An Introduction to Biomethane

Biogas that has been upgraded by removing hydrogen sulphide, carbon dioxide and moisture is known as biomethane. Biomethane is less corrosive than biogas, apart from being more valuable as a vehicle fuel. The typical composition of raw biogas does not meet the minimum CNG fuel specifications. In particular, the COand sulfur content in raw biogas is too high for it to be used as vehicle fuel without additional processing.


Liquified Biomethane

Biomethane can be liquefied, creating a product known as liquefied biomethane (LBM). Biomethane is stored for future use, usually either as liquefied biomethane or compressed biomethane (CBM) or  since its production typically exceeds immediate on-site demand.

Two of the main advantages of LBM are that it can be transported relatively easily and it can be dispensed to either LNG vehicles or CNG vehicles. Liquid biomethane is transported in the same manner as LNG, that is, via insulated tanker trucks designed for transportation of cryogenic liquids.

Compressed Biomethane

Biomethane can be stored as CBM to save space. The gas is stored in steel cylinders such as those typically used for storage of other commercial gases. Storage facilities must be adequately fitted with safety devices such as rupture disks and pressure relief valves.

The cost of compressing gas to high pressures between 2,000 and 5,000 psi is much greater than the cost of compressing gas for medium-pressure storage. Because of these high costs, the biogas is typically upgraded to biomethane prior to compression.

Applications of Biomethane

The utilization of biomethane as a source of energy is a crucial step toward a sustainable energy supply. Biomethane is more flexible in its application than other renewable sources of energy. Its ability to be injected directly into the existing natural gas grid allows for energy-efficient and cost-effective transport. This allows gas grid operators to enable consumers to make an easy transition to a renewable source of gas. The diverse, flexible spectrum of applications in the areas of electricity generation, heat provision, and mobility creates a broad base of potential customers.

Biomethane can be used to generate electricity and heating from within smaller decentralized, or large centrally-located combined heat and power plants. It can be used by heating systems with a highly efficient fuel value, and employed as a regenerative power source in gas-powered vehicles.

Biomethane to Grid

Biogas can be upgraded to biomethane and injected into the natural gas grid to substitute natural gas or can be compressed and fuelled via a pumping station at the place of production. Biomethane can be injected and distributed through the natural gas grid, after it has been compressed to the pipeline pressure. In many EU countries, the access to the gas grid is guaranteed for all biogas suppliers.

One important advantage of using gas grid for biomethane distribution is that the grid connects the production site of biomethane, which is usually in rural areas, with more densely populated areas. This enables the gas to reach new customers. Injected biomethane can be used at any ratio with natural gas as vehicle fuel.

Biomethane is more flexible in its application than other renewable sources of energy.

The main barriers for biomethane injection are the high costs of upgrading and grid connection. Grid injection is also limited by location of suitable biomethane production and upgrading sites, which have to be close to the natural gas grid.

Several European nations have introduced standards (certification systems) for injecting biogas into the natural gas grid. The standards, prescribing the limits for components like sulphur, oxygen, particles and water dew point, have the aim of avoiding contamination of the gas grid or the end users. In Europe, biogas feed plants are in operation in Sweden, Germany, Austria, the Netherlands, Switzerland and France.

Biofuels from Syngas

An attractive approach to converting biomass into liquid or gaseous fuels is direct gasification, followed by conversion of the syngas to final fuel. Ethanol can be produced this way, but other fuels can be produced more easily and potentially at lower cost, though none of the approaches is currently inexpensive.

The choice of which process to use is influenced by the fact that lignin cannot easily be converted into a gas through biochemical conversion. Lignin can, however, be gasified through a heat process. The lignin components of plants can range from near 0% to 35%. For those plants at the lower end of this range, the chemical conversion approach is better suited. For plants that have more lignin, the heat-dominated approach is more effective.


Layout of a Typical Biomass Gasification Plant

Once the gasification of biomass is complete, the resulting syngas or synthetic gas can be used in a variety of ways to produce liquid fuels as mentioned below

Fischer-Tropsch (F-T) fuels

The Fischer-Tropsch process converts “syngas” (mainly carbon monoxide and hydrogen) into diesel fuel and naphtha (basic gasoline) by building polymer chains out of these basic building blocks. Typically a variety of co-products (various chemicals) are also produced.

The Fisher-Tropsch process is an established technology and has been proven on a large scale but adoption has been limited by high capital and O&M costs. According to Choren Industries, a German based developer of the technology, it takes 5 tons of biomass to produce 1 ton of biodiesel, and 1 hectare generates 4 tons of biodiesel.


Syngas can also be converted into methanol through dehydration or other techniques, and in fact methanol is an intermediate product of the F-T process (and is therefore cheaper to produce than F-T gasoline and diesel).

Methanol is somewhat out of favour as a transportation fuel due to its relatively low energy content and high toxicity, but might be a preferred fuel if fuel cell vehicles are developed with on-board reforming of hydrogen.

Dimethyl ether

DME also can be produced from syngas, in a manner similar to methanol. It is a promising fuel for diesel engines, due to its good combustion and emissions properties. However, like LPG, it requires special fuel handling and storage equipment and some modifications of diesel engines, and is still at an experimental phase.

If diesel vehicles were designed and produced to run on DME, they would become inherently very low pollutant emitting vehicles; with DME produced from biomass, they would also become very low GHG vehicles.

Global Trends in the Biomass Sector

There has been a flurry of activity in the biomass energy sector in recent year, with many new projects and initiatives being given the green light across the globe. This movement has been on both a regional and local level; thanks to the increased efficiency of biomass energy generators and a slight lowering in implementation costs, more businesses and even some homeowners are converting waste-to-energy systems or by installing biomass energy units.


Latest from the United Kingdom

Our first notable example of this comes from Cornwall in the UK. As of this week, a small hotel has entirely replaced its previous oil-based heating system with biomass boilers. Fuelled from wood wastes brought in from a neighboring forest, the BudockVean hotel has so far been successful in keeping the entire establishment warm on two small boilers despite it being the height of British winter – and when warmer weather arrives, plans to install solar panels on the building’s roof is to follow.

Similar projects have been undertaken across small businesses in Britain, including the south-coast city of Plymouth that has just been announced to house a 10MW biomass power plant (alongside a 20MW plant already in construction). These developments arein part thanks to the UK government’s Renewable Heat Incentive which was launched back in 2011. The scheme only provides funding to non-domestic properties currently, but a domestic scheme is in the works this year to help homeowners also move away from fossil fuels.

Initiatives (and Setbacks) in the US

Back across the pond, and the state of New York is also launching a similar scheme. The short-term plan is to increase public education on low-emission heating and persuade a number of large business to make the switch; in the longer term, $800m will be used to install advanced biomass systems in large, state-owned buildings.

A further $40m will be used as part of a competition to help create a series of standalone energy grids in small towns and rural areas, which is a scheme that could hopefully see adopted beyond New York if all goes well.

Unfortunately, the move away from fossil fuels hasn’t been totally plain sailing across the US. Georgia suffered a blow this week as plans to convert a 155MW coal plant to biomass have been abandoned, citing large overheads and low projected returns. The company behind the project have met similar difficulties at other sites, but as of this week are moving ahead with further plans to convert over 2000MW of oil and coal energy generation in the coming years.

Elsewhere in the US, a company has conducted a similar study as to whether biomass plant building will be feasible in both Florida and Louisiana. Surveying has only just been completed, but if things go better than the recent developments in Georgia, the plants will go a long way to converting biomass to fertilizer for widespread use in agriculture in both states.

Far East Leading the Way

One country that is performing particularly well in biomass energy investment market is Japan. Biomass is being increasingly used in power plants in Japan as a source of fuel, particularly after the tragic accident at Fukushima nuclear power plant in 2011.  Palm kernel shell (PKS) has emerged as a favorite choice of biomass-based power plants in the country. Most of these biomass power plants use PKS as their energy source, and only a few operate with wood pellets. Interestingly, most of the biomass power plants in Japan have been built after 2015..

On the contrary, the US and Europe saw a fairly big fall in financing during this period; it should be noted, however, that this relates to the green energy investment market as a whole as opposed to biomass-specific funding. The increase seen in Japan has been attributed to an uptake in solar paneling, and if we look specifically to things such as the global demand for biomass pellets, we see that the most recent figures paint the overall market in a much more favorable light for the rest of the world.

Brighter Times Ahead

All in all, it’s an exciting time for the biomass industry despite the set backs which are being experienced in some regions.  On the whole, legislators and businesses are working remarkably well together in order to pave the way forward – being a fairly new market (from a commercially viable sense at least), it has taken a little while to get the ball rolling, but expect to see it blossom quickly now that the idea of biomass is starting to take hold.

Palm Kernel Shells: An Attractive Biomass Fuel for Europe

Europe is targeting an ambitious renewable energy program aimed at 20% renewable energy in the energy mix by 2020 with biomass energy being key renewable energy resource across the continent. However, the lack of locally-available biomass resources has hampered the progress of biomass energy industry in Europe as compared with solar and wind energy industries. The European biomass industry is largely dependent on wood pellets and crop residues.


Europe is the largest producer of wood pellets, which is currently estimated at 13.5 million tons per year while its consumption is 18.8 million tons per year. The biggest wood pellet producing countries in Europe are Germany and Sweden. Europe relies on America and Canada to meet its wood pellet requirements and there is an urgent need to explore alternative biomass resources. In recent years, palm kernel shells (popularly known as PKS) from Southeast Asia and Africa has emerged as an attractive biomass resources which can replace wood pellets in biomass power plants across Europe.

What are Palm Kernel Shells

Palm kernel shells are the shell fractions left after the nut has been removed after crushing in the Palm Oil Mill. Kernel shells are a fibrous material and can be easily handled in bulk directly from the product line to the end use. Large and small shell fractions are mixed with dust-like fractions and small fibres.

Moisture content in kernel shells is low compared to other biomass residues with different sources suggesting values between 11% and 13%. Palm kernel shells contain residues of Palm Oil, which accounts for its slightly higher heating value than average lignocellulosic biomass. Compared to other residues from the industry, it is a good quality biomass fuel with uniform size distribution, easy handling, easy crushing, and limited biological activity due to low moisture content.

Press fibre and shell generated by the palm oil mills are traditionally used as solid fuels for steam boilers. The steam generated is used to run turbines for electricity production. These two solid fuels alone are able to generate more than enough energy to meet the energy demands of a palm oil mill.

Advantages of Palm Kernel Shells

PKS has almost the same combustion characteristics as wood pellets, abundantly available are and are cheap. Indonesia and Malaysia are the two main producers of PKS. Indonesian oil palm plantations cover 12 million hectares in Indonesia and 5 million hectares in Malaysia, the number of PKS produced from both countries has exceeded 15 million tons per year. Infact, the quantity of PKS generated in both countries exceeds the production of wood pellets from the United States and Canada, or the two largest producers of wood pellets today.

Interestingly, United States and Canada cannot produce PKS, because they do not have oil palm plantations, but Indonesia and Malaysia can also produce wood pellets because they have large forests. The production of wood pellets in Indonesia and Malaysia is still small today, which is less than 1 million tons per year, but the production of PKS is much higher which can power biomass power plants across Europe and protect forests which are being cut down to produce wood pellets in North America and other parts of the world.

PKS as a Boiler Fuel

Although most power plants currently use pulverized coal boiler technology which reaches around 50% of the world’s electricity generation, the use of grate combustion boiler technology and fluidized bed boilers is also increasing. Pulverized coal boiler is mainly used for very large capacity plants (> 100 MW), while for ordinary medium capacity uses fluidized bed technology (between 20-100 MW) and for smaller capacity with combustor grate (<20 MW). The advantage of boiler combustion and fluidized bed technology is fuel flexibility including tolerance to particle size.

When the pulverized coal boiler requires a small particle size (1-2 cm) like sawdust so that it can be atomized on the pulverizer nozzle, the combustor grate and fluidized bed the particle size of gravel (max. 8 cm) can be accepted. Based on these conditions, palm kernel shells has a great opportunity to be used as a boiler fuel in large-scale power plants.

Use of PKS in pulverized coal boiler

There are several things that need to be considered for the use of PKS in pulverized coal boilers. The first thing that can be done is to reduce PKS particle size to a maximum of 2 cm so that it can be atomized in a pulverized system. The second thing to note is the percentage of PKS in coal, or the term cofiring. Unlike a grate and a fluidized bed combustion that can be flexible with various types of fuel, pulverized coal boilers use coal only. There are specific things that distinguish biomass and coal fuels, namely ash content and ash chemistry, both of which greatly influence the combustion characteristics in the pulverized system.


PKS has emerged as an attractive biomass commodity in Japan

Coal ash content is generally greater than biomass, and coal ash chemistry is very different from biomass ash chemistry. Biomass ash has lower inorganic content than coal, but the alkali content in biomass can change the properties of coal ash, especially aluminosilicate ash.

Biomass cofiring with coal in small portions for example 3-5% does not require modification of the pulverized coal power plant. For example, Shinci in Japan with a capacity of 2 x 1,000 MW of supercritical pulverized fuel with 3% cofiring requires 16,000 tons per year of biomass and no modification. Similarly, Korea Southeast Power (KOSEP) 5,000 MW with 5% cofiring requires 600,000 tons per year of biomass without modification.

PKS cofiring in coal-based power plants

Pulverized coal-based power plants are the predominant method of large-scale electricity production worldwide including Europe. If pulverised fuel power plants make a switch to co-firing of biomass fuels, it will make a huge impact on reducing coal usage, reducing carbon emissions and making a transition to renewable energy. Additionally, the cheapest and most effective way for big coal-based power plants to enter renewable energy sector is biomass cofiring. Palm kernel shells can be pyrolyzed to produce charcoal while coal will produce coke if it is pyrolyzed. Charcoal can be used for fuel, briquette production and activated charcoal.

Tips on Writing a Research Paper on Solar Energy

The share of energy received from the Sun is steadily increasing every year. Last year, the global solar market increased by 26%. According to forecasts, in 2018 for the first time, the mark of 100 gigawatts of new installed capacity per year will be passed all over the world. Writing a research paper on solar energy is not an easy assignment, as you will have to deal with lot’s of statistics, results of experiments, and, surprisingly, sociology — the usage of alternative sources of energy are strongly connected with the social issues and moods. In this article, you’ll receive some tips on how to write a stellar research paper on solar energy and impress your professor.

We are sure you know how to structure a research paper, and you won’t forget about an engaging thesis (problem) statement. Our tips will cover the latest trends you should mention and the discussions related to the usage of solar energy, pros, cons and exciting facts.

Pay Attention to the Latest Trends

Analysts have identified trends in the solar energy market in the near future.

  • An increasing number of countries are developing solar energy projects at the national level. In 2016, there were 32 such countries, at the end of last year already 53. Tenders for the development of solar energy are planned in 23 countries.
  • In the United States in the next 4 years, the number of states installing more than 1 gigawatt will reach 18. They will account for 80% of all US photovoltaic plants.
  • Reducing the cost of solar energy can be achieved through the use of more powerful modules, which will reduce the proportion of equipment and maintenance costs.
  • The role of electronics operating at the level of a single photovoltaic panel will grow. Now micro-inventors and current converters for one module are not used very widely.
  • Prices for stationary solar systems in the world are falling, but in the USA they remain at the same level (the cost of watts of power for US home systems is the highest in the world). The price for a “sunny” watt from state to state can vary by 68 cents, and companies will have to look for ways to reduce production costs.

Talk about the Future

Naturally, interest in renewable energy sources will continue to grow. The year 2050 will be the point of no return – it is by this time that most countries will completely switch to clean energy. And in 2018 serious steps will be made in this direction.

The first to be hit will be coal power plants in Europe. To date, 54% of them are not profitable, and there are only for the sake of peak load. In 2018, Finland will ban the use of coal to generate electricity and increase the tax on carbon dioxide emissions. By 2030, the country plans to abandon this fuel completely.

The Indian coal mining company Coal India also plans to close 37 coal mines in March 2018 – their development has become uneconomical due to the growth of renewable energy. The company will save about $ 124 million on this, after which it will switch to solar power and install at least 1 GW of new solar capacity in India.

Don’t Focus Solely on Content

It is a no-brainer that the content of your research paper is the most essential part of your work. However, if you forget about formatting, citations, plagiarism, using valid academic sources, etc., your research paper can fail despite having an amazing thesis statement or the project idea. can help in detecting plagiarized content.

When you start doing research, note down every link you use or want to use, every quote you like, every piece of statistical information. At first, it seems very dull and unnecessary — you think you can find this information at any moment. However, days pass, and you fail to make proper references, which can be a reason of being accused of plagiarism. Proofread your research paper several times, use online sources to check grammar and spelling, don’t forget about plagiarism checkers to stay on the safe side.

If you find out that writing a proper research paper on solar energy is too complicated for you now, or you don’t have enough time energy to deal with it, it is a wise choice to get affordable research paper writing by experts who can help you immediately with your assignment. When writing a research paper on solar energy don’t forget to check on the latest numbers and analytical data worldwide. Good luck!

Carbon Market in the Middle East

Middle East is highly susceptible to climate change, on account of its water scarcity, high dependence on climate-sensitive agriculture, concentration of population and economic activity in urban coastal zones, and the presence of conflict-affected areas. Moreover, the region is one of the biggest contributors to greenhouse gas emissions on account of its thriving oil and gas industry.

The world’s dependence on Middle East energy resources has caused the region to have some of the largest carbon footprints per capita worldwide. Not surprisingly, the carbon emissions from UAE are approximately 55 tons per capita, which is more than double the US per capita footprint of 22 tons per year. The MENA region is now gearing up to meet the challenge of global warming, as with the rapid growth of the carbon market. During the last few years, many MENA countries, like UAE, Qatar, Egypt and Saudi Arabia have unveiled multi-billion dollar investment plans in the cleantech sector to portray a ‘green’ image.

There is an urgent need to foster sustainable energy systems, diversify energy sources, and implement energy efficiency measures. The clean development mechanism (CDM), under the Kyoto Protocol, is one of the most important tools to support renewable energy and energy efficiency initiatives in the MENA countries. Some MENA countries have already launched ambitious sustainable energy programs while others are beginning to recognize the need to adopt improved standards of energy efficiency.

The UAE, cognizant of its role as a major contributor to climate change, has launched several ambitious governmental initiatives, including UAE embassy legislation, aimed at reducing emissions by approximately 40 percent. Masdar, a $15 billion future energy company, will leverage the funds to produce a clean energy portfolio, which will then invest in clean energy technology across the Middle East and North African region. Egypt is the regional CDM leader with twelve projects in the UNFCCC pipeline and many more in the conceptualization phase.

Middle East is an attractive carbon market as it is rich in renewable energy resources and has a robust oil and gas industry. Surprisingly, very few CDM projects are taking place in MENA countries with only 22 CDM projects have been registered to date. The region accounts for only 1.5 percent of global CDM projects and only two percent of emission reduction credits.

The two main challenges facing many of these projects are: weak capacity in most MENA countries for identifying, developing and implementing carbon finance projects and securing underlying finance. Currently, there are several CDM projects in progress in Egypt, Jordan, Bahrain, Morocco, Syria and Tunisia. Many companies and consulting firms have begun to explore this now fast-developing field.

The Al-Shaheen project is the first of its kind in the region and third CDM project in the petroleum industry worldwide. The Al-Shaheen oilfield has flared the associated gas since the oilfield began operations in 1994. Prior to the project activity, the facilities used 125 tons per day (tpd) of associated gas for power and heat generation, and the remaining 4,100 tpd was flared. Under the current project, total gas production after the completion of the project activity is 5,000 tpd with 2,800-3,400 tpd to be exported to Qatar Petroleum (QP); 680 tpd for on-site consumption, and only 900 tpd still to be flared. The project activity will reduce GHG emissions by approximately 2.5 million tCO2 per year and approximately 17 million tCO2 during the initial seven-year crediting period.

Potential CDM projects that can be implemented in the region may come from varied areas like sustainable energy, energy efficiency, waste management, landfill gas capture, industrial processes, biogas technology and carbon flaring. For example, the energy efficiency CDM projects in the oil and gas industry, can save millions of dollars and reduce tons of CO2 emissions. In addition, renewable energy, particularly solar and wind, holds great potential for the region, similar to biomass in Asia.

PSA System for Biogas Upgradation

Pressure swing adsoprtion, also known as PSA, is emerging as the most popular biogas upgradation technology in many parts of the world. A typical PSA system is composed of four vessels in series that are filled with adsorbent media which is capable of removing water vapor, CO2, N2 and O2 from the biogas stream.

During operation, each adsorber operates in an alternating cycle of adsorption, regeneration and pressure buildup. Dry biogas enters the system through the bottom of one of the adsorbers during the first phase of the process. When passing through the vessel, CO2, N2 and O2 are adsorbed onto the surface of the media. The gas leaving the top of the adsorber vessel contains more than 97% CH4

Biogas upgradation through PSA takes place over 4 phases: pressure build-up, adsorption, depressurization and regeneration. The pressure buildup is achieved by equilibrating pressure with a vessel that is at depressurization stage. Final pressure build up occurs by injecting raw biogas. During adsorption, CO2 and/or N2 and/or O2 are adsorbed by the media and the gas exits as CH4.

Depressurization is performed by equalizing with a second pressurizing vessel, and regeneration is achieved at atmospheric pressure, leaving a gas that contains high concentrations of CH4 to be re-circulated. During the regeneration phase, the bed must be regenerated by desorbing (or purging) the adsorbed gases. Purging is accomplished by reducing the pressure in the bed and back-flushing it with some of the concentrated gas product. The gas pressure released from one vessel is used by the other, thus reducing energy consumption and compressor capital costs.

Special adsorption materials are used as a molecular sieve, preferentially adsorbing the target gas species at high pressure. The adsorbent media is usually zeolites (crystalline polymers), carbon molecular sieves or activated carbon. Aside from their ability to discriminate between different gases, adsorbents for PSA systems are usually very porous materials chosen because of their large surface areas.

How Does a Solar Battery Storage Work?

The idea of having an energy-independent home is quite enticing for any homeowner. It comes with a lot of advantages, the main one being the fact that you won’t be affected by utility rate fluctuations. Also, you’ll be promoting the ‘green energy’ campaign, which is currently being recommended as a way of preserving the environment. Fortunately, it’s an attainable dream given the rapid advancement in the world of energy storage. All you need is a set of solar panels or a solar energy provider, and a battery backup to satisfy your needs.

Solar batteries are an integral part of this setup since they ensure a continuous supply of power if the grid goes down. This article will break down the seemingly complex operation of these storage devices into a few easy-to-understand steps. The discussion will revolve around a battery that’s already paired with a solar system rather than a standalone solar battery storage.


Feeding the Solar Energy

When sunlight rays hit the panels, the visible light is converted to electrical energy. The electrical current flows into the battery and is stored as DC electricity. It’s worth noting that there are two types of solar batteries: AC-coupled and DC-coupled. The latter has a built-in inverter that can convert the electricity current to DC or AC. As such, the DC solar electricity will flow from the panels to an external power inverter, which will convert it to AC energy that can either be used by your home appliances or stored in the AC battery. What the built-in inverter will do in this case is convert the AC electricity back to DC for storage.

As for a DC-coupled system, the battery doesn’t have a built-in inverter. As such, the DC electricity from the solar panels flows to the battery via a charge controller. Unlike in an AC setup, the power inverter in this system is only connected to your home’s wiring. As such, electricity from the solar panels or your storage battery is converted from DC to AC before flowing to your home appliances. What determines how much energy is stored in the battery?  Read on to find out more.

The Charging Process

As power flows from the solar panels, your home’s electricity setup will take precedence. Therefore, electricity directly feeds your appliances, like refrigerators, TVs, and lights. Often, this energy from solar panels can be more than what you need. For instance, on a hot afternoon, a lot of power is produced, yet your home isn’t using much of it. In such a scenario, net metering occurs, wherein the extra energy flows back to the grid. However, you can use this overflow to charge up your batteries.


The amount of electricity stored in the battery depends on how fast it charges up. If, for example, your home doesn’t use up too much power, then the charging process will be quick. Also, if you’re connected to huge panels, then a lot of electric energy will flow to your home, which means the batteries will charge up a lot faster. Once your battery is full, the charge controller will prevent it from overcharging.

Why Do You Need A Solar Battery?

1. To shield you from power outages

If you’re connected to a grid, there’ll always be a few moments when the transmission system malfunctions or is shut down for maintenance. As soon as this happens, the system will isolate your home from the grid and activate the backup source. In this case, the battery will operate like a backup generator.

2. Time-of-use rate plans

On these plans, you’ll be charged according to the amount of electricity you use, as well as the time during which you use it. TOU states that the power drawn from the grid at night is more valuable than the extra energy produced during the day. As such, by storing the extra energy and using it at night, you’ll reduce the overall cost of electricity in your home.

Closing Remarks

With the world embracing ‘green energy,’ solar panels are gradually replacing the traditional sources of electricity. Solar batteries play a crucial role in ensuring that you have a reliable power supply in your home. AC-couple storage batteries have a built-in inverter, which converts the electric current to DC or AC, depending on the direction. On the other hand, a DC-couple battery doesn’t have this feature. Both batteries, however, store electric energy in DC regardless of the setup. The speed at which electricity is stored in the batteries depends on the size of the panels and the amount used by your home appliances.

Renewable Energy Trends in Germany

Germany has been called “the world’s first major renewable energy economy” as the country is one of the world’s most prolific users of renewable energy for power, heating, and transport. Germany has rapidly expanded the use of clean energy which now contributes almost one-fourth to the national energy mix. Renewable energy contribute as much as one-fourth of the primary energy mix and the country has set a goal to producing 35 percent of electricity from renewable sources by 2020 and 100 percent by 2050.


Solar Energy

Germany is the world’s biggest solar market and largest PV installer with a solar PV capacity of more than 49.78 GW at the end of 2019. The German new solar PV installations increased by about 4 GW in 2019. Germany has nearly as much installed solar power generation capacity as the rest of the world combined and gets about 5 percent of its overall annual electricity needs from solar power alone.

In 2019, German photovoltaic (PV) plants fed about 46.5 TWh into the public electricity grid, an increase of 1.7 percent compared to 2018.

Wind Energy

Germany’s wind energy industry is one of the world’s largest, and it is at the forefront of technological development.  Over half of all wind turbines in Germany are owned by local residents, farmers and local authorities which have tremendously improved the acceptance of wind turbines among local communities as they directly profit.

Being Europe’s primary wind energy market, Germany represents around 30 percent of total installed capacity in Europe and 12 percent of global installed capacity. Total wind energy capacity in Germany was 59.3 GW at the end of year 2019. Currently Germany is ranked third worldwide in installed total wind capacity with its share of total domestic electricity production forecasted to reach 25 percent by 2025.

Wind became the main electricity source in Germany for the first time in 2019. In eight months of the year 2019, the electricity generation from wind surpassed brown coal and in twelve months nuclear. Together wind and solar power plants generated a total of ca. 173 TWh electricity in 2019.

Biomass Energy

Biomass energy is making a significant contribution to renewable energy supply in Germany and accounts for about 5.5 percent of the total electricity production in the country. Germany is the market leader in biogas technology and is also Europe’s biggest biogas producer. Last year around 7,600 systems with a cumulative capacity of 3,200 MW generated 21.9 billion kWh in the country, thus consolidating Germany’s status as a pioneer in clean energy technologies.


Renewable Energy Investment

Germany’s plan to phase out all 17 of its nuclear power plants and shift to renewable energy by 2022 is the largest infrastructure investment program in Europe since World War II. The country’s transition from nuclear energy-based power network to renewable energy systems will require investments of much as $55 billion by 2030.

Germany is the world’s third largest market for renewable energy investment which and ranked 5th in the Bloomberg’s 2018 global renewable investment report with total investments of $10.5 billion in 2018. Sixty-five percent of investment in Germany was directed toward solar, with 29 percent directed to wind.

The country offers generous feed-in-tariffs for investors across all renewable energy segments which is attracting huge private capital in cleantech investments. In 2018, the majority of cleantech investment came from corporate investors across all sectors of the economy, including farmers, energy utilities, and industrial and commercial enterprises.

In 2019, the total electricity production in Germany from all renewable sources was about 237 TWh, an increase of 7 percent compared to 2018, and above fossil fuel carriers (207 TWh) for the first time.

Clean Cookstoves: An Urgent Necessity

Globally, three billion people in the developing nations are solely dependent on burning firewood, crop residues, animal manure etc for preparing their daily meals on open fires, mud or clay stoves or simply on three rocks strategically placed to balance a cooking vessel.  The temperature of these fires are lower and produce inefficient burning that results in black carbon and other short-lived but high impact pollutants.

These short-lived pollutants not only affect the persons in the immediate area but also contribute much harmful gases more potent than carbon dioxide and methane. For the people in the immediate area, their health is severely hampered as this indoor or domestic air pollution results in significantly higher risks of pneumonia and chronic bronchitis.

To remedy the indoor air pollution (IAP) and health-related issues as well as the environmental pollution in the developing world, clean cookstoves are the way to advance. But to empower rural users to embrace the advanced cookstoves, and achieve sustainable success requires a level of socio-cultural and economic awareness that is related directly to this marginalized group. The solution needs to be appropriate for the style of cooking of the group which means one stove model will not suit or meet the needs and requirements of all developing nation people groups.

Clean cookstoves can significantly reduce health problems caused by indoor air pollution in rural areas

Consideration for such issues as stove top and front loading stove cooking, single pot and double pot cooking, size of the typical cooking vessel and the style of cooking are all pieces of information needed to complete the picture.

Historically, natural draft systems were devised to aid the combustion or burning of the fuels, however, forced draft stoves tend to burn cleaner with better health and environmental benefits. Regardless of cookstove design, the components need to be either made locally or at least available locally so that the long term life of the stove is maintainable and so sustainable.

Now, if the cookstove unit can by powered by  simple solar or biomass system, this will change the whole nature of the life style and domestic duties of the chief cook and the young siblings who are typically charged with collecting the natural firewood to meet the cooking requirement.

Therefore the cookstoves need to be designed and adapted for the people group and their traditional cooking habits, and not in the reverse order. To assess the overall performance of the green cooking stoves requires simple but effective measures of the air quality.

The two elements that need to be measured are the black carbon emissions and the temperature of the cooking device.  This can be achieved by miniature aerosol samplers and temperature sensors. The data collected needs to be transmitted in real-time via mobile phones for verification of performance rates.  This is to provide verifiable data in a cost effective monitoring process.