Don’t Wait Until It’s Too Late – Go Green Today

green-middle-eastIf you are looking to sell your home or are just thinking about doing some upgrades to make it more attractive when you do finally sell it, studies show that making your property more eco-friendly will make it more attractive to potential buyers. If you want to get specific, there are some upgrades that not only help the environment by reducing the home’s energy consumption, but at the same time provide a return on the investment of more than 100%. This is not just an empty promise as every year sees an increase in home construction that includes the latest in environmentally friendly technology.

It is no secret that technology is helping every industry develop at supersonic speeds. With the continued threat that rapid urban development brings to the environment. it only makes sense to use new technology to create better construction methods that are less harmful to the environment and more affordable to the homeowner. Jump on the go green opportunities available today and commit to making a better tomorrow.

Be Both Ambitious and Realistic

As you might expect, some upgrades are going to cost more than others. Want to add solar panels on top of the roof? First you have to check with your HOA, if you have one. Then you need to check the financials of the project. The upfront cost will vary from one installer to the next, and the rebates and incentives that encourage you to change in the first place will also vary depending on your home state.

If installing solar panels on your roof is not in your budget, there are plenty of other options to choose from. Everything from changing your insulation to never buying bottled water can have an impact. Changing the number of days you water your lawn or the amount of time for each sprinkler. Try reducing the amount of time you spend in the shower by just a few minutes each day.

All of these savings can add up and help reduce your carbon footprint over time and not only do you not spend money, but you can save money when it comes to your utility bills.

Don’t Forget Tax Season

Using your home as a tax write-off is so obvious it’s a huge reason many people buy homes in the first place. The important thing to remember is that you aren’t the only one who has a vested interest in making your home eco-friendly. The IRS has entered the discussion and extends tax credits based on different upgrades made to the home for environmentally friendly purposes. And since employing a special tax attorney may not be in your budget, there are other feasible ways to examine your financial situation as it impacts your taxes, and whether or not there are any discrepancies that need to be taken care of.

Once you have your overall financial situation looking a little clearer, don’t just be content with the usual write-offs consisting of interest payments and the like; consider all of your options and make an upgrade that pays for itself. The point is, being proactive and taking the initiative to make your home more eco-friendly is not only affordable, it is also rewarding.

Issues Confronting Biomass Energy Ventures

Biomass resources can be transformed into clean energy and/or fuels by thermal and biochemical technologies. Besides recovery of substantial energy, these technologies can lead to a substantial reduction in the overall waste quantities requiring final disposal.

Biomass_Cogeneration

However, biomass energy projects worldwide are often hampered by a variety of techno-commercial issues. The issues enumerated below are not geography-specific and are usually a matter of concern for project developers, entrepreneurs and technology companies:

  1. Large Project Costs: In India, a 1 MW gasification plant usually costs about USD 1-1.5 million. A combustion-based 1 MW plant would need a little more expenditure, to the tune of USD 1-2 million. An anaerobic digestion-based plant of the same capacity, on the other hand, could range anywhere upwards USD 3 million. Such high capital costs prove to be a big hurdle for any entrepreneur or cleantech enthusiast to come forward and invest into these technologies.
  2. Low Conversion Efficiencies: In general, efficiencies of combustion-based systems are in the range of 20-25% and gasification-based systems are considered even poorer, with their efficiencies being in the range of a measly 10-15%. The biomass resources themselves are low in energy density, and such poor system efficiencies could add a double blow to the entire project.
  3. Dearth of Mature Technologies: Poor efficiencies call for a larger quantum of resources needed to generate a unit amount of energy. Owing to this reason, investors and project developers find it hard to go for such plants on a larger scale. Moreover, the availability of only a few reliable technology and operation & maintenance service providers makes these technologies further undesirable. Gasification technology is still limited to scales lesser than 1 MW in most parts of the world. Combustion-based systems have although gone upwards of 1 MW, a lot many are now facing hurdles because of factors like unreliable resource chain, grid availability, and many others.
  1. Lack of Funding Options: Financing agencies usually give a tough time to biomass project developers as compared to what it takes to invest in other renewable energy technologies.
  2. Non-Transparent Trade Markets: Usually, the biomass energy resources are obtained through forests, farms, industries, animal farms etc. There is no standard pricing mechanism for such resources and these usually vary from vendor to vendor, even with the same resource in consideration.
  3. High Risks / Low Pay-Backs: Biomass energy projects are not much sought-after owing to high project risks which could entail from failed crops, natural disasters, local disturbances, etc.
  4. Resource Price Escalation: Unrealistic fuel price escalation too is a major cause of worry for the plant owners. Usually, an escalation of 3-5% is considered while carrying out the project’s financial modelling. However, it has been observed that in some cases, the rise has been as staggering as 15-20% per annum, forcing the plants to shut down.

Renewable Energy for Water Reuse

Water is essential to life, making it one of the most valuable resources on the planet. We drink it, use it to grow food and stay clean. However, water is of increasingly short supply and the Earth’s population only continues to expand. Many of the countries with the largest populations are also ones that use the most water. For instance, in the United States, the average person uses 110 gallons of water each day. Meanwhile, three-fourths of those living in Africa don’t have access to clean water.

To ensure we have enough water to survive — and share with those in need — the best approach is to conserve this resource and find sustainable ways of recycling it. Currently, conventional methods or water purification use about three percent of the world’s energy supply. This isn’t sustainable long-term and can have adverse effects on the environment.

Recently, however, major steps have been made to reduce both the collective water and carbon footprint. Now, there are multiple, sustainable ways to both save energy and reuse water.

Anaerobic Digestion

Anaerobic digestion — or AD — is the natural process in which microorganisms break down organic materials like industrial residuals, animal manure and sewage sludge. This process takes place in spaces where there is no oxygen, making it an ideal system for cleaning and reusing wastewater. This recycled water can provide nutrients for forest plantations and farmland alike.

For example, in Yucatan, Mexico, the successful implementation of AD systems has provided water to promote reforestation efforts. This system has also helped accelerate the search for a sustainable solution to water-sanitation issues in rural Latin American communities.

Additionally, AD also reduces adverse environmental impacts. As the system filters water, it creates two byproducts — biogas and sludge. The biogas can be used as energy to supply electricity or even fuel vehicles. And the sludge is used as fertilizers and bedding for livestock. In poor countries, like Peru, 14 percent of primary energy comes from biogas, providing heat for food preparation and electricity to homes that would not have access to it otherwise.

Vapor Compression Distillation

In this process, the vapor produced by evaporating water is compressed, increasing pressure and temperature. This vapor is then condensed to water for injection — highly purified water that can be used to make pharmaceutical-grade solutions.

Vapor compression distillation is incredibly sustainable because it can produce pure water on combustible fuel sources like cow dung — no chemicals, filters or electricity necessary. This makes it water accessible to even the most rural communities. The system only needs enough energy to start the first boil and a small amount to power the compressor. This energy can be easily supplied by a solar panel, producing roughly 30 liters of water an hour using no more energy than that of a handheld hairdryer.

Solar Distillation

Utilizing solar energy for water treatment may be one of the most sustainable solutions to the water crisis, without sacrificing the environment or non-renewable resources. Between 80 and 90 percent of all energy collected through commercial solar panels is wasted, shed into the atmosphere as heat. However, recent advancements in technology have allowed scientists to capture this heat and use it to generate clean, recycled water.

By integrating a solar PV panel-membrane distillation device behind solar panels, researchers were able to utilize heat to drive water distillation. This panel also increases solar to electricity efficiency. This device can even be used to desalinate seawater, providing a sustainable solution to generating freshwater from saltwater.

Environmental and Economic Benefits

Finding sustainable methods of recycling water is essential to reducing energy consumption and helping the planet, and all those dependent upon it, thrive. Using methods like anaerobic digestion and environmentally-friendly distillation processes can reduce toxic emissions and provide purified, recycled water to those who need it most.

Sustainable reuse of water can also benefit the economy. The financial costs of constructing and operating desalination and purification systems are often high compared to the above solutions. Furthermore, using recycled water that is of lower quality for agricultural and reforestation purposes saves money by reducing treatment requirements.

Bajada New Energy: Powering Homes and Businesses in Malta?

We all know the world is experiencing an environmental crisis. The ice caps have melted, natural disasters are rampant and the ozone layer is so damaged that temperatures are rising at unprecedented rates. Luckily, there’s still something each of us can do to reverse some of this damage and hopefully prevent some of the worst symptoms of human-caused climate change from occurring.

Powering your home or business with solar, wind and other alternative energy sources is by far one of the most powerful and impactful ways in which you can reduce your carbon footprint and contribute to the earth’s recovery.

Solar energy is no longer as expensive as it once was, thanks to a growing number of companies that are improving the technology while increasing supply. One such company is Bajada New Energy.

About Bajada New Energy

Bajada has been providing renewable energy resources in Malta for almost 30 years. This homegrown company has built a reputation as a reliable supplier of solar heaters, ET solar panels, photovoltaic panels, wind turbines and so much more. The company started out by importing Australian solar water heaters from the Edwards brand and has since grown into a full-scale alternative energy supplier.

What makes Bajada New Energy unique?

Bajada is made up of a network of mechanical and electric engineers, civil engineers, architects, qualified installers and licensed electricians. As such, the company offers a comprehensive service which includes providing the product as well as the installation.

Bajada also boasts an impeccable track record. To date, they’ve installed over 12, 000 solar water heaters (and counting!) and 4 megawatts worth of Photovoltaic Systems.

They have decades of experience in the industry which is why they’re considered a leading supplier of renewable energy products and services in all of Malta.

Products

Bajada New Energy specializes in a wide array of alternative energy solutions, including:

  • PV Panels from some of the world’s leading brands. The PV system offered by Bajada includes a meter, an inverter, wiring, a support structure, solar panels and everything in between. It’s a complete system that doesn’t require you to purchase any separate “extras”.
  • Solar water heaters proudly made in Malta and can generate heat using the sun’s energy. These heaters can reduce your water heating bill by up to 80%!
  • Air conditioners: Thanks to solar powered Bajada Air Conditioning, keeping your office or home cool doesn’t have to cost an arm and a leg. This air conditioning system not only cools down the temperature but can purify the air as well.
  • Heating products from Bajada include underfloor heating, infrared heating mirrors and heated carpets, all eco-friendly and backed by a generous warranty.
  • Water filtration systems: Bajada offers water softeners, filter cans, and even a Dropson escaper which can soften salt water. There’s also a 5 & 7 Stage Reverse Osmosis Systems that sterilizes water for cooking, drinking and watering your plants.
  • Voltage optimizer: This device is designed to ensure that your appliances operate efficiently while preventing them from overheating. This means the Voltage optimizer can prolong the lifespan of your electrical appliances while reducing your home’s overall energy consumption.

It’s worth noting that each of Bajada’s products are available in a wide array of packages to suit different needs and budgets. They’re also backed by generous warranties and guaranteed installation by experienced professionals.

Benefits of Bajada New Energy

Bajada offers tailored solutions through a simple, three-step process that begins with a quotation request. Here, you’ll provide them with your details, preferred package and product brand.

Next, you’ll place an order and make installation arrangements. Lastly, Bajada will deliver and install your renewable energy system. It’s as easy as that!

The Verdict

Switching to renewable energy can seem daunting and incredibly intimidating. But, Bajada New Energy is committed to simplifying this process by providing energy efficient and cost-effective power solutions that are kind to the environment and light on your pocket.

They offer a one-stop-shop for all things alternative energy, not to mention innovative product packages.

It’s really easy to work with them and theirs is a complete service offering.

The Concept of Biorefinery

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and value-added chemicals from biomass. Biorefinery is analogous to today’s petroleum refinery, which produces multiple fuels and products from petroleum. By producing several products, a biorefinery takes advantage of the various components in biomass and their intermediates, therefore maximizing the value derived from the biomass feedstock.

A biorefinery could, for example, produce one or several low-volume, but high-value, chemical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol. At the same time, it can generate electricity and process heat, through CHP technology, for its own use and perhaps enough for sale of electricity to the local utility. The high value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce GHG emissions from traditional power plant facilities.

Biorefinery Platforms

There are several platforms which can be employed in a biorefinery with the major ones being the sugar platform and the thermochemical platform (also known as syngas platform).

Sugar platform biorefineries breaks down biomass into different types of component sugars for fermentation or other biological processing into various fuels and chemicals. On the other hand, thermochemical biorefineries transform biomass into synthesis gas (hydrogen and carbon monoxide) or pyrolysis oil.

The thermochemical biomass conversion process is complex, and uses components, configurations, and operating conditions that are more typical of petroleum refining. Biomass is converted into syngas, and syngas is converted into an ethanol-rich mixture. However, syngas created from biomass contains contaminants such as tar and sulphur that interfere with the conversion of the syngas into products. These contaminants can be removed by tar-reforming catalysts and catalytic reforming processes. This not only cleans the syngas, it also creates more of it, improving process economics and ultimately cutting the cost of the resulting ethanol.

Plus Points

Biorefineries can help in utilizing the optimum energy potential of organic wastes and may also resolve the problems of waste management and GHGs emissions. Biomass wastes can be converted, through appropriate enzymatic/chemical treatment, into either gaseous or liquid fuels. The pre-treatment processes involved in biorefining generate products like paper-pulp, HFCS, solvents, acetate, resins, laminates, adhesives, flavour chemicals, activated carbon, fuel enhancers, undigested sugars etc. which generally remain untapped in the traditional processes. The suitability of this process is further enhanced from the fact that it can utilize a variety of biomass resources, whether plant-derived or animal-derived.

Future Perspectives

The concept of biorefinery is still in early stages at most places in the world. Problems like raw material availability, feasibility in product supply chain, scalability of the model are hampering its development at commercial-scales. The National Renewable Energy Laboratory (NREL) of USA is leading the front in biorefinery research with path-breaking discoveries and inventions. Although the technology is still in nascent stages, but it holds the key to the optimum utilization of wastes and natural resources that humans have always tried to achieve. The onus now lies on governments and corporate sector to incentivize or finance the research and development in this highly promising field.

Why Should Your Company Commit to Renewable Power?

Roughly one-third of U.S. greenhouse gas emissions come from burning fossil fuels to create electricity, according to Climate Collaborative. Using non-renewable gas, oil and coal adds to a rapidly growing carbon footprint, increases global warming and spells disaster for our fragile planet’s future.

Companies and large corporations have the ability to change this, however, by committing to transition to renewable energy in the coming months and years. Not only will this benefit our planet, but it also promises success for companies who choose to commit to it.

Reduce energy costs by producing your own energy

Utility bills are a huge expense for businesses, many of which are at the mercy of utility companies that could raise their rates at any moment. Renewable energy is an attractive alternative to electricity and the bills that come with it. Wind installations are one option, but solar panels are even better as they are more predictable, efficient and affordable.

In fact, the cost of renewable energy is dropping at an incredibly rapid rate. The total cost of developing wind power has dropped 55% in the last five years while solar energy has dropped a shocking 74%. These low prices stem from massive global investment and rapid technological advancement. And major corporations that are already using clean energy are only looking to buy more in the coming months.

renewables-investment-trends

Boosting public relations

An increasing number of companies are committing to renewable power to boost public image. Smart businesses know that, in today’s world, renewable power is a source of competitive advantage. Social pressure to reduce emissions continues to rise as consumers look for ways to be involved in saving the planet. This green movement has driven a demand for green products. And companies that can sustainably create these products are winners in the public eye.

Renewable power is also reliable and predictable

Unlike coal or oil, we’ll never run out of wind or sun. This makes the cost and savings of wind and solar power quite stable. Solar panels installed on top of business structures will produce a consistent amount of energy year after year as long as they are properly maintained. This strong reliability makes budgeting easier and ensures a less volatile bottom line.

Reducing carbon emissions

Every one killowatt-hour of energy produced keeps 300 pounds of carbon out of the atmosphere. So, replacing non-renewable energy with renewable resources naturally decreases global warming emissions. And that’s good news for everyone on earth because if we’re left with more carbon than oxygen, it’s going to be a little difficult to breathe.

How Can You Commit to Renewable Power?

The first step in committing to renewable power is shifting your perspective. Take time to personally research these benefits of renewable power. Once you decide sustainable energy is worth implementing, on both an individual and global scale, you can begin to look for ways to create your own strategy.

The best way to brainstorm and execute strategy is to develop a team with specific goals in mind. This team should include members from different departments such as legal, financial, environmental, sustainability and operations. Once there is a team in place, you can begin to integrate energy into the company’s vision and operations.

The team should begin by assessing current energy impacts and how they might change them. Analyzing impact and comparing your own to competitors’ will reveal performance opportunities and gaps. The team can then develop a plan of action. Aggressive targets should reflect the degree and pace of emission reductions necessary to mitigate climate change.

Once goals are outlined, the team must create incentives for employees and consumers alike to make energy an actionable priority. From there, they can measure and manage energy usage as the company transitions from non-renewable to renewable energy sources.

The Issues and Impact of Energy Storage Technology

Renewable energy has taken off. Wind and solar in particular had grown rapidly, since they can be installed on a small scale and connected to the grid. This has created a number of problems for utility companies while failing to deliver the promised benefits because energy storage technology has not caught up. Let’s look at some of the issues with renewable energy before explaining how advances in energy storage technology will ease these concerns.

The Instability of the Power Grid

The rapid growth of renewable power has added to the instability of the power grid. First, the introduction of many variable power sources forces utilities to deal with varying power supply relative to demand. Second, the relative lack of energy storage systems means there is far more wasted energy than before. When there is a spike in solar or wind power, they can’t store most of it for future usage. This adds to the instability and risk of failure of local portions of the power grid.

If we had more widespread, efficient energy storage, energy producers could save power above the expected power created locally instead of leaving power companies to turn on and off natural gas turbines to meet variation in demand. It would also eliminate the need to build natural gas turbines as backup power sources for when new renewable power sources aren’t meeting expectations.

The Lack of Backup Power

Solar power has long been a source of power for off-the-grid properties. However, this is dependent on having energy storage on site, typically batteries. Yet many solar roofs were set up to minimize cause and maximize tax credits to the detriment of home owners. We can look at the multiple disasters that hit California along with their wildfires. Utility companies couldn’t raise rates to pay for more fire-resistant infrastructure. They could be sued for any new wildfires blamed on the power equipment. The utility company’s only solution as to turn off power to areas that were burning or at risk of catching fire, if they didn’t want to be shut down entirely.

California has one of the highest rates of solar roof installations in the world. Unfortunately, most of those solar roofs were connected directly to the power grid, and the home owner receives power from the grid. This minimized how much equipment had to be installed while giving them the ability to sell power to the grid and get power from the grid. The problem is that they couldn’t get power from the grid when the power grid was shut down unless they paid several thousand dollars extra for renewable energy storage; note that less than two percent of customers did this. That hurt the broader power grid, as well, since solar roofs couldn’t deliver power to the power grid when the power grid was shut down.

The greatest irony was suffered by electric car owners. Imagine being told that you need to flee the wildfires, and all you have is an electric car that you can’t charge. A few homeowners made matters worse by tapping into their Tesla car battery to try to power their homes for a while, draining it dry.

Yet those few people with battery storage systems were fine. Their homes were wired in such a way that they could pull from the battery power when the power grid was down, assuming they were ever connected to the grid. They could continue to run their air conditioners and other appliances though no one else had power. For those that had solar roofs connected to the grid and energy storage systems, the grid being down means all of their power went into the battery. That energy wasn’t wasted, and the family could use it.

Finding the Most Appropriate Renewable Energy

Energy is very important nowadays. Contemporary people can hardly imagine their existence without it. Humans always tried to produce cheaper and safer energy. Nature provides us with the energy we can renew daily. It provides people with the benefit which nobody can argue. It almost has no negative impact on the surrounding and is considered to be rather safe.

The cost of alternative energy systems has dropped sharply in recent years

When the scientists revealed that greenhouse gas effect led to the change of world’s climate they began to look for all possible ways to prevent the catastrophe. Fossil fuel does not give the chance to renew it after the use while sustainable energy can. In addition, fossil fuel is running out. That forces people to search some new ways to restore it. The depletion of sources motivated scientists to develop new methods of energy production.

A country or even some particular geographical area should select a suitable type of renewable energy source. It usually depends on sources the region possesses. For example, countries which are situated on the equator can benefit from solar energy while those regions which lack sunny weather should better provide themselves with hydro energy or biomass energy.

There are regions which experiment trying to find the most appropriate renewable energy type. For instance, Massachusetts varies the use of different renewable energy sources. The state government proves that their region is able to provide the citizens with more wind’s energy than with any other ecologically safe power supply. The use of wind energy is beneficial for the state not only because it is ecologically safe but also because it has an economic advantage. They produce both offshore and onshore winds’ energy.

Yearly industry report manifests that the first one is even cheaper and ranges up to sixteen cents one kilowatt per hour. Such energy is clean and beneficial. In 2009 the government of Massachusetts issued the project of developing offshore ocean energy for a number of its regions. This plan proves the indisputable convenience of wind power use for this concrete state of America.

Despite the fact that wind power is rather sustainable, the US industry report relies greatly on solar energy use. This conclusion is based on three main reasons. The first and most influential is the fact that not all American regions can provide wind energy because of geographical peculiarities. By the way, some scientists and consumers find it rather complicated due to huge transmission lines it requires. That is why solar energy is more effective.

All regions receive the sun energy almost equally and they can depend on it mostly. The next factor that influences the choice of solar energy is its permanency and regularity. Wind turbines are more inconstant than the solar ones. Solar panels are able to generate energy even if there is no sun. Clouds cannot stop the penetration of sun rays completely. Due to that, scientists in Massachusetts also found solar energy to be rather beneficial and constant. The last factor that contributes to the number of advantages of solar panels use is their productivity. They are capable to produce more energy than the turbines which are enabled by winds.

The experiment of solar and wind energy testing lasted during thirteen days in Massachusetts. It took place at the beginning of January. Solar panels managed to produce thirty-five kilowatt-hours of pure electricity. At the same time, the winds turbines had hardly provided the territory with fourteen kilowatt-hours of clean energy. The outcome of the experiment supported the idea of solar panels efficiency compared to the wind turbines productivity on Massachusetts territory.

The investigation reasoned the use of solar and winds’ energy. Even if some type of renewable energy is less effective still it provides humans with ecologically safe power. It is unsound to refuse at least from one of them. All renewable energy gives the chance to save the planet from ecological disaster and improve human lifestyle and health condition.

About the Author

Lauren Bradshaw started academic writing in 2003. Since then she tried her hand in SEO and website copywriting, writing for blogs, and working as a professional writer at CustomWritings professional essay writing service. Her major interests lie in content marketing, developing communication skills, and blogging. She’s also passionate about environment, philosophy, psychology, literature and painting.

Biomass Resources in Malaysia

Malaysia is gifted with conventional energy resources such as oil and gas as well as renewables like hydro, biomass and solar energy. As far as biomass resources in Malaysia are concerned, Malaysia has tremendous agricultural biomass and wood waste resources available for immediate exploitation. This energy potential of biomass resource is yet to be exploited properly in the country.

Taking into account the growing energy consumption and domestic energy supply constraints, Malaysia has set sustainable development and diversification of energy sources, as the economy’s main energy policy goals. The Five-Fuel Strategy recognises renewable energy resources as the economy’s fifth fuel after oil, coal, natural gas and hydro. Being a major agricultural commodity producer in the region Malaysia is well positioned amongst the ASEAN countries to promote the use of biomass as a source of renewable energy.

Major Biomass Resources

Palm Oil Biomass

Malaysia is the world’s leading exporter of palm oil, exporting more than 19.9 million tonnes of palm oil in 2017. The extraction of palm oil from palm fruits results in a large quantity of waste in the form of palm kernel shells, empty fruit bunches and mesocarp fibres. In 2011, more than 80 million tons of oil palm biomass was generated across the country.

13MW biomass power plant at a palm oil mill in Sandakan, Sabah (Malaysia)

Processing crude palm oil generates a foul-smelling effluent, called Palm Oil Mill Effluent or POME, which when treated using anaerobic processes, releases biogas. Around 58 million tons of POME is produced in Malaysia annually, which has the potential to produce an estimated 15 billion m3 of biogas.

Rice Husk

Rice husk is another important agricultural biomass resource in Malaysia with very good energy potential for biomass cogeneration. An example of its attractive energy potential is biomass power plant in the state of Perlis which uses rice husk as the main source of fuel and generates 10 MW power to meet the requirements of 30,000 households.

Municipal Solid Wastes

The per capita generation of solid waste in Malaysia varies from 0.45 to 1.44kg/day depending on the economic status of an area. Malaysian solid wastes contain very high organic waste and consequently high moisture content and bulk density of above 200kg/m3. The high rate of population growth is the country has resulted in rapid increase in solid waste generation which is usually dumped in landfills.

Conclusion

Biomass resources have long been identified as sustainable source of renewable energy particularly in countries where there is abundant agricultural activities. Intensive use of biomass as renewable energy source in Malaysia could reduce dependency on fossil fuels and significant advantage lies in reduction of net carbon dioxide emissions to atmosphere leading to less greenhouse effect. However, increased competitiveness will require large-scale investment and advances in technologies for converting this biomass to energy efficiently and economically.

Biogas-to-Biomethane Conversion Technologies

biogas-biomethaneRaw biogas contains approximately 30-45% of CO2, and some H2S and other compounds that have to be removed prior to utilization as natural gas, CNG or LNG replacement. Removing these components can be performed by several biogas upgrading techniques. Each process has its own advantages and disadvantages, depending on the biogas origin, composition and geographical orientation of the plant. The biogas-to-biomethane conversion technologies taken into account are pressurized water scrubbing (PWS), catalytic absorption/amine wash (CA), pressure swing absorption (PSA), highly selective membrane separation (MS) and cryogenic liquefaction (CL) which are the most common used biogas cleanup techniques.

The Table below shows a comparison of performance for these techniques at 8 bar (grid) injection.

Table:  Comparison of performance for various upgrading techniques (result at 8 bar) (Robert Lems, 2010) , (Lems R., 2012)

  PWS CA PSA MS CL Unit
Produced gas quality*2 98 99 97-99 99 99.5 CH4%
Methane slip 1 0.1-0.2 1-3 0.3-0.5 0.5 %
Electrical use 0.23-0.25 0.15-0.18 0.25 0.21-0.24 0.35 kWh/Nm3 feed
Thermal energy use 0,82-1.3 kWth/Nm3 prod.
Reliability / up time 96 94 94 98 94 %
Turn down ratio 50-100 50-100 85-100 0-100 75-100 %
CAPEX Medium Medium Medium Low High  
Operation cost Low Medium Medium Low High  
Foot print Large Large Medium Small Large  
Maintenance needed Medium Medium+ Medium+ Low High  
Ease of operation Medium Medium+ Medium Easy Complex  
Consumables &

waste streams

AC*3/Water AC*3/amines AC*3/ absorbents AC*3/None AC*3/None  
References Many Many Medium Medium Very few  

*2 If no oxygen of nitrogen is present in the raw biogas

*3 Activated carbon (AC) consumption is depending on the presence of certain pollutants (trace components) within the raw biogas.

From the above Table, it can be concluded that the differences between technologies with respect to performance seem to be relatively small. However, some “soft factors” can have a significant impact on technology selection. For example, water scrubber technology is a broadly applied technology. The requirement for clean process water, to make up for discharge and condensation, could be a challenging constraint for remote locations.

Moreover, PWS systems are prone to biological contamination (resulting in clogged packing media and foaming), especially when operated at elevated temperatures. Without additional preventative measures this will result in an increase of operational issues and downtime.

Amine scrubbers are a good choice when surplus heat is available for the regeneration of the washing liquid. The transport and discharge of this washing liquid could however be a burden, as well as the added complexity of operation. With respect to cryogenic Liquefaction (CL) one may conclude that, this technology has a questionable track-record, is highly complex, hard to operate, and should therefore not be selected for small-medium scale applications.

Both PSA and MS provide a “dry” system, both technologies operate without the requirement for a solvent/washing liquid, which significantly simplifies operation and maintenance. Distinctive factor between these technologies is that the membrane based system operates in a continuous mode, while the PSA technology is based on columns filled with absorption materials which operate in a rotating/non-continuous mode.

Moreover, the membrane based system has a more favourable methane slip, energy consumption and turndown ratio. The biggest advantage over PSA however, is that membrane systems do not require any transport of absorbents, its ease of operation and superior up-time.

Main disadvantage of membrane systems are that they are sensitive to pollution by organic compounds, which can decrease efficiency. However, by applying a proper pre-treatment (generally based on activated carbon and condensation) in which these compounds are eliminated, this disadvantage can be relatively easy nullified.

Based on membrane technology, DMT Environmental Technology, developed the Carborex ®MS. A cost-effective plug and play, containerized (and therefore), easy to build in remote locations) biogas upgrading system. The Carborex ®MS membrane system has relatively little mechanical moving components (compared to other upgrading technologies) and therefore, ensures stability of biomethane production, and consequently, the viability of the biogas plant operation.

Moreover, its design for ease of operation and robustness makes this technological platform perfectly suitable for operation at locations with limited experience and expertise on handling of biogas plants.

Impression of a membrane system; Carborex ®MS – by courtesy of DMT

Impression of a membrane system; Carborex ®MS – by courtesy of DMT

Conclusions

Capture of biogas through application of closed ponds or AD’s is not only a necessity for mitigation of greenhouse gas emissions, it is also a method of optimizing liquid waste treatment and methane recovery. Billions of cubic meters of biomethane can be produced on a yearly basis, facilitating a significant reduction of fossil fuel dependency.

Moreover, upgrading of raw biogas-to-biomethane (grid, CNG or LNG quality) provides additional utilization routes that have the extra advantage to be independent of existing infrastructure. To sum up, membrane based technology is the best way forward due to its ease of operation, robustness and the high quality of the end-products.

References

  • Lems R., D. E. (2012). Next generation biogas upgrading using high selective gas separation membranes. 17th European Biosolids Organic Resources Conference. Leeds: Aqua Enviro Technology .
  • Robert Lems, E. D. (2010). Making pressurized water scrubbing the ultimate biogas upgrading technology with the DMT TS-PWS® system. Energy from Biomass and Waste UK . London: EBW-UK .

Co-Authors: H. Dekker and E.H.M. Dirkse (DMT Environmental Technology)

Note: This is the final article in the special series on ‘Sustainable Utilization of POME-based Biomethane’ by Langerak et al of DMT Environmental Technology (Holland). The first two articles can be viewed at these links

http://www.bioenergyconsult.com/biomethane-utilization/

http://www.bioenergyconsult.com/pome-biogas/