatts, a drastic increase on the 50 gigawatts of power installed in 2010.

The United Kingdom, followed by Germany and France led Europe in the 2016 general statistics for solar power growth with new solar installations of 29%, 21%, and 8.3% respectively. In early 2016, the amount of power across Europe was near 100 gigawatts but now stands at 105 gigawatts. This growth is regarded as slow and experts in the solar industry are calling upon the European Union to give more targets concerning the renewable source of energy. It is said that setting a target that is not less than 35% will revive the solar business in Europe.

Across the United States in places, such as Phoenix and Los Angeles, which are located in a sunny region, a common PV system can generate an average of 7500 kWh – similar to the electrical power in use in a typical US home.

In Africa, many nations especially those around the deserts such as Sahara receive a great deal of sunlight every day, creating an opportunity for the development of solar technology across the region. Distribution of PV systems is almost uniform in Africa with the majority of countries receiving about 2000 kWh/m2 in every year. A certain study shows that generating solar power in a facility covering about 0.3% of the area consisting of North Africa could provide all the energy needed by the European-Union.

Asia alone contributed to 66.66% of the global amount of solar power installed in 2016, with about 50% coming from China.

With these reports, it is clear that the development of solar energy technology is growing in each and every continent with just a few countries with little or no apparent growth.

The growth of solar power technology across every continent in the world is very fast and steady and in the near future, almost every country will have a history to tell about the numerous benefits of going solar. The adoption of solar power will help improve the development of other sectors of the economy, such as the electronics industry, hence creating a lot of employment opportunities.

Palm Kernel Shells: An Attractive Biomass Fuel for Europe

palm-kernel-shellsEurope is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.

Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia has emerged has an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Paying Less for Your Energy: A Handful of Practical Tips

There is little doubt that energy bills are a big drain on your finances, what with the Big Six energy providers hiking their prices recently, with two of them doing it twice within a year! What is one to do? Toe their line or search for the best and cheapest energy tariffs? Of course, you will save a pretty packet if you search for the cheapest energy rates. Find below certain practical tips that will enable you to find the right energy deal and save on money.

Avoid standard variable rate tariff

You need to be careful when your fixed tariff deal ends, for it is then that your energy provider will nudge you towards standard variable rate tariff. Their reason for doing so is simple, that is, to make money. These variable rate tariffs are expensive. According to the figures of previous year obtained from First Utility, will escalate your energy bill by an average of £262 annually. Not only are these variable rate tariffs expensive, but they also provide leeway for your energy supplier to hike costs.

The way out of this is to search for smaller suppliers that offer the best-buy tables and better services. You can do this by manually researching lists of energy suppliers or using online comparison sites. Spending time doing manual research can pay dividends as you can often find deals not apparent on switching sites, however the latter are much faster to use.

Power tip: When using switching sites, always check the box that says something like ‘include plans that require switching directly though the supplier’ as this will reveal even cheaper deals.

Today, the minnows are giving a run for money to the Big Six energy providers. These suppliers offer you a choice of long-term fix and even variable rate that are well under £1,000. Opting for a fixed rate tariff will give you a secure price on each unit of electricity for a set period, whereas variable rate tariff, where the price can fluctuate up and down.

So, to get the full price advantage don’t stick to your original supplier, but switch to a smaller one. It will certainly help in saving cash.

To fix or not to fix

In the past, variable rate tariffs tended to be cheaper, but this trend has changed. Today, the cheapest rates are offered on one-year fixes. Opting for it will save you money. This is because this type fixes the rate you pay for each unit of electricity, usually for a 12- to 18-month period.

The latest trend is to opt for two-year fixed deals. Whether it is one-year or two-year fixed deals, the idea is to avoid expensive variable standard tariffs. It needs to be noted that fixed deals are slightly more than the cheapest deals, if you are going in for long-term security. However, it certainly does not mean that you pay a fixed amount and be done away with it. It will still depend upon the amount of energy consumed, only the tariff per unit is somewhat reduced.

You need to be careful about some fixed deals that charge exit fees if you decide to leave early. Also, there is no guarantee that a fixed deal is the best long-term option, but if you want to give certainty over bills, this is the best choice.

Benefits of energy switching

Your local energy suppliers are the real beneficiary since they tend to charge more for electricity from people living in their vicinity. This is because they build a monopoly in the region and dictate the energy rates.

To break the stranglehold of your local energy supplier, you will do well to explore the possibility of moving away. This switching will certainly save you money. Of course, finding the cheapest supplier will primarily depend upon where you live. A little search will not only help you find cheap suppliers but also help you in comparing prices to find the best price.

If you are scared that switching from your current energy supplier will attract a penalty, if you decide to leave before the term expires, it will still be worth it. So, accept the penalty and you will still end up saving big.

Cutting your energy bills

If you are still in two minds regarding switching to a smaller energy supplier, you can still limit your energy bill in the following ways:

  • Ask for return of credited money: If you are paying a set amount by direct debit pay each month for gas and electricity, it will be a good idea to ask for a return of money during summer and spring. You may get it back with interest.
  • Save energy: Change the way you use your gas and electricity. This will reduce usage and save money.
  • Pay online: This could cut more than £10 off your annual bills.

Conclusion

Switching energy supplier is a big decision. However, if your current supplier is offering cheaper tariff than what you are currently using, it is wise to switch to it, rather than opt for a new energy supplier. You still end up saving money.

Share of Renewables in Energy Supply of UK

The Earth is facing a climate crisis, as the burning of fossil fuels to generate electricity and power our cars overloads the atmosphere with carbon dioxide, causing a dangerous atmospheric imbalance that’s raising global temperatures.

A report from the UN’s Intergovernmental Panel on Climate Change (IPCC) released earlier this month cautioned that the planet has just 12 years to dramatically curb greenhouse gas emissions, by overhauling our energy systems and economies and likely, our societies and political systems. Even a half degree rise beyond that would cause catastrophic sea level rises, droughts, heat, hunger, and poverty, spelling disaster for our species.

UK’s Commitment to Climate Change Mitigation

The UK government has committed to reducing carbon emissions by 80% of 1990 levels by 2050, a process that will involve overhauling our energy supply, which is responsible for 25% of greenhouse emissions in the country, just behind transport (26% of all emissions). But it may be too little too late. The government has already said it is reviewing these targets in light of the IPCC report and in the spring began consulting on a net-zero carbon emissions target for 2050.

But despite these dire prognoses and the enormity of the task facing us as a species, there’s reason to be optimistic. The UK has already managed to cut greenhouse gas emissions by 43% on 1990 levels, with much of the reduction coming from a 57% decline in emissions from energy generation. This is in part thanks to several providers offering you the chance to have a 100% renewable domestic energy supply.

Reduction in Coal Usage

The use of coal has plunged nearly overnight in the UK. In 2012, 42% of the UK’s electricity demand was met by coal. Just six years later, in the second quarter of 2018, that figure had fallen to just 1.6%. Emissions from coal-fired power stations fell from 129 million tonnes of CO2 to just 19 million tonnes over the same period.

A coal-free Britain is already on the horizon. In April 2017, the UK logged its first coal-free day since the Industrial Revolution; this past April we extended the run to 76 consecutive hours. In fact, in the second quarter of 2018, all the UK’s coal power stations were offline for a total of 812 hours, or 37% of the time. That’s more coal free hours than were recorded in 2016 and 2017 combined and in just three months.

When the UK does rely on coal power, it’s primarily to balance supplies and to meet demand overnight and during cold snaps, such as during the Beast from the East storm in March. The UK is so certain that coal is a technology of the past, that the government has plans to mothball all seven remaining coal-fired power stations by 2025.

Share of Renewables in Energy Supply

The decline in coal has been matched by an explosion in renewable energy, particularly in wind power. In the second quarter of 2018, renewables generated 31.7% of the UK’s electricity, up from under 9% in 2011. Of those, wind power produced 13.3% of all electricity (7.1% from onshore turbines farms and 6.2% from offshore wind farms), biomass energy contributed another 11% of the UK’s electricity, solar generated 6% and hydro power made up the rest of renewables’ pie share.

The UK’s total installed renewables capacity has exploded, hitting 42.2GW in the second quarter of 2018, up from under 10GW in 2010. That includes 13.7GW of onshore wind capacity and 7.8GW of offshore wind capacity—a figure which will get a boost with the opening in September of the world’s largest wind farm, the Walney Extension, off the coast of Cumbria, itself with a capacity of nearly 0.7GW. Solar panels contributed another 13GW of renewable capacity, and installed plant biomass infrastructure reaching 3.3GW.

However, while renewables are transforming electricity generation in the UK, our energy system consists of more than simply electricity. We also have to account for natural gas and the use of fuel in transport, and renewables have made fewer in roads in those sectors.

The UK is meeting just 9.3% of its total energy needs from renewable sources, short of the 15% it has earmarked for 2020 and far behind its peers in the EU, where Sweden is already running on 53.8% renewable energy.

Conclusion

Emissions are dropping overall in the UK, largely due to an ongoing revolution in electricity generation and a decisive move away from coal. But these reductions have concealed stagnant and even increasing levels of greenhouse gas emissions from other sectors, including transport and agriculture.

Our transition to a sustainable economy has begun but will require more than wind farms and the shuttering of coal-fired power stations. It must encompass electric vehicles, transformed industries, and ultimately changing attitudes toward energy and the environment and our responsibility toward it.

Looking for Cheap Business Electricity? Tips to Get the Best Tariffs

Every business person knows that making a profit from an enterprise is not easy. Reducing expenses is among the best ways to ensure profitability. However, it requires identification of all your costs and expenses. One area of concern for most businesses is the ever-rising cost of electricity. Indeed, cheap business electricity is a factor that can make or break your business. We guide you through some of the best techniques that’ll help you to get the best electricity tariffs for your business.

Compare the prices

The electricity sector has many suppliers. Each one of them is in it to make money. The competition is stiff, and so every supplier continually looks for the best ways to beat the competition.

Also, the tariffs differ among different industry players. Hence, you should endeavor to compare the prices among various suppliers. In case you get another provider with the best deal, it’s time to switch.

Know when your contract ends

When the electricity contract expires, and you are not aware, it can automatically renew because such a contract requires formal termination. The worst case scenario is where the contract rolls-over to higher prices. Knowing when your contract ends provides you with the perfect opportunity to switch suppliers.

Consider using a broker

The process of finding the electricity supplier with the most competitive tariffs is tedious and time-consuming. As a business owner you have many other essential engagements hence it would be better to use an electricity broker.

Brokers deeply understand electricity matters. They know all the suppliers and the tariffs they offer. They may also know the secrets of the trade that you might not be aware of. To crown it all,brokers in most cases will not charge you for their service as they get a fee from the electricity partner you choose.

Discuss with your supplier

When your contract ends, it provides you with a stellar opportunity for negotiating with your current supplier for tariff reduction. Most suppliers won’t want to lose you as their customer, and so they may be willing to listen to you.

Even where you have a quote from other electricity suppliers or also using a broker, it does cost you anything to try and negotiate with your current supplier. When you call them, let them know that you are considering switching if they do not lower the tariffs. Also, at the time of contract renewal, you get the opportunity to request for discounts.

Change Tariffs

Many people don’t even know their existing electricity plan. It is an excellent idea to look at your electricity bill or contract to discover your plan. Your tariff could be based on a flat-rate, or it could vary depending on the amount of usage.

It is also possible that your tariff depends on the time of usage. Selecting the best tariff can enable you to save a lot in electricity bills. Negotiating with your supplier for a customized tariff is another excellent strategy for reducing your business electricity.