Renewable Energy and its Applications

renewables-applicationsRenewable energy. Clean energy. Green energy. Sustainable energy. Alternative Energy. Renewal Energy. No matter what you call it, energy such as wind, solar, biomass and hydroelectric is having an impact on your life and could have an even bigger impact in the future. Renewable energy, in the most basic terms, is precisely what it sounds like. It’s power that comes from sources that regenerate, unlike fossil fuels, which only exist in a limited amount.

From 2000 to 2016, the use of renewables in the United States more than doubled and is expected to continue to grow. In 2016, they made up about 10 percent of total energy consumption and 15 percent of electricity generation. Consumption of renewable energy has grown in large part due to government incentives and requirements for renewable energy and the desire to switch to cleaner fuel in order to protect the environment.

There are a number of different sources of renewable energy in use today. Here are some of the most common ones.

Solar Energy

The U.S. solar industry has grown at an average annual rate of 68 percent over the last decade in the form of rooftop solar panels for individual buildings, solar farms built by utility companies and community solar projects, which produce solar for energy users in a certain area through a collection of solar panels.

Solar photovoltaic panels capture sunlight and convert it directly into electricity, which can power a small device such as a watch or sent into the grid to be distributed to a utility’s customers.

Wind Energy

People have been using windmills to utilize the wind’s energy for a long time, but today wind turbines are used to capture that energy and turn it into electricity. There are approximately 53,000 wind turbines operating in the United States today.

Wind turbines consist of a large tower, which is often around 100 feet tall, and several blades that use the power of the wind to spin. The blades are connected to a shaft that spins a generator in order to create electricity.

Like solar energy, power generated with wind can either be used for a specific application such as pumping water or powering a farm, or transferred into the electrical grid to meet other energy needs.

Biomass Energy

Biomass is another common form of renewable energy. Biomass is any natural substance such as wood, plant matter, gas from landfills and even municipal solid waste that contains stored energy from the sun.

When those substances are burned, they release that energy, which can be used as heat or fuel. Biomass can also be made into a liquid or gas that can be used as fuel.

Bioliquids, such as ethanol and biodiesel, are frequently used to power vehicles. Around 40 percent of the corn grown in the U.S. today is used for biofuels. Researchers are currently exploring new ways biomass can be used and additional substances that could be used for biomass energy.

Hydro Energy

Hydropower, energy generated with water, is one of the oldest and the most common renewable energy resource in the U.S., making up 6.5 percent of utility-scale electricity generation and 44 percent of generated renewable energy.

When water flows, it produces energy. We capture this energy by allowing moving water in rivers, waterfalls or elsewhere to turn generators that produce electricity. Hydroelectric plants can also be man-made, as is the case with dams. Man-made reservoirs hold water through the use of dams. That water is then released to flow through a turbine and create electricity.

Benefits Galore

The main benefit of renewable energy sources is the fact that they release very little greenhouse gases and so are better for the environment. Because electricity makes up the largest share of our greenhouse gas emissions, changing how we get our energy is crucial in the fight against global warming.

Biofuels are increasingly being used to power vehicles

Biofuels are increasingly being used to power vehicles

Another key advantage is the fact that they are renewable, which means we won’t ever run out of them. This stability could make access to energy more stable in the future. It can also keep energy prices more predictable, because the markets are subject to changes in supply.

Renewable energy is also flexible and can power large areas or single homes. Additionally, renewable energy projects create a number of well-paying jobs and tend to have a significant economic impact.

Key Drawbacks

Just like with fossil fuels, there are some disadvantages as well. Renewable energy plants are subject to fluctuations in wind, sunlight and other natural resources, meaning some days or in some particular months, a facility might produce more electricity than others. Today, in areas where renewables are common, fossil fuels are often used to make up any shortcoming in renewable energy production.

Due to their reliance on natural occurrences, renewables may fare better in some areas than others. An area with lots of direct sun all day long will be more suitable for a solar plant than somewhere that’s often dark and cloudy. Renewable energy farms also often require large areas of land, and while renewable energy tends to be cheap, initial construction and development costs can be quite high.

Despite these disadvantages, renewables are proving an important part of the energy mix of today and of the future, especially in the face of environmental concerns and worry about the availability of fossil fuels. Chances are we won’t see the end of the growing renewable energy industry any time soon.

About the Author

Emily Folk is a freelance writer and blogger on topics of renewable energy and conservation. To get her latest posts, check out her blog, Conservation Folks, or follow her on Twitter.

A Glance at Drop-in Biofuels

drop-in-biofuelsBiofuel commercialization has proved to be costly and lingering than expected due to its high production cost and modification to flexibility in engines. Drop-in fuels are alternatives to existing liquid fuels without any significant modification in engines and infrastructures. According to IEA, “Drop-in biofuels are liquid bio-hydrocarbons that are functionally equivalent to petroleum fuels and are fully compatible with existing petroleum infrastructure”.

What are Drop-in Biofuels

Drop-in biofuels are can be produced from oilseeds via trans-esterification, lignocellulosic biomass via thermochemical process, sugars and alcohol via biochemical conversion or by hybrids of the above methods. Drop-in fuels encompass high hydrogen to carbon ratio with no/low sulfur and oxygen content, low water solubility and high carbon bond saturation. In short drop-in fuel is a modified fuel with close functional resemblance to fossil fuel.

Existing biofuels – bioethanol and biodiesel – have wide variation from fossil fuels in their blend wall properties – high oxygen content, hydrophilicity, energy density and mainly compatibility in existing engines and infrastructures. Oxygenated groups in biofuel have a domino effect such as reduction in the energy density, production of impurities which are highly undesirable to transportation components, instability during storage etc.

Major advantages of drop-in fuels over existing fuels are as follows:

  • Reduced sulphur oxide emissions by ultra low sulphur content.
  • Reduced ignition delay by high cetane value
  • Reduced hydrocarbons and nitrogen oxides emissions
  • Low aromatic content
  • Low olefin content, presence of olefin compounds undergo auto-oxidation leading to surface depositions.
  • High saturates, therefore leaving minimum residues
  • Low particulate emissions
  • No oxygenates therefore has high stability.

Potential Biomass Feedstock

Drop-in biofuels can be produced from various biomass sources- lipids (vegetable oils, animal fats, greases, and algae) and cellulosic material (such as crop residues, woody biomass, and dedicated energy crops). The prominent technologies for biomass conversion to drop-in fuel are the thermochemical and the biochemical process.

The major factor playing role in selection of biomass for thermochemical methods is the energy content or heating value of the material, which is correlated with ash content. Wood, wood chips accounts for less than 1% ash content, which is favorable thermal processing than biochemical process, whereas straws, husks, and majority of the other biomass have ash content ranging up to 25% of dry mass.

Free sugar generating plants such as sugarcane and sweet sorghum, are desirable feedstock for Acetone-Butanol-Ethanol fermentation and have been widely implemented. Presently there is a focus to exploit lignocellulosic residues, rich in hydrocarbon, for fuel production. However, this biomass requires harsh pretreatment to remove lignin and to transform holocellulose (cellulose & hemicelluloses) into fermentable products.

The lignocellulose transformation technology must be circumspectly chosen by its life cycle assessment, as it resists any changes in their structural integrity owing to its complexity. Lignocellulosic biomass, when deoxygenated, has better flexibility to turn to drop-in fuels. This is because, in its native state of the feedstock, each oxygen atom consumes two hydrogen atoms during combustion which in turn reduces effective H: C ratio. Biomass feedstock is characterized with oxygen up to 40%, and higher the oxygen content higher it has to be deoxygenated.

Thermochemical Route

Thermochemical methods adopted for biomass are pyrolysis and gasification, on thermolysis of biomass produce intermediate gas (syngas) and liquid (bio crude) serving as precursors for drop-in fuel. Biomass when exposed to temperature of 500oC-600oC in absence of oxygen (pyrolysis) produce bio-oil, which constitutes a considerable percentage of oxygen. After down streaming by hydroprocessing (hydrotreating and hydrocracking) the rich hydrocarbon tar (bio-oil) can be converted to an efficient precursor for drop-in fuel.

At a higher temperature, above 700, under controlled oxygen, biomass can be converted to liquid fuel via gas phase by the process, gasification. Syngas produced is converted to liquid fuel by Fischer-Tropsch with the help of ‘water gas shift’ for hydroprocessing. Hydroprocessing after the thermochemical method is however costly and complex process in case of pyrolysis and inefficient biomass to fuel yield with gasification process.

Biochemical Pathway

The advanced biocatalytic processes can divert the conventional sugar-ethanol pathway and convert sugars to fatty acids. Modified microbial strain with engineered cellular machineries, can reroute the pathway to free fatty acid that can be transformed into butanol or drop-in fuel with necessary processing.

Schematic for the preparation of jet fuel from biomass

Schematic for the preparation of jet fuel from biomass

Biological processing requires operation under the stressful conditions on the organisms to reroute the pathways, in additional to lowering NADPH (hydrogen) consumption. Other value added products like carboxylic acid, polyols, and alcohol in the same biological routes with lower operational requirements have higher market demands and commercial success. Therefore little attention is given by chemical manufacturers to the biological pathways for drop-in fuel production.

The mechanisms of utilization of lignocellulosic biomass to fuel by biological pathway rely heavily on the availability of monomeric C5 and C6 sugars during fermentation. Ethanol is perhaps the best-known and commercially successful alcohol from ABE fermentation. However, butanol has various significant advantages over ethanol- in the perception of energy content, feasibility to existing infrastructures, zero blend wall, safety and clean aspects. Although butanol is a closer drop-in replacement, existing biofuel ethanol, is a major commercial competitor. Low yield from fermentation due to the toxicity of butanol and complexity in down streaming are the vital reasons that hamper successful large scale butanol production.

Challenges to Overcome

Zero oxygen and sulphur content mark major challenges for production of drop-in fuels from conventional biomass. This demands high hydrogen input on the conventional biomass, with H: C ratio below 0.5, like sugar, starch, cellulose, lignocellulose to meet the effective hydrogen to carbon ratio of 2 as in drop-in fuel. This characterizes most of the existing biomass feedstock as a low-quality input for drop-in fuels. However oleochemicals like fats, oils, and lipids have closer H: C ratio to diesel, gasoline and drop-in fuels, thus easier to conversion. Oleochemical feedstock has been commercially successful, but to prolong in the platform will be a major challenge. Lipid feedstock is generally availed from crop-based vegetable oil, which is used in food sectors. Therefore availability, food security concerns, and economics are the major constraints to sustaining the raw material. Consequently switching to lignocellulosic biomass feedstock for drop-in holds on.

Conclusions

Despite the hurdles on biomass characteristics and process technology for drop-in fuel, it is a vital requirement to switch to better replacement fuel for fossil fuel, considering environmental and economic benefits. Understanding its concepts and features, drop-in fuel, can solve existing greenhouse emission debate on current biofuels. Through crucial ambiguities existing on future of alternative fuels, drop-in fuel has a substantial potential to repute itself as an efficient sustainable eco-friendly fuel in the naear future.

References

  • Neal K Van Alfen: ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS, Elsevier, Academic Press.
  • Pablo Domínguez de María John: INDUSTRIAL BIORENEWABLES:A Practical Viewpoint: Wiley & Sons.
  • Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou: BIOFUELS- PRODUCTION AND FUTURE PERSPECTIVES, CRC Press.
  • Satinder Kaur Brar, Saurabh Jyoti Sarma, Kannan Pakshirajan : PLATFORM CHEMICAL BIOREFINERY-FUTURE GREEN CHEMISTRY, Elsevier.
  • Sergios Karatzos, James D. McMillan, Jack N. Saddle: Summary of IEA BIOENERGY TASK 39 REPORT-THE POTENTIAL AND CHALLENGES OF DROP-IN BIOFUELS, IEA Bioenergy.
  • Vijai Kumar Gupta, Monika Schmoll, Minna Maki, Maria Tuohy, Marcio Antonio Mazutti: APPLICATIONS OF MICROBIAL ENGINEERING, CRC Press.

Bioethanol: Challenges in India

bioethanol-indiaGlobal demand for fuel efficiency, environmental quality and energy security have elicited global attention towards liquid biofuels, such as bioethanol and biodiesel. Around the world, governments have introduced various policy measurements, mandatory fuel blending programmes, incentives for flex-fuel vehicles and agricultural subsidies for the farmers. In India, the government launched Ethanol Blended Petrol (EBP) programme in January 2013 for 5% ethanol blended petrol. The policy had significant focus on India’s opportunity to agricultural and industrial sectors with motive of boosting biofuel usage and reducing the existing dependency on fossil fuel.

The Government of India initiated significant investments in improving storage and blending infrastructure. The National Policy on Biofuels has set a target of 20% blending of biofuel by 2017. However, India has managed to achieve only 5% by September 2016 due to certain technical, market and regulatory hurdles.

In India, sugar cane molasses is the major resource for bioethanol production and inconsistency of raw material supply holds the major liability for sluggish response to blending targets.  Technically speaking, blend wall and transportation-storage are the major challenges towards the biofuel targets. Blending wall is the maximum percent of ethanol that can be blended to fuel without decreasing the fuel efficiency. Various vehicles are adaptable to various blending ratio based on the flexibility of engines. The technology for the engine modification for flex fuel is not new but making the engines available in India along with the supply chain and calibrating the engine for Indian conditions is the halting phase. The commonly used motor vehicles in the country are not effectual with flex fuel.

Sugarcane molasses is the most common feedstock for bioethanol production in India

Sugarcane molasses is the most common feedstock for bioethanol production in India

Ethanol being a highly flammable liquid marks obligatory safety and risk assessment measures during all phases of production, storage and transportation. The non-uniform distribution of raw material throughout the country, demands a compulsory transportation and storage, especially inter-state movement, encountering diverse climatic and topographic conditions.

Major ethanol consumers in India are potable liquor sector (45%), alcohol based chemical industry (40%), the rest for blending and other purposes. The yearly profit elevation in major sectors is a dare to an economical ethanol supply for Ethanol Blending Programme. Drastic fluctuation in pricing of sugar cane farming and sugar milling resulted to huge debt to farmers by mill owners. Gradually the farmers shifted from sugarcane cultivation other crops.

Regulatory and policy approaches on excise duty on storage and transportation of ethanol and pricing strategy of ethanol compared to crude oil are to be revised and implemented effectively. Diversifying the feedstocks and advanced technology for domestic ethanol production in blending sectors are to be fetched out from research laboratories to commercial scale. Above all the knowledge of economic and environmental benefits of biofuel like reduction in pollutants and import bills, need to be amplified for the common man.

Role of Biomass Energy in Rural Development

biomass-balesBiomass energy systems not only offer significant possibilities for clean energy production and agricultural waste management but also foster sustainable development in rural areas. The increased utilization of biomass wastes will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

Biomass energy has the potential to modernize the agricultural economy and catalyze rural development. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small, medium and large-scale biomass-based power plants can play a major role in rural development.

Sustainable harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

Planting of energy crops on abandoned agricultural lands will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Rural areas are the preferred hunting ground for the development of biomass sector worldwide. By making use of various biological and thermal processes (anaerobic digestion, combustion, gasification, pyrolysis), agricultural wastes can be converted into biofuels, heat or electricity, and thus catalyzing sustainable development of rural areas economically, socially and environmentally.

Biomass energy can reduce 'fuel poverty' in remote and isolated communities

Biomass energy can reduce ‘fuel poverty’ in remote and isolated communities

A large amount of energy is utilized in the cultivation and processing of crops like sugarcane, wheat and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs.

There are many areas in India where people still lack access to electricity and thus face enormous hardship in day-to-day lives. Biomass energy promises to reduce ‘fuel poverty’ commonly prevalent among remote and isolated communities.  Obviously, when a remote area is able to access reliable and cheap energy, it will lead to economic development and youth empowerment.

Resource Base for Second-Generation Biofuels

second-generation-biofuelsSecond-generation biofuels, also known as advanced biofuels, primarily includes cellulosic ethanol. The feedstocks used for the production of second-generation biofuel are non-edible lignocellulosic biomass resources (such as leaves, stem and husk) which do not compete with food resources. The resource base for second-generation biofuels production is broadly divided into three categories – agricultural residues, forestry wastes and energy crops.

Agricultural Residues

Agricultural (or crop) residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy. Sugar cane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these lignocellulosic materials can be converted into biofuels by a wide range of technologies.

Forestry Biomass

Forest harvesting is a major source of biomass energy. Harvesting in forests may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for production of cellulosic ethanol. Harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Energy Crops

Energy crops are non-food crops which provide an additional potential source of feedstock for the production of second-generation biofuels. Corn and soybeans are considered as the first-generation energy crops as these crops can be also used as the food crops. Second-generation energy crops are grouped into grassy (herbaceous or forage) and woody (tree) energy crops.

Grassy energy crops or perennial forage crops mainly include switchgrass and miscanthus. Switchgrass is the most commonly used feedstock because it requires relatively low water and nutrients, and has positive environmental impact and adaptability to low-quality land. Miscanthus is a grass mainly found in Asia and is a popular feedstock for second-generation biofuel production in Europe. Woody energy crops mainly consists of fast-growing tree species like poplar, willow, and eucalyptus. The most important attributes of these class species are the low level of input required when compared with annual crops. In short, dedicated energy crops as feedstock are less demanding in terms of input, helpful in reducing soil erosion and useful in improving soil properties.

Biomass Resources from Sugar Industry

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most sugarcane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop. The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.

According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil.   Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable renewable energy resource.

Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugarcane which normally lasts 6 to 7 months.

Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection/transportation.

On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced. Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.

Importance of Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. As per a recent UNEP report, total renewable power capacity worldwide exceeded 1,470 GW in 2012, up 8.5% from 2011. Renewable energy supplies around one-fifth of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Some of the recent predictions suggest that biomass energy is likely to make up one third of the total world energy mix by 2050. Infact, biofuel provides around 3% of the world’s fuel for transport.

Biomass energy resources are readily available in rural and urban areas of all countries. Biomass-based industries can provide appreciable employment opportunities and promote biomass re-growth through sustainable land management practices. The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions. Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

Advantages of Biomass Energy

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil.

Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably. Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

When compared with wind and solar energy, biomass plants are able to provide crucial, reliable baseload generation. Biomass plants provide fuel diversity, which protects communities from volatile fossil fuels. Since biomass energy uses domestically-produced fuels, biomass power greatly reduces our dependence on foreign energy sources and increases national energy security.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.

Biofuels from Lignocellulosic Biomass

Lignocellulose is a generic term for describing the main constituents in most plants, namely cellulose, hemicelluloses, and lignin. Lignocellulose is a complex matrix, comprising many different polysaccharides, phenolic polymers and proteins. Cellulose, the major component of cell walls of land plants, is a glucan polysaccharide containing large reservoirs of energy that provide real potential for conversion into biofuels. Lignocellulosic biomass consists of a variety of materials with distinctive physical and chemical characteristics. It is the non-starch based fibrous part of plant material.

First-generation biofuels (produced primarily from food crops such as grains, sugar beet and oil seeds) are limited in their ability to achieve targets for oil-product substitution, climate change mitigation, and economic growth. Their sustainable production is under scanner, as is the possibility of creating undue competition for land and water used for food and fibre production.

The cumulative impacts of these concerns have increased the interest in developing biofuels produced from non-food biomass. Feedstocks from ligno-cellulosic materials include cereal straw, bagasse, forest residues, and purpose-grown energy crops such as vegetative grasses and short rotation forests. These second-generation biofuels could avoid many of the concerns facing first-generation biofuels and potentially offer greater cost reduction potential in the longer term.

The largest potential feedstock for ethanol is lignocellulosic biomass, which includes materials such as agricultural residues (corn stover, crop straws and bagasse), herbaceous crops (alfalfa, switchgrass), short rotation woody crops, forestry residues, waste paper and other wastes (municipal and industrial). Bioethanol production from these feedstocks could be an attractive alternative for disposal of these residues. Importantlylignocellulosic feedstocks do not interfere with food security. Moreover, bioethanol is very important for both rural and urban areas in terms of energy security reason, environmental concern, employment opportunities, agricultural development, foreign exchange saving, socioeconomic issues etc.

Lignocellulosic biomass consists mainly of lignin and the polysaccharides cellulose and hemicellulose. Compared with the production of ethanol from first-generation feedstocks, the use of lignocellulosic biomass is more complicated because the polysaccharides are more stable and the pentose sugars are not readily fermentable by Saccharomyces cerevisiae. In order to convert lignocellulosic biomass to biofuels the polysaccharides must first be hydrolysed, or broken down, into simple sugars using either acid or enzymes. Several biotechnology-based approaches are being used to overcome such problems, including the development of strains of Saccharomyces cerevisiae that can ferment pentose sugars, the use of alternative yeast species that naturally ferment pentose sugars, and the engineering of enzymes that are able to break down cellulose and hemicellulose into simple sugars.

Lignocellulosic processing pilot plants have been established in the EU, in Denmark, Spain and Sweden. The world’s largest demonstration facility of lignocellulose ethanol (from wheat, barley straw and corn stover), with a capacity of 2.5 Ml, was first established by Iogen Corporation in Ottawa, Canada. Many other processing facilities are now in operation or planning throughout the world.

Economically, lignocellulosic biomass has an advantage over other agriculturally important biofuels feedstocks such as corn starch, soybeans, and sugar cane, because it can be produced quickly and at significantly lower cost than food crops. Lignocellulosic biomass is an important component of the major food crops; it is the non-edible portion of the plant, which is currently underutilized, but could be used for biofuel production. In short, lignocellulosic biomass holds the key to supplying society’s basic needs for sustainable production of liquid transportation fuels without impacting the nation’s food supply.

Ethanol Production via Biochemical Route

Ethanol from lignocellulosic biomass is produced mainly via biochemical routes. The three major steps involved are pretreatment, enzymatic hydrolysis, and fermentation. Biomass is pretreated to improve the accessibility of enzymes. After pretreatment, biomass undergoes enzymatic hydrolysis for conversion of polysaccharides into monomer sugars, such as glucose and xylose. Subsequently, sugars are fermented to ethanol by the use of different microorganisms.

Pretreated biomass can directly be converted to ethanol by using the process called simultaneous saccharification and cofermentation (SSCF). Pretreatment is a critical step which enhances the enzymatic hydrolysis of biomass. Basically, it alters the physical and chemical properties of biomass and improves the enzyme access and effectiveness which may also lead to a change in crystallinity and degree of polymerization of cellulose. The internal surface area and pore volume of pretreated biomass are increased which facilitates substantial improvement in accessibility of enzymes. The process also helps in enhancing the rate and yield of monomeric sugars during enzymatic hydrolysis steps.

Pretreatment methods can be broadly classified into four groups – physical, chemical, physio-chemical and biological. Physical pretreatment processes employ the mechanical comminution or irradiation processes to change only the physical characteristics of biomass. The physio-chemical process utilizes steam or steam and gases, like SO2 and CO2. The chemical processes employs acids (H2SO4, HCl, organic acids etc) or alkalis (NaOH, Na2CO3, Ca(OH)2, NH3 etc). The acid treatment typically shows the selectivity towards hydrolyzing the hemicelluloses components, whereas alkalis have better selectivity for the lignin. The fractionation of biomass components after such processes help in improving the enzymes accessibility which is also important to the efficient utilization of enzymes.

The pretreated biomass is subjected to enzymatic hydrolysis using cellulase enzymes to convert the cellulose to fermentable sugars. Cellulase refers to a class of enzymes produced chiefly by fungi and bacteria which catalyzes the hydrolysis of cellulose by attacking the glycosidic linkages. Cellulase is mixture of mainly three different functional protein groups: exo-glucanase (Exo-G), endo-glucanase(Endo-G) and ?-glucosidase (?-G). The functional proteins work synergistically in hydrolyzing the cellulose into the glucose. These sugars are further fermented using microorganism and are converted to ethanol. The microorganisms are selected based on their efficiency for ethanol productivity and higher product and inhibitors tolerance. Yeast Saccharomyces cerevisiae is used commercially to produce the ethanol from starch and sucrose.

Escherichia coli strain has also been developed recently for ethanol production by the first successful application of metabolic engineering. E. coli can consume variety of sugars and does not require the complex growth media but has very narrow operable range of pH. E. coli has higher optimal temperature than other known strains of bacteria.

Lower GHG emissions and empowerment of rural economy are major benefits associated with bioethanol

The major cost components in bioethanol production from lignocellulosic biomass are the pretreatment and the enzymatic hydrolysis steps. In fact, these two process are someway interrelated too where an efficient pretreatment strategy can save substantial enzyme consumption. Pretreatment step can also affect the cost of other operations such as size reduction prior to pretreatment. Therefore, optimization of these two important steps, which collectively contributes about 70% of the total processing cost, are the major challenges in the commercialization of bioethanol from 2nd generation feedstock.

Enzyme cost is the prime concern in full scale commercialization. The trend in enzyme cost is encouraging because of enormous research focus in this area and the cost is expected to go downward in future, which will make bioethanol an attractive option considering the benefits derived its lower greenhouse gas emissions and the empowerment of rural economy.

The Promise of Algae

This year has witnessed the U.S. Navy debut their “Great Green Fleet,” the first aircraft carrier strike group powered largely by alternative, nonpetroleum-based fuels, the British Ministry of Defence launch a competition to reduce its equipment energy spend and the Pentagon increase its investment in clean-energy technologies, including biofuels development.  Could we be witnessing the start of the end of our reliance on “fossil fuel” petroleum?

In 2010, the MOD spent £628m on equipment energy and, for every 1p per litre rise in the price of fuel, the MOD’s annual equipment energy bill increases by £13m. These rising oil prices have once again positioned biofuels centre stage as a potential substitute to fulfil our global thirst for fuel.

With so many biofuel crops needing to compete for space and freshwater supplies with agriculture, algae are being seen as an ideal, sustainable alternative.  Algae can be grown in areas where crops cannot, but until now, it’s been difficult to achieve the scale needed for commercial  algal production.

Leading international authority on algal biotechnology and head of the Culture Collection of Algae and Protozoa (www.CCAP.ac.uk), Dr John Day, thinks it’s a major step forward.  Dr Day has over 25 years’ experience in biotechnology and applied algal research and comments “Commercial confidence in the scalability of algal biofuel production is an exciting step forward in the journey towards sustainable, economic biofuel production using microalgae.

Algae Cultures at the Scottish Association for Marine Science

“A major driver for the development of algal biofuels has been fuel security and the US Navy has successfully tested nearly all of its ships and aircraft on biofuel blends containing algal oils — including an F-18 fighter flying at twice the speed of sound and a ship moving at 50 knots.”

“Scientists at SAMS and elsewhere have been contributing to the global development of knowledge on algal biofuel. It is this understanding of the biology of these enigmatic microbes and our capacity to successfully cultivate them that will be the key to producing algal biofuels and other products.”

Driven by the desire to reduce reliance on foreign countries for petroleum, and the constant pressure to reduce costs, Governments are taking sustainable fuels very seriously.  (A recent report highlighted that Pentagon investment in green technologies rose to $1.2 billion, up from $400 million, and is projected to reach $10 billion annually by 2030.)  The Pentagon’s Defence Advanced Research Projects Agency (which finances and monitors research into algae fuels,) says it has now managed to produce algafuel for $2 per gallon and that it will produce jet aircraft quality algafuel for $3 per gallon by 2013. Unsurprisingly, commercial aviation companies around the world are also taking an interest in algae biofuels to reduce their own costs and carbon footprints.

As interest grows and more funding becomes available, the industry is blossoming and more skilled people are needed. Could we witness a global shift to sustainable fuels in our lifetime?  We certainly hope so.