Role of Anaerobic Digestion in Food Waste Management

Food waste is one of the single largest constituent of municipal solid waste stream. In a typical landfill, food waste is one of the largest incoming waste streams and responsible for the generation of high amounts of methane. Diversion of food waste from landfills can provide significant contribution towards climate change mitigation, apart from generating revenues and creating employment opportunities.


Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer. Food waste can either be utilized as a single substrate in a biogas plant, or can be co-digested with organic wastes like cow manure, poultry litter, sewage, crop residues, abattoir wastes etc or can be disposed in dedicated food waste disposers (FWDs). Rising energy prices and increasing environmental concerns makes it more important to harness clean energy from food wastes.

Anaerobic Digestion of Food Wastes

Anaerobic digestion is the most important method for the treatment of food waste because of its techno-economic viability and environmental sustainability. The use of anaerobic digestion technology generates biogas and preserves the nutrients which are recycled back to the agricultural land in the form of slurry or solid fertilizer. The relevance of biogas technology lies in the fact that it makes the best possible utilization of food wastes as a renewable source of clean energy.

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. Thus, the benefits of anaerobic digestion of food waste includes climate change mitigation, economic benefits and landfill diversion opportunities.

Anaerobic digestion has been successfully used in several European and Asian countries to stabilize food wastes, and to provide beneficial end-products. Sweden, Austria, Denmark, Germany and England have led the way in developing new advanced biogas technologies and setting up new projects for conversion of food waste into energy.

Codigestion at Wastewater Treatment Facilities

Anaerobic digestion of sewage sludge is wastewater treatment facilities is a common practice worldwide. Food waste can be codigested with sewage sludge if there is excess capacity in the anaerobic digesters. An excess capacity at a wastewater treatment facility can occur when urban development is overestimated or when large industries leave the area.


By incorporating food waste, wastewater treatment facilities can have significant cost savings due to tipping fee for accepting the food waste and increasing energy production. Wastewater treatment plants are usually located in urban areas which make it cost-effective to transport food waste to the facility. This trend is catching up fast and such plants are already in operation in several Western countries.

The main wastewater treatment plant in East Bay Municipal Utility District (EBMUD), Oakland (California) was the first sewage treatment facility in the USA to convert post-consumer food scraps to energy via anaerobic digestion. EBMUD’s wastewater treatment plant has an excess capacity because canneries that previously resided in the Bay Area relocated resulting in the facility receiving less wastewater than estimated when it was constructed. Waste haulers collect post-consumer food waste from local restaurants and markets and take it to EBMUD where the captured methane is used as a renewable source of energy to power the treatment plant. After the digestion process, the leftover material is be composted and used as a natural fertilizer.

The first food waste anaerobic digestion plant in Britain to be built at a sewage treatment plant is the city of Bristol. The plant, located at a Wessex Water sewage works in Avonmouth, process 40,000 tonnes of food waste a year from homes, supermarkets and business across the southwest and generate enough energy to power around 3,000 homes.

Biogas and Rural Development

Anaerobic digestion has proven to be a beneficial technology in various spheres for rural development. Biogas produced is a green replacement of unprocessed fuels (like fuel wood, dung cakes, crop residues). It is a cost effective replacement for dung cakes and conventional domestic fuels like LPG or kerosene. Biogas technology has the potential to meet the energy requirements in rural areas, and also counter the effects of reckless burning of biomass resources.

Biogas has the potential to rejuvenate India’s agricultural sector

An additional benefit is that the quantity of digested slurry is the same as that of the feedstock fed in a biogas plant. This slurry can be dried and sold as high quality compost. The nitrogen-rich compost indirectly reduces the costs associated with use of fertilizers. It enriches the soil, improves its porosity, buffering capacity and ion exchange capacity and prevents nutrient depletion thus improving the crop quality. This means increased income for the farmer.

Further, being relatively-clean cooking fuel; biogas reduces the health risks associated with conventional chulhas. Thinking regionally, decreased residue burning brings down the seasonal high pollutant levels in air, ensuring a better environmental quality. Anaerobic digestion thus proves to be more efficient in utilization of crop residues. The social benefits associated with biomethanation, along with its capacity to generate income for the rural households make it a viable alternative for conventional methods.

The Way Forward

The federal and stage governments needs to be more proactive in providing easy access to these technologies to the poor farmers. The policies and support of the government are decisive in persuading the farmers to adopt such technologies and to make a transition from wasteful traditional approaches to efficient resource utilization. The farmers are largely unaware of the possible ways in which farm and cattle wastes could be efficiently utilised. The government agencies and NGOs are major stakeholders in creating awareness in this respect.

Moreover, many farmers find it difficult to bear the construction and operational costs of setting up the digester. This again requires the government to introduce incentives (like soft loans) and subsidies to enhance the approachability of the technology and thus increase its market diffusion.