15 Simple Ways Your Family Can Save the Planet

Life, the miracle of the universe, appeared about 4 billion years ago, and we, humans – only 200,000 years ago. But we have already succeeded in destroying the balance that is so important for the life on Earth. What do we actually know about life on Earth? The tenth part? Or maybe the hundredth? Earth is a real miracle. Life remains a mystery.

Trees grow towards the sun, which feeds their foliage. Animals are adapted to their pastures, and their pastures are adapted to them. As a result, everyone wins. Animals satisfy hunger, and plants flourish again. In this great life journey on Earth, each species has a particular function and takes a certain place. There are no useless creatures. They are all balanced.

And Homo sapiens – a man of sense – enters the arena of history. He received a fabulous inheritance that the Earth has carefully preserved for 4 billion years. He is only 200,000 years old, but he has already changed the face of the world. Despite his vulnerability, he captured all the habitats and conquered the territory like no other species before him. Today, life – our life – is only a link in the chain of countless lives following one another on Earth for 4 billion years.

For a long time, the relationship between people and the planet were fairly balanced and resembled a natural and equal union. Now, we rarely think about global issues, being lost in everyday concerns. Meanwhile, we are on the verge of a disaster. Thanks to the achievements of science and technology, people learned to satisfy their needs, but some inventions brought us much more harm than good. We are killing our planet gradually but purposefully.

Planting more trees and vegetation will go a long way in reducing heat in urban settings.

These 15 simple tips do not require you either time or extra effort. Only by changing your habits quite a bit, you and your loved one can make the world cleaner and safer.

  1. Make the most of natural ambient light. Turn off the light in the room or the computer monitor when you do not need it. And do not forget about the chargers in the appliance receptacle!
  2. Teach yourself to turn off the water at a time when you do not need it – for example, while brushing your teeth or rubbing the pan with a detergent. On average, according to statistics, 5-10 liters of water (depending on pressure) flows out of the tap per minute. Also, reduce the time spent in the shower for 1-2 minutes.
  3. Replace incandescent bulbs with LED: they save energy and last longer.
  4. Change to a bike. It is cool, fast, and comfortable. Having tried only once, you no longer want to get on the “hot bus” or spend time stuck in traffic jams. In addition, a bicycle is an excellent vehicle as it does not pollute the air with dangerous gases.
  5. Use phosphate-free detergents. On the Internet, there are many resources offering ecological household chemicals.
  6. Buy less plastic bags, go to the store with your eco-bag.
  7. Replace plastic with paper and glass. If you cannot do without disposable tableware – for example, when going on a picnic – use paper plates and cups rather than plastic ones.
  8. Choose cosmetics and chemicals especially carefully. You should give preference to products that have not been tested on animals and do not adversely affect the environment at different stages of production.
  9. Though it is as simple as ABC but very effective – try to bring plastic, glass, and paper for recycling.
  10. Bring batteries to special shops and institutions because this is a dangerous and very toxic type of waste.
  11. Refuse semi-finished products. Experts say that today, the manufacture of these products is fully controlled by monopoly companies that abuse antibiotics, overload the ecosystem, and apply the principles of intensive management for their own profit. Of course, in such conditions, quality suffers. Homemade food is much better. Do not know how to cook? A dating site may be helpful.
  12. Buy local food – the one that is made in your area. This food undergoes less chemical treatment which is sometimes used for long-term transportation.
  13. Use water filters. In this case, you do not need to spend money on bottled drinking water. Thus, you will not only save your family budget but also reduce the environmental impact caused by the production and transportation of plastic bottles.
  14. Plant flowers on window sills and trees in the courtyards. Do not let anyone cut down green spaces near your house.
  15. Support environmental organizations and encourage your family to do it.

“Orbiting Earth, I saw how beautiful our planet is. People, let us preserve and increase this beauty, not destroy it!”

– Yuri Gagarin

Alternatives for Plastic Wrapping and Packaging

There’s no denying that plastic wrap has been a convenient product in most households for many years. However, as most waste disposal companies will tell you, its convenience is only for you – not the environment. It stops your sandwiches from going stale, but it also takes centuries to break down. Your one sandwich wrapper could be responsible for killing a myriad of animals while it sits there waiting to lose its structural integrity. Fortunately, there is a better way. Read on to discover many wrapping and packaging materials that could end up being better for the environment.

Glass Containers

One of the many reasons why people want to make the switch from plastic is because it can take centuries to break down. However, so does glass, so why use it? Unlike plastic which tends to lean toward being a single-use product, glass is something you can have forever. It’s one of the longest-lasting materials and will prove to offer no end of convenience.

In most cases, you can use glass containers in your fridge, freezer, microwave, and even oven. You couldn’t do that with most plastic products. Glass containers are also an excellent alternative for plastic in almost every way. You can put your unwrapped sandwiches in them and seal the lid shut. You can also put leftover dinner into them for reheating later.

Glass containers are even something you can take to the grocery store. Instead of a supermarket filling a plastic container with their deli items or bulk groceries, you can fill your glass jars. One product can end up having many uses, saving thousands of plastic wrap rolls and containers from requiring waste disposal.

Mason Jars

Mason jars have been around since the 1850s, but it’s only in recent years there has been a resurgence in their use. As consumers come to realize that plastic is not environmentally-friendly, they are starting to use sealable mason jars that serve a whole variety of purposes. Cafes are using them for beverages, and you can even use them for serving at home. What’s more, there’s nothing wrong with using them for produce, soup, grains, and more. Move aside plastic; there’s a new player in town.

Parchment Paper

If you are trying to minimize how much rubbish you send away for waste disposal, then consider swapping your cling film for parchment paper. Wax or parchment paper is an excellent alternative, while also breaking down far quicker than plastic wrap. It will still keep your sandwiches fresh, but with a much less detrimental impact on the environment.

Bees Wrap

Bees wrap is a relatively new product to hit the market, but it’s already making waves. It consists of cotton muslin cloth dipped in beeswax, tree resin, and jojoba oil. When you heat them with your hands, you’re able to seal food within. Both the jojoba oil and beeswax are also antibacterial which can offer exceptional benefits with preservation.

When you have eaten your sandwich, you don’t need to worry about impacting waste disposal. You can clean the wraps and reuse them.

Cardboard

Many countries around the world have banned single-use plastic bags, with New Zealand the latest nation to join the movement. It will only be a matter of time before waste disposal businesses notice the dramatic impact in plastic waste. That’s a good thing – but how will people package their goods, or carry their groceries? Cardboard is about to become far more popular than it is now.

Instead of packaging your items in plastic, you can store them neatly in cardboard boxes. They break down into the environment, are effortless to stack, and you can use them more than once.

Go Nude

For the sake of waste disposal, why not consider going nude? We don’t mean take all your clothes off, but why not avoid packaging altogether? Grocery stores are not making this process easy with the number of plastic-wrapped items they have, but you can be more conscientious about the purchasing decisions you make.

Put your vegetables and fruit in cloth bags and your loose bulk bin items into glass jars. Instead of buying pasta, rice, and other ingredients in plastic packets, buy them from bulk stores that encourage you to bring containers to put them in. If you can’t seem to avoid plastic, then draw up a meal plan that differs from what you usually do. You can then make an effort to eat food that will not arrive in packaging.

Conclusion

People used to cope without plastic for packaging and wrapping, and they can do so again. Think of the effects of waste disposal and how you can stop your contribution to the growing problem. Use glass jars and containers, buy ingredients in bulk, and stop using plastic wrap for your sandwiches. These might seem like small changes, but when 7.7 billion people follow suit, we can make a significant difference.

Food Waste Management – Consumer Behavior and Food Waste Disposers

Food waste is a global issue that begins at home and as such, it is an ideal contender for testing out new approaches to behaviour change. The behavioural drivers that lead to food being wasted are complex and often inter-related, but predominantly centre around purchasing habits, and the way in which we store, cook, eat and celebrate food.

food-waste-management

Consumer Behavior – A Top Priority

Consumer behaviour is a huge priority area in particular for industrialised nations – it is estimated that some western societies might be throwing away up to a third of all food purchased. The rise of cheap food and convenience culture in recent years has compounded this problem, with few incentives or disincentives in place at producer, retail or consumer level to address this.

While it is likely that a number of structural levers – such as price, regulation, enabling measures and public benefits – will need to be pulled together in a coherent way to drive progress on this agenda, at a deeper level there is a pressing argument to explore the psycho-social perspectives of behaviour change.

Individual or collective behaviours often exist within a broader cultural context of values and attitudes that are hard to measure and influence. Simple one-off actions such as freezing leftovers or buying less during a weekly food shop do not necessarily translate into daily behaviour patterns. For such motivations to have staying power, they must become instinctive acts, aligned with an immediate sense of purpose. The need to consider more broadly our behaviours and how they are implicated in such issues must not stop at individual consumers, but extend to governments, businesses and NGOs if effective strategies are to be drawn up.

Emergence of Food Waste Disposers

Food waste disposer (FWDs), devices invented and adopted as a tool of convenience may now represent a unique new front in the fight against climate change. These devices, commonplace in North America, Australia and New Zealand work by shredding household or commercial food waste into small pieces that pass through a municipal sewer system without difficulty.

The shredded food particles are then conveyed by existing wastewater infrastructure to wastewater treatment plants where they can contribute to the generation of biogas via anaerobic digestion. This displaces the need for generation of the same amount of biogas using traditional fossil fuels, thereby averting a net addition of greenhouse gases (GHG) to the atmosphere.

Food waste is an ideal contender for testing new approaches to behaviour change.

The use of anaerobic digesters is more common in the treatment of sewage sludge, as implemented in the U.K., but not as much in the treatment of food waste. In addition to this, food waste can also replace methanol (produced from fossil fuels) and citric acid used in advanced wastewater treatment processes which are generally carbon limited.

Despite an ample number of studies pointing to the evidence of positive impacts of FWDs, concerns regarding its use still exist, notably in Europe. Scotland for example has passed legislation that bans use of FWDs, stating instead that customers must segregate their waste and make it available curbside for pickup. This makes it especially difficult for the hospitality industry, to which the use of disposer is well suited. The U.S. however has seen larger scale adoption of the technology due to the big sales push it received in the 1950s and 60s. In addition to being just kitchen convenience appliances, FWDs are yet to be widely accepted as a tool for positive environmental impact.

Note: Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Biogas Plants at Akshaya Patra Kitchens

The Akshaya Patra Foundation, a not-for-profit organization, is focused on addressing two of the most important challenges in India – hunger and education. Established in year 2000, the Foundation began its work by providing quality mid-day meals to 1500 children in 5 schools in Bangalore with the understanding that the meal would attract children to schools, after which it would be easier to retain them and focus on their holistic development. 14 years later, the Foundation has expanded its footprint to cover over 1.4 million children in 10 states and 24 locations across India.

Akshaya-Patra-Kitchen-BioGas

The Foundation has centralised, automated kitchens that can cook close to 6,000 kilos of rice, 4.5 to 5 tonnes of vegetables and 6,000 litres of sambar, in only 4 hours. In order to make sustainable use of organic waste generated in their kitchens, Akshaya Patra Foundation has set up anaerobic digestion plants to produce biogas which is then used as a cooking fuel. The primary equipment used in the biogas plant includes size reduction equipment, feed preparation tank for hydrolysis of waste stream, anaerobic digester, H2S scrubber and biogas holder.

Working Principle

Vegetable peels, rejects and cooked food waste are shredded and soaked with cooked rice water (also known as ganji) in a feed preparation tank for preparation of homogeneous slurry and fermentative intermediates. The hydrolyzed products are then utilized by the microbial culture, anaerobically in the next stage. This pre-digestion step enables faster and better digestion of organics, making our process highly efficient.

The hydrolyzed organic slurry is fed to the anaerobic digester, exclusively for the high rate biomethanation of organic substrates like food waste. The digester is equipped with slurry distribution mechanism for uniform distribution of slurry over the bacterial culture.

Optimum solids are retained in the digester to maintain the required food-to-microorganism ratio in the digester with the help of a unique baffle arrangement. Mechanical slurry mixing and gas mixing provisions are also included in the AD design to felicitate maximum degradation of organic material for efficient biogas production.

After trapping moisture and scrubbing off hydrogen sulphide from the biogas, it is collected in a gas-holder and a pressurized gas tank. This biogas is piped to the kitchen to be used as a cooking fuel, replacing LPG.

Basic Design Data and Performance Projections

Waste handling capacity 1 ton per day cooked and uncooked food waste with 1 ton per day ganji water

Input Parameters                      

Amount of solid organic waste 1000 Kg/day
Amount of organic wastewater ~ 1000 liters/day ganji (cooked rice water)

Biogas Production

Biogas production ~ 120 – 135 m3/day

Output Parameters

Equivalent LPG to replace 50 – 55 Kg/day (> 2.5 commercial LPG cylinders)
Fertilizer (digested leachate) ~ 1500 – 2000 liters/day

Major Benefits

Modern biogas installations are providing Akshaya Patra, an ideal platform for managing organic waste on a daily basis. The major benefits are:

  • Solid waste disposal at kitchen site avoiding waste management costs
  • Immediate waste processing overcomes problems of flies, mosquitos etc.
  • Avoiding instances when the municipality does not pick up waste, creating nuisance, smell, spillage etc.
  • Anaerobic digestion of Ganji water instead of directly treating it in ETP, therefore reducing organic load on the ETPs and also contributing to additional biogas production.

The decentralized model of biogas based waste-to-energy plants at Akshaya Patra kitchens ensure waste destruction at source and also reduce the cost incurred by municipalities on waste collection and disposal.

akshayapatra-kitchen

An on-site system, converting food and vegetable waste into green energy is improving our operations and profits by delivering the heat needed to replace cooking LPG while supplying a rich liquid fertilizer as a by-product.  Replacement of fossil fuel with LPG highlights our organization’s commitment towards sustainable development and environment protection.

The typical ROI of a plug and play system (without considering waste disposal costs, subsidies and tax benifts) is around three years.

Future Plans

Our future strategy for kitchen-based biogas plant revolves around two major points:

  • Utilization of surplus biogas – After consumption of biogas for cooking purposes, Akshaya Patra will consider utilizing surplus biogas for other thermal applications. Additional biogas may be used to heat water before boiler operations, thereby reducing our briquette consumption.
  • Digested slurry to be used as a fertilizer – the digested slurry from biogas plant is a good soil amendment for landscaping purposes and we plan to use it in order to reduce the consumption of water for irrigation as well as consumption of chemical fertilizers.

Waste Management in Food Processing Industry

Food processing industry around the world is making serious efforts to minimize by-products, compost organic waste, recycle processing and packaging materials, and save energy and water. The three R’s of waste management – Reduce, Reuse and Recycle – can help food manufacturers in reducing the amount of waste sent to landfill and reusing waste.

EPA’s Food Recovery Hierarchy

EPA’s Food Recovery Hierarchy is an excellent resource to follow for food processors and beverage producers as it provides the guidance to start a program that will provide the most benefits for the environment, society and the food manufacturer.

Notably, landfill is the least favored disposal option for waste generated in food and beverage producers worldwide. There are sustainable, effective and profitable waste management options including:

  • making animal feed,
  • composting to create nutrient-rich fertilizer,
  • anaerobic digestion to produce energy-rich biogas,
  • recycling/reusing waste for utilization by other industries,
  • feeding surplus food to needy people

Waste Management Options

Food manufacturers has a unique problem – excess product usually has a relatively short shelf life while most of the waste is organic in nature. Food waste created during the production process can be turned into animal feed and sold to goat farms, chicken farms etc. As far as WWTP sludge is concerned, top food manufacturers are recycling/reusing it through land application, anaerobic digestion and composting alternatives.

Organic waste at any food processing plant can be composted in a modern in-vessel composting and the resultant fertilizer can be used for in-house landscaping or sold as organic fertilizer as attractive prices.

Another plausible way of managing organic waste at the food manufacturing plant is to biologically degrade it in an anaerobic digester leading to the formation of energy-rich biogas and digestate. Biogas can be used as a heating fuel in the plant itself or converted into electricity by using a CHP unit while digestate can be used as a soil conditioner. Biogas can also be converted into biomethane or bio-CNG for its use as vehicle fuel.

Items such as cardboard, clean plastic, metal and paper are all commodities that can be sold to recyclers Lots of cardboard boxes are used by food manufacturers for supplies which can be broken down into flat pieces and sold to recyclers.

Cardboard boxes can also be reused to temporarily store chip packages before putting them into retail distribution boxes. Packaging can be separated in-house and recovered using “jet shredder” waste technologies which separate film, carton and foodstuffs, all of which can then be recycled separately.

Organizing a Zero-Landfill Program

How do you develop a plan to create a zero-landfill or zero waste program in food and beverage producing company? The best way to begin is to start at a small-level and doing what you can. Perfect those programs and set goals each year to improve. Creation of a core team is an essential step in order to explore different ways to reduce waste, energy and utilities.

Measuring different waste streams and setting a benchmark is the initial step in the zero-landfill program. Once the data has been collected, we should break these numbers down into categories, according to the EPA’s Food Recovery Challenge and identify the potential opportunities.

For example, inorganic materials can be categorized based on their end lives (reuse, recycle or landfill).  The food and beverage industry should perform a waste sort exercise (or dumpster dive) to identify its key streams.

Nestlé USA – A Case Study

In April 2015, Nestlé USA announced all 23 of its facilities were landfill free. As part of its sustainability effort, Nestlé USA is continually looking for new ways to reuse, recycle and recover energy, such as composting, recycling, energy production and the provision of safe products for animal feed, when disposing of manufacturing by-products.

Employees also work to minimize by-products and engage in recycling programs and partnerships with credible waste vendors that dispose of manufacturing by-products in line with Nestlé’s environmental sustainability guidelines and standards. All Nestlé facilities employ ISO 14001-certified environmental management systems to minimize their environmental impact.

Foam Packaging: Take the Bull by the Horns

New York City and Oxford are two prominent examples of local authorities that have tried to restrict the use of foam packaging for takeaway food and drink, arguing that doing so would reduce the environmental impact of waste in a way that alternative approaches could not. In both cases, the intervention of packaging manufacturers has lifted or watered down the rules. Other administrations might well be put off the idea of similar measures – but the argument for cracking down on foam packaging that almost unavoidably gives rise to regional waste management problems, as well as wider environmental degradation through its contribution to litter, remains hard to ignore. Bans, however, may not be the only option.

foam-packaging-waste

Menace of Foam Packaging

A particular target for action has been expanded polystyrene (EPS). It’s rigid and a good insulator, and yet a great deal of it is air, making it very lightweight: it’s little wonder that EPS trays, cups and ‘clamshells’ are staples of the industry. It’s also widely used in pre-moulded form in the packaging of electronics, and as loose fill packaging in the form of ‘peanuts’.

While no-one would deny its convenience, for waste managers, EPS is a challenge, for many of the same reasons that it is popular. It’s light and difficult to compact, so it fills up bins and collection vehicles quickly; and takes up a great deal of space if you try to bulk and haul it for recycling.

It’s easy to see, then, why in 2013 New York City’s council voted unanimously to prohibit the use of EPS by all restaurants, food carts, and stores. Yet from the outset, the ban proposal faced stiff opposition from retailers and manufacturers, with packaging giant Dart Container Corp. and the American Chemistry Council reportedly organising a million dollars’ worth of lobbying against the legislation. Once it took effect, the industry quickly managed to overturn it in the courts last month.

Ban on the Run

The city had found that the recycling of EPS was not, in fact, environmentally effective, economically feasible and safe, and NYC was declared EPS-free in July 2015. But in a widely reported ruling, Justice Margaret Chan deemed the decision “arbitrary and capricious”: the complex case turned on the question of whether there was a recycling market for EPS, and the judge decided that Commissioner Kathryn Garcia of the city’s Department of Sanitation had failed to take account of evidence supplied by the industry that such a market did exist.

Although it lacked the courtroom drama of the New York City case, a similar story played out in Oxford last year. The city council proposed to use its licensing powers to require street traders to use only “biodegradable and recyclable” packaging and utensils. The move was stymied by semantics: the Foodservice Packaging Association lobbied for the phrasing of the proposed licensing rule to be amended to ‘biodegradable or recyclable’. That tiny change allowed continued use of expanded polystyrene, as it is technically recyclable (though certainly not biodegradable).

Oxford’s traders are also required to arrange for the correct disposal of EPS takeaway packaging from their premises. This is an odd requirement given that take-away food is usually – well – taken away, and then disposed of in street bins, household bins, or in no bin at all. Unfortunately, Oxford City Council – like almost every other council in the country – isn’t currently able to send EPS for recycling, so the EPS it collects will in practice end up in the residual stream. The EPS litter that escapes will linger in the environment for centuries to come.

Foam Suit

It seems that both courts and councillors have been impressed by the manufacturers’ argument: ‘Why ban a highly efficient product when you can invest in recycling it instead?’ However, there are three important points that count against this contention.

The first is that, whilst EPS can technically be recycled, the economics of doing so remain tenuous. Zero Waste Scotland’s report on Plastic Recycling Business Opportunities found that polystyrene waste compacting and collection was the only one of five options considered that did not represent a viable business opportunity in Scotland.

In order to make the finances of collecting EPS for recycling stack up in New York, Dart Corporation and Plastics Recycling Inc. had to offer to provide the city with $500,000 of sorting technology; pay for four staff; and guarantee to buy the material at $160 per tonne for five years. Without this (time limited) largesse, New York’s ban would likely have stood.

They also provided a list of 21 buyers, who they claimed would purchase dirty EPS – although when the city did a market test, it could find no realistic market for the material. It’s hard to know whose view of the US market is correct; however, in the UK, the market is definitely weak.

Of the 34 EPS recyclers listed by the BPF Expanded Polystyrene Group, 12 only accept clean EPS – ruling out post-consumer fast food waste. Another dozen will only accept compacted EPS, creating an extra processing cost for anyone attempting to separate EPS for recycling. That leaves a maximum of ten UK outlets: not enough to handle the potential supply, and leaving large tracts of the country out of economic haulage range for such a bulky, lightweight material.

Foam fatale

The second is that it’s difficult to get a high percentage of takeaway food containers into the recycling stream. Food eaten on the go is likely, at best, to go into a litter bin. And if it’s littered, because it’s light, EPS can also easily be blown around the streets, contributing to urban, riverine and ultimately marine litter. It’s also very slow to break down in the natural environment. Polystyrene has been found to make up 8% of marine litter washed up on North East Atlantic beaches; in all, plastics account for three quarters of this litter. The cost, particularly for coastal and island nations, is only beginning to be recognised.

That leads on to the third argument: while EPS undoubtedly works, less damaging alternatives are clearly available. Vegware, for example, allows takeaway boxes to be moved up the waste hierarchy – from disposal to composting. Reducing impacts was clearly a consideration in Oxford: in the words of Councillor Colin Cooke:

“It is about making the waste that we do have to get rid of more user-friendly and sustainable.”

The economic and technical difficulty in recycling EPS, combined with the long-term impacts of its littering and disposal, led Michelle Rose Rubio to conclude, in an Isonomia article last year, that environmentally minded people – and perhaps governments – should perhaps avoid it altogether.

Silver Lining

Despite the discouraging events in New York and Oxford, there’s better news from elsewhere. Bans remain in place in Toronto and Paris (both dating from 2007), while Muntinlupa in the Philippines, and the coastal state of Malaka in Malaysia have imposed charges, fines, and biodegradable replacements for EPS food packaging, eventually leading to bans.

Scottish Environment Secretary Richard Lochhead has indicated that the Scottish Government is: “considering a number of options in line with the commitment in the national litter strategy to influence product design of frequently littered items to reduce their environmental impact… [W]e note a number of US cities have introduced bans on Styrofoam products, most recently New York City. We are keen to learn from these cities’ experience of introducing and implementing such bans.”

In Wales, a polystyrene ban petition lodged last year by Friends of Barry Beaches has been picking up support. The Foodservice Packaging Association’s pre-emptive opposition to the notion certainly suggests we haven’t heard the last of EPS food packaging bans in the UK.

However, bans are not the only way to deter the use of problem products. England has just joined the ranks of countries to impose a charge for single use plastic bags. Belgium has a tax on disposable cutlery, and Malta taxes numerous products on environmental grounds, including chewing gum and EPS clamshells. Whilst beyond the powers of local authorities, fiscal measures could drive change while being a bit less of a blunt instrument than a ban.

While EPS manufacturers may have scored some recent successes, they haven’t won the overarching argument. As we push towards a more circular economy, the pressure to reduce our reliance on materials that are inherently hard to recycle, which tend to escape into the environment, and which don’t decompose naturally, will grow. For EPS fast food packaging, the chips could soon be well and truly down.

Note: This article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Biomethane from Food Waste: A Window of Opportunity

For most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

food-waste-behavior

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Food Waste Management in UK

Food waste in the United Kingdom is a matter of serious environmental, economic and social concern that has been attracting widespread attention in recent years. According to ‘Feeding the 5K’ organisation, 13,000 slices of crusts are thrown away every day by a single sandwich factory. More recently, Tesco, one of the largest UK food retailers, has published its sustainability report admitting that the company generated 28,500 tonnes of food waste in the first six months of 2013. TESCO’s report also state that 47% of the bakery produced is wasted. In terms of GHG emissions, DEFRA estimated that food waste is associated with 20 Mt of CO2 equivalent/year, which is equivalent to 3% of the total annual GHG emissions.

Food-Waste-UK

Globally, 1.2 to 2 billion tonnes (30%-50%) of food produced is thrown away before it reaches a human stomach. Food waste, if conceived as a state, is responsible for 3.3 Bt-CO2 equivalent/year, which would make it the third biggest carbon emitter after China and USA.

What makes food waste an even more significant issue is the substantially high demand for food which is estimated to grow 70% by 2050 due to the dramatic increase of population which is expected to reach 9.5 billion by 2075. Therefore, there is an urgent need to address food waste as a globally challenging issue which should be considered and tackled by sustainable initiatives.

A War on Food Waste

The overarching consensus to tackle the food waste issue has led to the implementation of various policies. For instance, the European Landfill Directive (1999/31/EC) set targets to reduce organic waste disposed to landfill in 2020 to 35% of that disposed in 1995 (EC 1999). More recently, the European Parliament discussed a proposal to “apply radical measures” to halve food waste by 2025 and to designate the 2014 year as “the European Year Against Food Waste”. In the light of IMechE’s report (2013), the United Nations Environment Programme (UNEP) in cooperation with FAO has launched the Save Food Initiative in an attempt to reduce food waste generated in the global scale.

In the UK, WRAP declared a war on food waste by expanding its organic waste programme in 2008 which was primarily designed to “establish the most cost-effective and environmentally sustainable ways of diverting household food waste from landfill that leads to the production of a saleable product”. DEFRA has also identified food waste as a “priority waste stream” in order to achieve better waste management performance. In addition to governmental policies, various voluntary schemes have been introduced by local authorities such as Nottingham Declaration which aims to cut local CO2 emissions 60% by 2050.

Sustainable Food Waste Management

Engineering has introduced numerous technologies to deal with food waste. Many studies have been carried out to examine the environmental and socio-economic impacts of food waste management options. This article covers the two most preferable options; anaerobic digestion and composting.

In-vessel composting (IVC) is a well-established technology which is widely used to treat food waste aerobically and convert it into a valuable fertilizer. IVC is considered a sustainable option because it helps by reducing the amount of food waste landfilled. Hence, complying with the EU regulations, and producing a saleable product avoiding the use of natural resources.

IVC is considered an environmentally favourable technology compared with other conventional options (i.e. landfill and incineration). It contributes less than 0.06% to the national greenhouse gas inventories. However, considering its high energy-intensive collection activities, the overall environmental performance is “relatively poor”.

Anaerobic Digestion (AD) is a leading technology which has had a rapidly growing market over the last few years. AD is a biologically natural process in which micro-organisms anaerobically break down food waste and producing biogas which can be used for both Combined Heat & Power (CHP) and digestate that can be used as soil fertilizers or conditioners. AD has been considered as the “best option” for food waste treatment. Therefore, governmental and financial support has been given to expand AD in the UK.

AD is not only a food waste treatment technology, but also a renewable source of energy. For instance, It is expected that AD would help the UK to meet the target of supplying 15% of its energy from renewable sources by 2020. Furthermore, AD technology has the potential to boost the UK economy by providing 35,000 new jobs if the technology is adopted nationally to process food waste. This economic growth will significantly improve the quality of life among potential beneficiaries and thus all sustainability elements are considered.

5 Ethical, Sustainable & Eco-friendly Cost-Saving Tips

Consumers are no longer solely interested in catching a great deal. In fact, it’s the quick and cheap, disposable living mindset that has put the world in such a precarious state. Studies have shown that a business’s impact on the world plays a key role in their purchasing decision. Here are five ethical, sustainable, and eco-friendly cost-saving tips to help you cut back on your spending, and your carbon footprint.

Green SMEs

Evaluate your Utility Providers

Take a look at your utility providers to see what they’re doing to make a positive impact on the world around them. Many energy service providers offer special rates and rebates for lower consumption. Using Energybot, you can contrast and compare providers in your area. You can visit their website to find the most affordable, eco-friendly option for you.

In areas where providers are limited, you can still look at their environmental initiatives and programs that will save you money while making a positive impact. Many utility providers conduct energy audits or provide rebates for swapping out appliances and faucets for eco-friendly versions.

Hit the Thrift Shop

Online shopping makes it easy to get anything you could dream of at an affordable rate. However, there’s a good chance that someone like you had a similar item and discarded it.

Hitting the thrift shop before shopping online will not only save you money but will also have a positive environmental impact. The clothes you buy online are manufactured and shipped from all over the world. This creates carbon emissions that have a detrimental effect. There’s a hidden cost to affordable online shopping; buy local whenever possible.

Eat Seasonally

Eating food from local sources is better for the environment and the economy. By ensuring that your money stays in the local economy, you’re stimulating growth that will ultimately benefit you over time. Furthermore, you aren’t paying to have food manufactured, shipped, and stored from thousands of miles away.

Eating seasonal produce will help you save money on fresh food and improve the diversity of your diet. By consuming seasonal, local produce, you’re saving money, boosting the local economy, positively impacting the environment, and improving your health. It’s a win for all involved.

Be Water Savvy

Minimizing your water consumption will help keep your budget low and the environment thriving. Start by monitoring your consumption at home and making small changes. Shut the water off while brushing your teeth. Don’t rinse your dishes before putting them in the washer. Wait until you have a full load to do laundry.

To take it to the next level, swap your faucet and showerheads out with aerators and low-flow alternatives. Start collecting and reusing rainwater for gardening. Replace your hot water tank with a “tankless” alternative. Look at your meter usage and set reduction goals.

Reduce, Reuse, Recycle

Recycling is a great initiative that can make an incredible difference in the environment when done correctly. However, recycling is just one of the “Three R’s” to remember.

Circular-Economy

 

Reduce and reuse often go hand-in-hand. Reduce your packaging consumption by buying food in bulk and using reusable grocery bags. Before you recycle something, think about ways to give it new life. Mason jars can be used to store dry goods and pack lunches rather than using plastic containers. Keep a few large jugs handy to fill with water, rather than adding to the single-use bottle problem.

There are plenty of ways to lower your spending while taking care of the environment. Use a budgeting app like Mint to gain awareness about where your money is going. Then, use a carbon footprint calculator to evaluate your consumption. By making some simple changes to your lifestyle, you can limit harmful spending.

Food Waste Management

The waste management hierarchy suggests that reduce, reuse and recycling should always be given preference in a typical waste management system. However, these options cannot be applied uniformly for all kinds of wastes. For examples, food waste is quite difficult to deal with using the conventional 3R strategy.

food_waste

Of the different types of organic wastes available, food waste holds the highest potential in terms of economic exploitation as it contains high amount of carbon and can be efficiently converted into biogas and organic fertilizer.

There are numerous places which are the sources of large amounts of food waste and hence a proper food waste management strategy needs to be devised for them to make sure that either they are disposed off in a safe manner or utilized efficiently. These places include hotels, restaurants, malls, residential societies, college/school/office canteens, religious mass cooking places, communal kitchens, airline caterers, food and meat processing industries and vegetable markets which generate food residuals of considerable quantum on a daily basis.

anaerobic_digestion_plant

The anaerobic digestion technology is highly apt in dealing with the chronic problem of food waste management in urban societies. Although the technology is commercially viable in the longer run, the high initial capital cost is a major hurdle towards its proliferation.

The onus is on the governments to create awareness and promote such technologies in a sustainable manner. At the same time, entrepreneurs, non-governmental organizations and environmental agencies should also take inspiration from successful food waste-to-energy projects in Western countries and try to set up such facilities in cities and towns.