Sugarcane Trash – A Renewable Fuel of Today and Future

In Indian sugar mills, the frequent cycles of ups and downs in the core business of selling sugar has led to the concentration towards the trend of ancillary businesses, like cogeneration power plant and ethanol production, becoming the profit centres. These units, which were introduced as a means to manage sugar mills’ own byproduct, like bagasse, are now keeping several sugar mills financially afloat. Thus, the concept of ‘Integrated Sugar Mill Complex’ has now become a new normal.

Limitations of Bagasse

Bagasse is a ubiquitous primary fuel in cogeneration plants in sugar mills, which adds more than 2,000 MW of renewable power to the Indian energy mix. The inclination of cogeneration plant managers towards bagasse is primarily because of its virtue of being easily available on-site, and no requirement to purchase it from the external market.

This remains true despite its several significant shortcomings as a boiler fuel, prime among which are very high moisture content and low calorific value. As a result, the fuel-to-energy ratio remains abysmally low and the consequent lesser power generation is depriving these sugar mills from achieving true revenue potential from their ancillary power business vertical, which is pegged at ~10,000 MW.

Sugarcane Trash – A Wonder Waste

Though, there is a much neglected high calorific value biomass which is available in proximity of every sugar mill and is also a residue of the sugarcane crop itself, which could enable the cogeneration units to achieve their maximum output potential. This wonder waste is sugarcane trash – the dry leaves of sugarcane crop – which is left in the farms itself after sugarcane harvesting as it has no utility as fodder and generally burnt by farmers, which harms the surrounding air quality substantially.

Given its favourable properties of having very low moisture content with moderate-to-high calorific value, sugarcane trash could be used in most of the high pressure boiler designs in a considerable proportion along with bagasse.

cane-trash

Undeniably, sugar mills should not discontinue using bagasse as the primary fuel, but surely complement it with sugarcane trash as it would lead to an increase in their revenue generation and would also allow them to expand operations of their cogeneration plant to off-season, as using sugarcane trash with bagasse in season would leave more bagasse for off-season usage.

Hurdles to Overcome

Despite these evident benefits, the major obstacle in development of sugarcane trash as an industrial boiler fuel has been its difficult collection from thousands of small and fragmented farms. Moreover, the trash becomes available and needs to be collected simultaneously during the operating season of the sugar mills, which makes deployment of resources, human or otherwise, for managing the procurement of trash very difficult for any sugar mill.

As a matter of fact, the sugar mills which initiated the pilots, or even scaled commercially, to utilise sugarcane trash along with bagasse, had to sooner or later discontinue its use, owing to the mammoth challenges discussed above.

The Way Forward

Thus, in order to utilise this wonder waste, there is a dire need to outsource its procurement to professional and organised players which establish the biomass supply chain infrastructure in the vicinity of the cogeneration units to make on-site availability of sugarcane trash as convenient as bagasse and enable them to procure the rich quality biomass at sustainable prices which leads to an increase in their profits.

sugarcane-trash-burning

Burning of cane trash creates pollution in sugar-producing countries

These biomass supply chain companies offer value to the farmers by processing their crop residues in timely manner, thus prevent open burning of the crop residue and contribute to a greener and cleaner environment.

Indeed, owing to its favourable fuel properties, positive environmental impact and now, with ease in its procurement, sugarcane trash is the renewable fuel of today and future for the Indian sugar mills.

4 Solar Energy Trends in the Philippines

The solar energy market in the Philippines has been growing exponentially since 2018. In fact, the Philippines Board of Investments (BOI) had approved eight solar projects that year. The Solar Philippines Commercial Rooftop Projects Inc. oversaw all eight that were equivalent to $1.65 billion.

Even though, as of today, the solar power industry is still on the nascent stage, it is expected to gain massive support from the government moving forward.

solar-energy-trends

Solar panels are becoming more accessible, for homeowners and businesses

The Philippines has hot and humid weather, which means households always require air conditioning. Thanks to the introduction of solar air conditioning, many homeowners can reduce their utility bills.

Some of the factors that will drive growth in the solar energy sector are the growing population, as well as the Philippines’ rapid economic development. When the Philippines succeeds in replacing diesel generators in most islands with solar energy, there will be a significant reduction in power outages.

Solar energy and other renewable energy sources will guarantee grid stability throughout the Philippines. Here are the four main trends in solar energy in the Philippines.

1. Accessibility for Private Households

A couple of years back, utility-scale solar was difficult to achieve due to the market’s regulatory changes. The price competition was too high, and only the largest capitalized developers could compete.

However, this is set to change because the new generation of renewable energy can now be distributed to private households. This ensures that each household can install a solar-powered air conditioner to reduce utility costs.

It is a huge win for homeowners and business people because they can now have more control over their energy consumption. Photovoltaic panels can be installed on the roofs of homes, apartment buildings, as well as business establishments.

This means that business owners can generate as much energy as they desire and even sell residual to energy supplies near them.

2. Significant Growth of Solar PV

The production cost of solar energy is expected to fall significantly between 2020 and 2025. As a result, solar will take first place for the cheapest source of energy in the Philippines.

The growth of photovoltaic systems in the Philippines will provide an immediate and more permanent solution to the country’s energy needs. The market is already registering a significant fall in the costs of photovoltaic cells.

Many households are jumping on this bandwagon and taking advantage of the affordability of solar power equipment. As a household in the Philippines, you greatly benefit from purchasing a solar air conditioner.

Residents are also adopting small-scale solar photovoltaic systems because the declined cost of PV technology makes financial sense.

3. Increased Grid Parity

The Philippines has a huge population, and without alternative sources of energy, the grid easily gets unstable. However, due to the introduction of renewable sources of energy like solar and wind, we can see a future where grid parity is guaranteed.

Since more private households can now depend on solar energy for their electricity needs, grid parity has steadily increased. Most households today use solar air conditioner to maintain a comfortable indoor environment. This is a highly cost-effective solution because solar energy is steadily getting cheaper than traditional energy sources.

solar-AC

Not to mention that the overall cost of electricity from the gird is decreasing as well. This can be attributed to the contribution of solar PV. Technological advancements are ensuring manufacturers can produce solar panels with higher solar PV module efficiency.

This means that you can install a solar hybrid air conditioner at home without worrying about the running cost.

4. Storage

There are plans underway to develop solar-storage microgrids in the Philippines. When this plan succeeds, solar energy will play a huge role in improving environmental health, human health, as well as people’s quality of life.

This will be a huge step towards achieving Philippine’s national climate change, greenhouse gas emissions reduction and renewable energy goals. Solar energy production allows the Philippines to reduce its reliance on fuel. The transition to low-carbon energy sources like wind and solar opens up economic development opportunities from a climate perspective.

It is essential to pair solar systems with solar-storage because this boosts the positive impact solar energy has on the economy.

During spring and summer months, the Philippines experiences great solar generation. However, without a storage solution for solar energy, this energy cannot be saved for later. Storage prices are still very high, not only in Asia as a whole but the world over. There are already hybrid solar storage projects in place, but they’re nothing close to bulk solar storage.

One thing is certain though, the prices keep coming down, and more and more solar farms are springing up. Soon enough, the Philippines will be in a position to store solar energy and eliminate over-reliance on fuels.

Conclusion

Harnessing solar energy has ensured that many households in the Philippines can make it through hot and humid days. Solar air conditioners allow homeowners to achieve a comfortable indoor environment without digging too deep into their pockets. These latest trends show that things are only getting better. We can see a future where solar energy is the main source of electricity in the Philippines.

Everything You Should Know About An Algae Biorefinery

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming of algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels. Algae can be efficiently grown on land that is not suitable for agriculture and hold huge potential to provide a non-food, high-yield source of biodiesel, ethanol and hydrogen fuels.

algae-biorefinery

Several recent studies have pointed out that biofuel from microalgae has the potential to become a renewable, cost-effective alternative for fossil fuel with reduced impact on the environment and the world supply of staple foods, such as wheat, maize and sugar.

What are Algae?

Algae are unicellular microorganisms, capable of photosynthesis. They are one of the world’s oldest forms of life, and it is strongly believed that fossil oil was largely formed by ancient microalgae. Microalgae (or microscopic algae) are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only carbon, water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters.

Oils produced by diverse algae strains range in composition. For the most part are like vegetable oils, though some are chemically similar to the hydrocarbons in petroleum.

Advantages of Algae

Apart from lipids, algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D is underway on algae as raw material worldwide, especially in North America and Europe with a high number of start-up companies developing different options.

Most scientific literature suggests an oil production potential of around 25-50 ton per hectare per year for relevant algae species. Microalgae contain, amongst other biochemical, neutral lipids (tri-, di-, monoglycerides free fatty acids), polar lipids (glycolipids, phospholipids), wax esters, sterols and pigments. The total lipid content in microalgae varies from 1 to 90 % of dry weight, depending on species, strain and growth conditions.

What is Algae Biorefinery

In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components.

The term algae biorefinery was coined to describe the production of a wide range of chemicals and biofuels from algal biomass by the integration of bio-processing and appropriate low environmental impact chemical technologies in a cost-effective and environmentally sustainable.

If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and essential fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced can be recovered as well.

The potential for commercial algae production, also known as algaculture, is expected to come from growth in translucent tubes or containers called photo bioreactors or in open systems (e.g. raceways) particularly for industrial mass cultivation or more recently through a hybrid approach combining closed-system pre-cultivation with a subsequent open-system.

Advantages of Algae Biorefinery

The major advantages of an algae biorefinery include:

  • Use of industrial refusals as inputs ( CO2,wastewater and desalination plant rejects)
  • Large product basket with energy-derived (biodiesel, methane, ethanol and hydrogen) and non-energy derived (nutraceutical, fertilizers, animal feed and other bulk chemicals) products.
  • Not competing with food production (non-arable land and no freshwater requirements)
  • Better growth yield and lipid content than crops.

Indeed, after oil extraction the resulting algal biomass can be processed into ethanol, methane, livestock feed, used as organic fertilizer due to its high N:P ratio, or simply burned for energy cogeneration (electricity and heat). If, in addition, production of algae is done on residual nutrient feedstock and CO2, and production of microalgae is done on large scale in order to lower production costs, production of bulk chemicals and fuels from microalgae will become economically, environmentally and ethically extremely attractive.

Anaerobic Digestion of Animal Manure

Animal manure is a valuable source of nutrients and renewable energy. However, most of the manure is collected in lagoons or left to decompose in the open which pose a significant environmental hazard. The air pollutants emitted from manure include methane, nitrous oxide, ammonia, hydrogen sulfide, volatile organic compounds and particulate matter, which can cause serious environmental concerns and health problems.

In the past, livestock waste was recovered and sold as a fertilizer or simply spread onto agricultural land. The introduction of tighter environmental controls on odour and water pollution means that some form of waste management is necessary, which provides further incentives for biomass-to-energy conversion.

cow-manure-biogas-plant

Anaerobic digestion is a unique treatment solution for animal manure management as it can  deliver  positive  benefits,  including  renewable  energy,  water pollution, and air emissions. Anaerobic digestion of animal manure is gaining popularity as a means to protect the environment and to recycle materials efficiently into the farming systems.

Waste-to-Energy (WTE) plants, based on anaerobic digestion of cow manure, are highly efficient in harnessing the untapped renewable energy potential of organic waste by converting the biodegradable fraction of the waste into high calorific value gases.

The establishment of anaerobic digestion systems for livestock manure stabilization and energy production has accelerated substantially in the past several years. There are thousands of digesters operating at commercial livestock facilities in Europe, United States,  Asia and elsewhere. which are generating clean energy and fuel. Many of the projects that generate electricity also capture waste heat for various in-house requirements.

Important Factors

The main factors that influence biogas production from livestock manure are pH and temperature of the feedstock. It is well established that a biogas plant works optimally at neutral pH level and mesophilic temperature of around 35o C. Carbon-nitrogen ratio of the feed material is also an important factor and should be in the range of 20:1 to 30:1. Animal manure has a carbon – nitrogen ratio of 25:1 and is considered ideal for maximum gas production.

Solid concentration in the feed material is also crucial to ensure sufficient gas production, as well as easy mixing and handling. Hydraulic retention time (HRT) is the most important factor in determining the volume of the digester which in turn determines the cost of the plant; the larger the retention period, higher the construction cost.

Description of Biogas Plant Working on Animal Manure

The fresh animal manure is stored in a collection tank before its processing to the homogenization tank which is equipped with a mixer to facilitate homogenization of the waste stream. The uniformly mixed waste is passed through a macerator to obtain uniform particle size of 5-10 mm and pumped into suitable-capacity anaerobic digesters where stabilization of organic waste takes place.

In anaerobic digestion, organic material is converted to biogas by a series of bacteria groups into methane and carbon dioxide. The majority of commercially operating digesters are plug flow and complete-mix reactors operating at mesophilic temperatures. The type of digester used varies with the consistency and solids content of the feedstock, with capital investment factors and with the primary purpose of digestion.

Biogas contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria which oxidizes H2S into elemental sulfur.

Biogas can be used as domestic cooking, industrial heating, combined heat and power (CHP) generation as well as a vehicle fuel. The digested substrate is passed through screw presses for dewatering and then subjected to solar drying and conditioning to give high-quality organic fertilizer.

Renewable Energy Stocks to Buy in the UK

The UK has become a leading voice in the fight against climate change. It’s cleantech and green energy sector consists of a startups and scaleups, all serving as a microcosm for the rest of the planet. Electric cars, renewable power and even insect-based protein for pets – this is the extent of innovation happening in the UK. Of course the UK isn’t the only country serving as an incubator for renewable energy companies – many other countries and companies are doing their part. However, if you’ve got an interest in renewable energy stocks to buy in the UK, then keep reading to know the best renewable energy companies to invest in the United Kingdom.

1. Recycling Technologies

A product of the University of Warwick conceived back in 2012, Recycling Technologies has aspirations towards a circular economy specifically for combating the effects of plastic. Thus far this green energy company has created modular technology that converts mixed plastic waste into a viable fuel for new plastic production, thus lessening the amount of new plastic on the planet.

recycling technologies

To date, Recycling Technologies has raised enough investment capital (£33.7m) to start building and commercialising its technology.

2. First Light Fusion

Conceived at the University of Oxford in 2011, First Light Fusion is looking at new was to utilise the power of inertial confinement fusion (ICF), a form of laser-focused fuel compression,  for the purposes of power generation. One of the major benefits of fusion is that unlike other forms of renewable energy like wind or solar, fusion can deliver energy in spite of weather conditions.

Thus far, First Light Fusion has secured £53m in equity funding and plans on upgrading its resources, hiring more staff and expediting its workflow. Anyone with an interest in energy and solar company stocks would do well to keep an eye on this one as it looks set to go places.

3. Propelair

Likely taking a page out of Bill Gates’ book, Propelair has developed a low-water flush toilet system for the business sector. It’s toilet system can be integrated into existing drains, thus making for low-cost installation and reducing the water usage in commercial buildings.

The company has secured equity financing to the tune of £16.5m and has global interests stretching as far as the Middle East and Australia.

4. SaveMoneyCutCarbon

Established back in 2012, SaveMoneyCutCarbon serves in a consulting capacity and acts as a singular conduit for all kinds of energy and water saving initiatives.  Catering to both households and companies, SaveMoneyCutCarbon provides consultancy services, analysis, advice and energy-saving product installations. The company also provides a slew of eco-friendly products for home use.

how to make your home energy efficient

To date, the company has raised £8m in equity funds. Throw in a pre-money valuation of £13.7m and a £3.65m deal with Barclays and you have a company with plans to grow locally and beyond.

5. Enertechnos

This energy efficient startup has developed a new type of electrical transmission cable that relies on capacitance technology to minimise the loss of energy. The end result is an electrical transport solution epitomised by the Captive Transfer System which lets energy travel from power plants to households and end consumers at a much more efficient rate than the archaic power-draining wires used in traditional power grids. This technology can also be integrated with other sustainable energy products like smart grids, electric vehicles and wind farms.

Equity funding to date totals £8.36m, pre-money valuation sits at £22.1m, and the company plans to expand commercial sales, its marketing team and its engineering.

Biofuels from MSW – An Introduction

Nowadays, biofuels are in high demand for transportation, industrial heating and electricity generation. Different technologies are being tested for using MSW as feedstock for producing biofuels. This article will provide brief description of biochemical and thermochemical conversion routes for the production of biofuels from municipal solid wastes.

drop-in-biofuels

Biochemical conversion

The waste is collected and milled, particles are shredded to reduce the size of 0.2-1.22 mm. MSW is pretreated to improve the accessibility of enzymes and make use of the enzymes in the bacteria for biological degradation on solid waste. The mixture of biomass is mixed with sulfuric acid and sodium hydroxide and autoclaved. After steam treatment, the mixture is filtered and washed with deionized water. The pre-treated mixture is then dried and drained overnight. The pre-treatment process improves the formation of sugars by enzymatic hydrolysis, avoids the loss of carbohydrate and avoids the formation of by-products inhibitory.

After pre-treatment (pre-hydrolysis), the mixture undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. The common enzymes used for starch-based substrates are amylase, pullulanase, isomylase and glucoamylase. Whereas for lignocellulose based substrates cellulases and glucosidases.

Finally, the mixture is fermented; sugars are converted to ethanol by using microorganisms such as, bacteria, yeast or fungi. The cellulosic and starch hydrolysates ethanolic fermentation were fermented by M. indicus at 37 °C for 72 h. The fungus uses the hexoses and pentoses sugars with a high concentration of inhibitors (i.e. furfural, hydroxymethyl furfural, and acetic acid).

The composition of MSW feedstock effects the yield of the subsequent processes. A high composition of food and vegetable waste is more desirable, as these wastes are easily degradable and result in high yields compared to paper and cardboard.

Thermochemical conversion

Gasification process is carried out by treating carbon-based material with either oxygen or steam to produce a gaseous fuel which requires high temperature and pressure. It can be described as partial oxidation of the waste. At first waste is reduced in size and dried to reduce the amount of energy used in the gasifier.

Biomass_Gasification_Process

Layout of a Typical Biomass Gasification Plant

 

The carbonaceous material oxidizes (combines with oxygen) to produce syngas (carbon monoxide and hydrogen) along with carbon dioxide, methane, water vapor, char, slag, and trace gases (depending on the composition of the feedstock). The syngas is then cleaned to remove any sulfur or acid gases and trace metals (depending on the composition of the feedstock).

The main uses of syngas are direct burning on site to provide heat or energy (by using boilers, gas turbines or steam driven engines) and refined to liquid fuels such as gasoline or ethanol.

Syngas can then be converted into biofuels and chemicals via catalytic processes such as the Fischer-Tropsch process. The Fischer-Tropsch process is a series of catalytic chemical reactions that convert syngas into liquid hydrocarbons by applying heat and pressure. Hydrocracking, hydro-treating, and hydro-isomerization can also be part of the “upgrading” process to maximize quantities of different products.

Things You Should Know About the Uses of Hydrogen

Hydrogen will be one of the critical assets in the energy stream in the coming decades for the sustainable development of society. The abundant availability of hydrogen and its application in electricity production using fuel cells without any harmful emissions makes it distinct. It can be produced from renewable and sustainable resources, thus promising an eco-friendly solution for the energy transition in the coming years.

Currently, hydrogen production using the electrolysis of water is most preferred. However, hydrogen production can vary in the range of sectors. Hydrogen can be used in electricity production, biomass, solar and wind power application.

applications of hydrogen gas

Despite its advantages, two significant issues hinder its commercialisation and generalisation as an efficient fuel, and energy transition toward zero-emission and fossil-free energy solutions. The first is hydrogen is an energy vector, which means hydrogen needs to be produced before its use and eventually lead to energy consumption in hydrogen synthesis. The second is the low volumetric energy density of hydrogen, which leads to hydrogen storage and transportation issues because of its lowest volumetric energy density (0.01079 MJ/L)

Researchers have suggested several solutions to attempt to increase this value:

  • compression in gas cylinders;
  • liquefaction in cryogenic tanks;
  • storage in metal-hydride alloys;
  • adsorption onto large specific surface area-materials
  • chemical storage in covalent and ionic compounds (viz. formic acid, borohydride, ammonia)

Applications of Hydrogen

The hydrogen applications are in the food industry to turn unsaturated fats and oils present in vegetable oils, butter into a saturated state. In the metal forming industry, atomic hydrogen welding is used as an environmentally sustainable welding process. In the manufacturing industry, hydrogen and nitrogen are used to create a boundary and prevent the oxidation of metals.

The recent advancements in hydrogen applications in the steel manufacturing industry are one of the most significant hydrogen applications for low or zero-emission iron ore conversion.

ecofriendly-manufacturing

The potential use of hydrogen can play a vital role in reducing greenhouse emissions and the global target of achieving a minimal no emission target by 2050. However, the automotive industry is still the largest consumer and most attractive sector in the current scenario. But with the future forecast of reducing hydrogen fuel cost can do wonders with the goal set during Paris Climate Summit.

Hydrogen use in stationary and automotive applications, such as fuel cell vehicles and hydrogen refuelling stations above all, has shown to be hindered by its volumetric energy density – the lowest among all the standard fuels nowadays used. Compression seems to be the most efficient solution to reach high storage levels, thus making hydrogen more common as a renewable and sustainable fuel.

uses of hydrogen

The availability of several hydrogen compression technologies makes the development of new innovative and environmentally-friendly solutions for the use of energy possible, leading to a transition towards a fossil fuel divestment and making a critical contribution to sustainable development

Salient Features of Sugar Industry in Mauritius

Sugar industry has always occupied a prominent position in the Mauritian economy since the introduction of sugarcane around three centuries ago. Mauritius has been a world pioneer in establishing sales of bagasse-based energy to the public grid, and is currently viewed as a model for other sugarcane producing countries, especially the developing ones.

Sugarcane_Biomass

 

Sugar factories in Mauritius produce about 600,000 tons of sugar from around 5.8 million tons of sugarcane which is cultivated on an agricultural area of about 72,000 hectares. Of the total sugarcane production, around 35 percent is contributed by nearly 30,000 small growers. There are more than 11 sugar factories presently operating in Mauritius having crushing capacities ranging from 75 to 310 tons cane per hour.

During the sugar extraction process, about 1.8 million tons of Bagasse is produced as a by-product, or about one third of the sugarcane weight. Traditionally, 50 percent of the dry matter is harvested as cane stalk to recover the sugar with the fibrous fraction, i.e. Bagasse being burned to power the process in cogeneration plant. Most factories in Mauritius have been upgraded and now export electricity to the grid during crop season, with some using coal to extend production during the intercrop season.

Surplus electricity is generated in almost all the sugar mills. The total installed capacity within the sugar industry is 243 MW out of which 140 MW is from firm power producers. Around 1.6 – 1.8 million tons of bagasse (wet basis) is generated on an annually renewable basis and an average of around 60 kWh per ton sugarcane is generated for the grid throughout the island.

The surplus exportable electricity in Mauritian power plants has been based on a fibre content ranging from 13- 16% of sugarcane, 48% moisture content in Bagasse, process steam consumption of 350–450 kg steam per ton sugarcane and a power consumption of 27-32 kWh per ton sugarcane.

Sugarcane-mechanical-harvest

 

In Mauritius, the sugarcane industry is gradually increasing its competitiveness in electricity generation. It has revamped its boiler houses by installing high pressure boilers and condensing extraction steam turbine. All the power plants are privately owned, and the programme has been a landmark to show how all the stakeholders (government, corporate and small planters) can co-operate. The approach is being recommended to other sugarcane producing countries worldwide to harness the untapped renewable energy potential of biomass wastes from the sugar industry.

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat and power (CHP).

Biomass gasification provides a means of deriving more diverse forms of energy from the thermochemical conversion of biomass than conventional combustion. The basic gasification process involves devolatization, combustion and reduction.

biomass-gasification

During devolatization, methane and other hydrocarbons are produced from the biomass by the action of heat which leaves a reactive char.

During combustion, the volatiles and char are partially burned in air or oxygen to generate heat and carbon dioxide. In the reduction phase, carbon dioxide absorbs heat and reacts with the remaining char to produce carbon monoxide (producer gas). The presence of water vapour in a gasifier results in the production of hydrogen as a secondary fuel component.

There are two main types of gasifier that can be used to carry out this conversion, fixed bed gasifiers and fluidized bed gasifiers. The conversion of biomass into a combustible gas involves a two-stage process. The first, which is called pyrolysis, takes place below 600°C, when volatile components contained within the biomass are released. These may include organic compounds, hydrogen, carbon monoxide, tars and water vapour.

Pyrolysis leaves a solid residue called char. In the second stage of the gasification process, this char is reacted with steam or burnt in a restricted quantity of air or oxygen to produce further combustible gas. Depending on the precise design of gasifier chosen, the product gas may have a heating value of 6 – 19 MJ/Nm3.

Layout of a Typical Biomass Gasification Plant

The products of gasification are a mixture of carbon monoxide, carbon dioxide, methane, hydrogen and various hydrocarbons, which can then be used directly in gas turbines, and boilers, or used as precursors for synthesising a wide range of other chemicals.

In addition there are a number of methods that can be used to produce higher quality product gases, including indirect heating, oxygen blowing, and pressurisation. After appropriate treatment, the resulting gases can be burned directly for cooking or heat supply, or used in secondary conversion devices, such as internal combustion engines or gas turbines, for producing electricity or shaft power (where it also has the potential for CHP applications).

 

See some of our favorite inspirational quotes

6 Top Renewable Energy Companies Helping to Tackle Climate Change

Clean, clean, and increasingly competitive energy sources are renewable energies. They are most diverse, abundant, and usable in every area of the world, but above all, because they neither create greenhouse gas, cause climate change, nor emit harmful emissions. They do not produce greenhouse gases.

In addition, their costs decrease, whereas the average trend in fossil fuel costs, notwithstanding its current volatility, is in the other direction. One of the most important problems of today’s world is the transfer to renewable energy. According to the IEA, energy has to be decarbonized four times quicker than previously to cut emissions substantially by 2040.

More international firms are using sustainable practice as they begin to recognize that the climate problem is affecting them most significantly.

Top Renewable Energy Companies

The damaging emissions that our current fossil fuel energy sources generate will only continue to rise without any attempt to rely on renewable energy sources – clean, emission-free, and naturally replenished sources. Reducing these emissions is essential if carbon levels are to be reduced and climate change consequences reduced.

Huge advancement in environmentally-friendly power development requires an interest in the organizations that foster these advances, which range from sun-oriented and wind capacity to hydropower, biofuels, and geothermal energy.

electrical-engineering

Here is the list of top renewable energy companies from across the world:

1. Tbhawt

Tbhawt Manufacturing OÜ is an Estonia-based wind turbine manufacturing company that projects and develops microgrids. A microgrid is a small self-balancing energy system that can be disconnected from main power lines to operate autonomously and further be reconnected back to them.

Microgrids usually involve different types of energy generation such as solar panels, small and large wind turbines, heating units, etc. Nikolai Grebenkine, the Project Coordinator at Tbhawt Manufacturing OÜ, comments, “At Tbhawt, we pay attention to environmental safety and will do our best to help reduce carbon dioxide emissions in wind turbine production.

Subsequently, we will cut down our product’s carbon footprint. We also apply the best technologies on all stages of operation and production, excluding the risk of failures or scams due to human error.”

2. Kohl’s

Each year since 2009, in its annual Green Power Partnership Top 30 Retail rating, EPA has therefore ranked Kohl’s department stores as the country’s leading green retailer. 1.001 of its 1,160 stores in 49 countries are certified to Energy Star, and the company reports that 163 sites have solar panels on-site.

Kohl’s is dedicated to this sustainable, renewable resource. To that aim, the technological development of solar energy continues to make it more efficient than renewables.

The business has been buckling down on carbon-impartial activities, and it was the principal US store related to EPA to set up a carbon-unbiased target. It accomplished the 2010–2014 Net Null Emission Object and was poised to accomplish it again in 2015.

3. CropEnergies

CropEnergies has its headquarters in Mannheim, Germany, and is a prominent ethanol and other biofuels producer that is “renewable” since they derive from maize or different vegetable life. They don’t have the same “clear” rating as the wind or solar rating as the ethanol burns in cars but burns considerably cleaner than fossil fuels.

The renewable energy firm produces bioethanol from sustainable raw materials and raw ethanol from wheat, maize, barley, triticale, and syrup10. CropEnergies has manufacturing sites in Belgium, the United Kingdom, and France, with a combined capacity of 1.3 million cubic meters of bioenergy.

bioethanol india

4. First Solar Inc

First Solar, Inc. is a solar panel manufacturer in the United States, as well as a provider of PV power plants and related services such as financing, installation, maintenance, and recycling of used panels.

First Solar (FSLR) is a business that produces solar energy. It develops and produces photovoltaic solar power systems and modules. The firm manufactures solar modules that turn sunlight into power using thin-film semiconductor technology. First, Solar services consumers all around the world.

First Solar delivers leading eco-efficient photovoltaic systems in the market that generate less environmental effect at a reasonable cost. First Solar realizes that water scarcity affects millions of people. That is why, since 2009, we have lowered our per-watt production of water by over 30%. Contrary to traditional sources of energy and CSPs, while operating the first solar modules, water is not required to produce electricity.

5. Electrobras

Electrobras is the largest electric corporation in Latin America and one of the world’s largest enterprises, with its headquarters in Rio de Janeiro, Brazil. 12 This creates a large quantity of low carbon power consumption, with 92 percent of its energy produced by low carbon emissions.

Its main power form is hydropower, which provides over 45,000 MW of overall production. 13. The firm runs interconnecting systems across South America in Argentina, Paraguay, Uruguay, and Venezuela. Brazil’s leading electric transmission business with approximately half of the country’s basic network in high and high-voltage transmission lines.

decarbonize global energy system

6. Hanergy Thin Film Power Group

This flexible power company with its headquarters in Beijing is famous for its technology: thin-film power. This technique is in the field of solar energy, with the production of thin-film solar cells putting ultra-thin PV film layers on plastic or metal.

Since 2009, Hanergy has used this technology for solar panels. It was a hydroelectric firm previously. 15. Its extremely elastic thin and lighted panels may be employed in a number of ways, including in automobiles, aircraft, and farming. In fact, Hanergy cooperated with Tesla Motors in various locations in China to build photovoltaic overload stations.

Conclusion

These company titans show remarkable leadership in combating the climate problem. They carry the burden of inexpensive, clean energy for our lives and economies. Too frequently, doubt and pessimism struck the area of renewable energy, and its expansion in certain nations halted as a result of unfavorable government policies.

But such enterprises illustrate how renewable energy may help preserve the world, both profitably and sustainably. They will play a major part in the creation of a new energy economy, together with many other emerging firms.