Everything You Should Know About An Algae Biorefinery

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming of algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels. Algae can be efficiently grown on land that is not suitable for agriculture and hold huge potential to provide a non-food, high-yield source of biodiesel, ethanol and hydrogen fuels.

algae-biorefinery

Several recent studies have pointed out that biofuel from microalgae has the potential to become a renewable, cost-effective alternative for fossil fuel with reduced impact on the environment and the world supply of staple foods, such as wheat, maize and sugar.

What are Algae?

Algae are unicellular microorganisms, capable of photosynthesis. They are one of the world’s oldest forms of life, and it is strongly believed that fossil oil was largely formed by ancient microalgae. Microalgae (or microscopic algae) are considered as a potential oleo-feedstock, as they produce lipids through photosynthesis, i.e. using only carbon, water, sunlight, phosphates, nitrates and other (oligo) elements that can be found in residual waters.

Oils produced by diverse algae strains range in composition. For the most part are like vegetable oils, though some are chemically similar to the hydrocarbons in petroleum.

Advantages of Algae

Apart from lipids, algae also produce proteins, isoprenoids and polysaccharides. Some strains of algae ferment sugars to produce alcohols, under the right growing conditions. Their biomass can be processed to different sorts of chemicals and polymers (Polysaccharides, enzymes, pigments and minerals), biofuels (e.g. biodiesel, alkanes and alcohols), food and animal feed (PUFA, vitamins, etc.) as well as bioactive compounds (antibiotics, antioxidant and metabolites) through down-processing technology such as transesterification, pyrolysis and continuous catalysis using microspheres.

Algae can be grown on non-arable land (including deserts), most of them do not require fresh water, and their nutritional value is high. Extensive R&D is underway on algae as raw material worldwide, especially in North America and Europe with a high number of start-up companies developing different options.

Most scientific literature suggests an oil production potential of around 25-50 ton per hectare per year for relevant algae species. Microalgae contain, amongst other biochemical, neutral lipids (tri-, di-, monoglycerides free fatty acids), polar lipids (glycolipids, phospholipids), wax esters, sterols and pigments. The total lipid content in microalgae varies from 1 to 90 % of dry weight, depending on species, strain and growth conditions.

What is Algae Biorefinery

In order to develop a more sustainable and economically feasible process, all biomass components (e.g. proteins, lipids, carbohydrates) should be used and therefore biorefining of microalgae is very important for the selective separation and use of the functional biomass components.

The term algae biorefinery was coined to describe the production of a wide range of chemicals and biofuels from algal biomass by the integration of bio-processing and appropriate low environmental impact chemical technologies in a cost-effective and environmentally sustainable.

If biorefining of microalgae is applied, lipids should be fractionated into lipids for biodiesel, lipids as a feedstock for the chemical industry and essential fatty acids, proteins and carbohydrates for food, feed and bulk chemicals, and the oxygen produced can be recovered as well.

The potential for commercial algae production, also known as algaculture, is expected to come from growth in translucent tubes or containers called photo bioreactors or in open systems (e.g. raceways) particularly for industrial mass cultivation or more recently through a hybrid approach combining closed-system pre-cultivation with a subsequent open-system.

Advantages of Algae Biorefinery

The major advantages of an algae biorefinery include:

  • Use of industrial refusals as inputs ( CO2,wastewater and desalination plant rejects)
  • Large product basket with energy-derived (biodiesel, methane, ethanol and hydrogen) and non-energy derived (nutraceutical, fertilizers, animal feed and other bulk chemicals) products.
  • Not competing with food production (non-arable land and no freshwater requirements)
  • Better growth yield and lipid content than crops.

Indeed, after oil extraction the resulting algal biomass can be processed into ethanol, methane, livestock feed, used as organic fertilizer due to its high N:P ratio, or simply burned for energy cogeneration (electricity and heat). If, in addition, production of algae is done on residual nutrient feedstock and CO2, and production of microalgae is done on large scale in order to lower production costs, production of bulk chemicals and fuels from microalgae will become economically, environmentally and ethically extremely attractive.

Things You Should Know About Algaculture

High oil prices, competing demands between foods and other biofuel sources, and the world food crisis, have ignited interest in algaculture (farming of algae) for making vegetable oil, biodiesel, bioethanol, biogasoline, biomethanol, biobutanol and other biofuels, using land that is not suitable for agriculture.

Algae holds enormous potential to provide a non-food, high-yield, non-arable land use source of biodiesel, ethanol and hydrogen fuels. Microalgae are the fastest growing photosynthesizing organism capable of completing an entire growing cycle every few days. Up to 50% of algae’s weight is comprised of oil, compared with, for example, oil palm which yields just about 20% of its weight in oil.

Algaculture (farming of algae) can be a route to making vegetable oils, biodiesel, bioethanol and other biofuels. Microalgae are one-celled, photosynthetic microorganisms that are abundant in fresh water, brackish water, and marine environments everywhere on earth. The potential for commercial algae production is expected to come from growth in translucent tubes or containers called photo bioreactors or open ocean algae bloom harvesting. The other advantages of algal systems include:

  • carbon capture from smokestacks to increase algae growth rates
  • processing of algae biomass through gasification to produce syngas
  • growing carbohydrate rich algae strains for cellulosic ethanol
  • using waste streams from municipalities as water sources

Algae have certain qualities that make the organism an attractive option for biodiesel production. Unlike corn-based biodiesel which competes with food crops for land resources, algae-based production methods, such as algae ponds or photobioreactors, would “complement, rather than compete” with other biomass-based fuels. Unlike corn or other biodiesel crops, algae do not require significant inputs of carbon intensive fertilizers.  Some algae species can even grow in waters that contain a large amount of salt, which means that algae-based fuel production need not place a large burden on freshwater supplies.

Several companies and government agencies are funding efforts to reduce capital and operating costs and make algae fuel production commercially viable. Companies such as Sapphire Energy and Bio Solar Cellsare using genetic engineering to make algae fuel production more efficient. According to Klein Lankhorst of Bio Solar Cells, genetic engineering could vastly improve algae fuel efficiency as algae can be modified to only build short carbon chains instead of long chains of carbohydrates.

Sapphire Energy also uses chemically induced mutations to produce algae suitable for use as a crop. Some commercial interests into large-scale algal-cultivation systems are looking to tie in to existing infrastructures, such as cement factories, coal power plants, or sewage treatment facilities. This approach changes wastes into resources to provide the raw materials, CO2 and nutrients, for the system.