Description of a Biogas Power Plant

A biogas plant is a decentralized energy system, which can lead to self-sufficiency in heat and power needs, and at the same time reduces environmental pollution. The key components of a modern biogas power (or anaerobic digestion) plant include: manure collection, anaerobic digester, effluent treatment, biogas storage, and biogas use/electricity generating equipment.

anaerobic_digestion_plant

Working of a Biogas Plant

The fresh organic waste is stored in a collection tank before its processing to the homogenization tank which is equipped with a mixer to facilitate homogenization of the waste stream. The uniformly mixed waste is passed through a macerator to obtain uniform particle size of 5-10 mm and pumped into suitable-capacity anaerobic digester where stabilization of organic waste takes place.

In anaerobic digestion, organic material is converted to biogas by a series of bacteria groups into methane and carbon dioxide. The majority of commercially operating digesters are plug flow and complete-mix reactors operating at mesophilic temperatures. The type of digester used varies with the consistency and solids content of the feedstock, with capital investment factors and with the primary purpose of digestion.

Biogas Cleanup

Biogas contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. The removal of H2S takes place in a biological desulphurization unit in which a limited quantity of air is added to biogas in the presence of specialized aerobic bacteria which oxidizes H2S into elemental sulfur.

Utilization of Biogas

Biogas is dried and vented into a CHP unit to a generator to produce electricity and heat. The size of the CHP system depends on the amount of biogas produced daily.

Treatment of Digestate

The digested substrate is passed through screw presses for dewatering and then subjected to solar drying and conditioning to give high-quality organic fertilizer.  The press water is treated in an effluent treatment plant based on activated sludge process which consists of an aeration tank and a secondary clarifier. The treated wastewater is recycled to meet in-house plant requirements.

Monitoring of Environmental Parameters

A chemical laboratory is necessary to continuously monitor important environmental parameters such as BOD, COD, VFA, pH, ammonia, C:N ratio at different locations for efficient and proper functioning of the process.

Control System

The continuous monitoring of the biogas plant is achieved by using a remote control system such as Supervisory Control and Data Acquisition (SCADA) system. This remote system facilitates immediate feedback and adjustment, which can result in energy savings.

Biogas from Kitchen Waste at Akshaya Patra Foundation

The Akshaya Patra Foundation, a not-for-profit organization, is focused on addressing two of the most important challenges in India – hunger and education. Established in year 2000, the Foundation began its work by providing quality mid-day meals to 1500 children in 5 schools in Bangalore with the understanding that the meal would attract children to schools, after which it would be easier to retain them and focus on their holistic development. 14 years later, the Foundation has expanded its footprint to cover over 1.4 million children in 10 states and 24 locations across India.

Akshaya-Patra-Kitchen-BioGas

The Foundation has centralised, automated kitchens that can cook close to 6,000 kilos of rice, 4.5 to 5 tonnes of vegetables and 6,000 litres of sambar, in only 4 hours. In order to make sustainable use of organic waste generated in their kitchens, Akshaya Patra Foundation has set up anaerobic digestion plants to produce biogas which is then used as a cooking fuel. The primary equipment used in the biogas plant includes size reduction equipment, feed preparation tank for hydrolysis of waste stream, anaerobic digester, H2S scrubber and biogas holder.

Working Principle

Vegetable peels, rejects and cooked food waste are shredded and soaked with cooked rice water (also known as ganji) in a feed preparation tank for preparation of homogeneous slurry and fermentative intermediates. The hydrolyzed products are then utilized by the microbial culture, anaerobically in the next stage. This pre-digestion step enables faster and better digestion of organics, making our process highly efficient.

The hydrolyzed organic slurry is fed to the anaerobic digester, exclusively for the high rate biomethanation of organic substrates like food waste. The digester is equipped with slurry distribution mechanism for uniform distribution of slurry over the bacterial culture.

Optimum solids are retained in the digester to maintain the required food-to-microorganism ratio in the digester with the help of a unique baffle arrangement. Mechanical slurry mixing and gas mixing provisions are also included in the AD design to felicitate maximum degradation of organic material for efficient biogas production.

After trapping moisture and scrubbing off hydrogen sulphide from the biogas, it is collected in a gas-holder and a pressurized gas tank. This biogas is piped to the kitchen to be used as a cooking fuel, replacing LPG.

Basic Design Data and Performance Projections

Waste handling capacity 1 ton per day cooked and uncooked food waste with 1 ton per day ganji water

Input Parameters                      

Amount of solid organic waste 1000 Kg/day
Amount of organic wastewater ~ 1000 liters/day ganji (cooked rice water)

Biogas Production

Biogas production ~ 120 – 135 m3/day

Output Parameters

Equivalent LPG to replace 50 – 55 Kg/day (> 2.5 commercial LPG cylinders)
Fertilizer (digested leachate) ~ 1500 – 2000 liters/day

Major Benefits

Modern biogas installations are providing Akshaya Patra, an ideal platform for managing organic waste on a daily basis. The major benefits are:

  • Solid waste disposal at kitchen site avoiding waste management costs
  • Immediate waste processing overcomes problems of flies, mosquitos etc.
  • Avoiding instances when the municipality does not pick up waste, creating nuisance, smell, spillage etc.
  • Anaerobic digestion of Ganji water instead of directly treating it in ETP, therefore reducing organic load on the ETPs and also contributing to additional biogas production.

The decentralized model of biogas based waste-to-energy plants at Akshaya Patra kitchens ensure waste destruction at source and also reduce the cost incurred by municipalities on waste collection and disposal.

akshayapatra-kitchen

An on-site system, converting food and vegetable waste into green energy is improving our operations and profits by delivering the heat needed to replace cooking LPG while supplying a rich liquid fertilizer as a by-product.  Replacement of fossil fuel with LPG highlights our organization’s commitment towards sustainable development and environment protection.

The typical ROI of a plug and play system (without considering waste disposal costs, subsidies and tax benifts) is around three years.

Future Plans

Our future strategy for kitchen-based biogas plant revolves around two major points:

  • Utilization of surplus biogas – After consumption of biogas for cooking purposes, Akshaya Patra will consider utilizing surplus biogas for other thermal applications. Additional biogas may be used to heat water before boiler operations, thereby reducing our briquette consumption.
  • Digested slurry to be used as a fertilizer – the digested slurry from biogas plant is a good soil amendment for landscaping purposes and we plan to use it in order to reduce the consumption of water for irrigation as well as consumption of chemical fertilizers.

Biomass Energy in Vietnam

Vietnam is one of the few countries having a low level of energy consumption in the developing world with an estimated amount of 210 kg of oil equivalent per capita/year. A significant portion of the Vietnamese population does not have access to electricity. Vietnam is facing the difficult challenge of maintaining this growth in a sustainable manner, with no or minimal adverse impacts on society and the environment.

Being an agricultural country, Vietnam has very good biomass energy potential. Agricultural wastes are most abundant in the Mekong Delta region with approximately 50% of the amount of the whole country and Red River Delta with 15%. Major biomass resources includes rice husk from paddy milling stations, bagasse from sugar factories, coffee husk from coffee processing plants in the Central Highlands and wood chip from wood processing industries. Vietnam has set a target of having a combined capacity of 500 MW of biomass power by 2020, which is raised to 2,000 MW in 2030.

Rice husk and bagasse are the biomass resources with the greatest economic potential, estimated at 50 MW and 150 MW respectively. Biomass fuels sources that can also be developed include forest wood, rubber wood, logging residues, saw mill residues, sugar cane residues, bagasse, coffee husk and coconut residues.

Currently biomass is generally treated as a non-commercial energy source, and collected and used locally. Nearly 40 bagasse-based biomass power plants have been developed with a total designed capacity of 150 MW but they are still unable to connect with the national grid due to current low power prices. Five cogeneration systems selling extra electricity to national grid at average price of 4 US cents/kWh.

Biogas potential is approximately 10 billion m3/year, which can be collected from landfills, animal excrements, agricultural residues, industrial wastewater etc. The biogas potential in the country is large due to livestock population of more than 30 million, mostly pigs, cattle, and water buffalo. Although most livestock dung already is used in feeding fish and fertilizing fields and gardens, there is potential for higher-value utilization through biogas production.

It is estimated that more than 25,000 household biogas digesters with 1 to 50 m3, have been installed in rural areas. The Dutch-funded Biogas Program operated by SNV Vietnam constructed some 18,000 biogas facilities in 12 provinces between 2003 and 2005, with a second phase (2007-2010) target of 150,000 biogas tanks in both rural and semi-urban settings.

Municipal solid waste is also a good biomass resource as the amount of solid waste generated in Vietnam has been increasing steadily over the last few decades. In 1996, the average amount of waste produced per year was 5.9 million tons per annum which rose to 28 million tons per in 2008 and expected to reach 44 million tons per year by 2015.

Biological Desulphurization of Biogas

The most valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. However, biogas also contain significant amount of hydrogen sulfide (H2S) gas which needs to be stripped off due to its highly corrosive nature. Hydrogen sulfide is oxidized into sulfur dioxide which dissolves as sulfuric acid. Sulphuric acid, even in trace amounts, can make a solution extremely acidic. Extremely acidic electrolytes dissolve metals rapidly and speed up the corrosion process.

The corrosive nature of H2S has the potential to destroy expensive biogas processing equipment. Even if there is no oxygen present, biogas can corrode metal. Hydrogen sulphide can become its own electrolyte and absorb directly onto the metal to form corrosion. If the hydrogen sulphide concentration is very low, the corrosion will be slow but will still occur due to the presence of carbon dioxide.

Biogas_Cleanup-H2S

The obvious solution is the use of a biogas cleanup process whereby contaminants in the raw biogas stream are absorbed or scrubbed. Desulphurization of biogas can be performed by biological as well as chemical methods. Biological treatment of hydrogen sulphide typically involves passing the biogas through biologically active media. These treatments may include open bed soil filters, biofilters, fixed film bioscrubbers, suspended growth bioscrubbers and fluidized bed bioreactors.

Biological Desulphurization

The simplest method of desulphurization is the addition of oxygen or air directly into the digester or in a storage tank serving at the same time as gas holder. Thiobacilli are ubiquitous and thus systems do not require inoculation. They grow on the surface of the digestate, which offers the necessary micro-aerophilic surface and at the same time the necessary nutrients. They form yellow clusters of sulphur. Depending on the temperature, the reaction time, the amount and place of the air added the hydrogen sulphide concentration can be reduced by 95 % to less than 50 ppm.

Most of the sulphide oxidising micro-organisms belong to the family of Thiobacillus. For the microbiological oxidation of sulphide it is essential to add stoichiometric amounts of oxygen to the biogas. Depending on the concentration of hydrogen sulphide this corresponds to 2 to 6 % air in biogas. Measures of safety have to be taken to avoid overdosing of air in case of pump failures.

Biofiltration

Biofiltration is one of the most promising clean technologies for reducing emissions of malodorous gases and other pollutants into the atmosphere. In a biofiltration system, the gas stream is passed through a packed bed on which pollutant-degrading microbes are immobilized as biofilm. A biological filter combines water scrubbing and biological desulfurization.

Biogas and the separated digestate meet in a counter-current flow in a filter bed. The biogas is mixed with 4% to 6% air before entry into the filter bed. The filter media offer the required surface area for scrubbing, as well as for the attachment of the desulphurizing microorganisms. Microorganisms in the biofilm convert the absorbed H2S into elemental sulphur by metabolic activity. Oxygen is the key parameter that controls the level of oxidation.

The capital costs for biological treatment of biogas are moderate and operational costs are low. This technology is widely available worldwide. However, it may be noted that the biological system is capable to remove even very high amounts of hydrogen sulphide from the biogas but its adaptability to fluctuating hydrogen sulphide contents is not yet proven.

Role of Biogas in Rural Development

Anaerobic digestion has proven to be a beneficial technology in various spheres for rural development. Biogas produced is a green replacement of unprocessed fuels (like fuel wood, dung cakes, crop residues). It is a cost effective replacement for dung cakes and conventional domestic fuels like LPG or kerosene. Biogas technology has the potential to meet the energy requirements in rural areas, and also counter the effects of reckless burning of biomass resources.

Biogas has the potential to rejuvenate India’s agricultural sector

An additional benefit is that the quantity of digested slurry is the same as that of the feedstock fed in a biogas plant. This slurry can be dried and sold as high quality compost. The nitrogen-rich compost indirectly reduces the costs associated with use of fertilizers. It enriches the soil, improves its porosity, buffering capacity and ion exchange capacity and prevents nutrient depletion thus improving the crop quality. This means increased income for the farmer.

Further, being relatively-clean cooking fuel, biogas reduces the health risks associated with conventional chulhas. Thinking regionally, decreased residue burning brings down the seasonal high pollutant levels in air, ensuring a better environmental quality. Anaerobic digestion thus proves to be more efficient in utilization of crop residues. The social benefits associated with biomethanation, along with its capacity to generate income for the rural households make it a viable alternative for conventional methods.

The Way Forward

The federal and stage governments needs to be more proactive in providing easy access to these technologies to the poor farmers. The policies and support of the government are decisive in persuading the farmers to adopt such technologies and to make a transition from wasteful traditional approaches to efficient resource utilization. The farmers are largely unaware of the possible ways in which farm and cattle wastes could be efficiently utilised. The government agencies and NGOs are major stakeholders in creating awareness in this respect.

Moreover, many farmers find it difficult to bear the construction and operational costs of setting up the digester. This again requires the government to introduce incentives (like soft loans) and subsidies to enhance the approachability of the technology and thus increase its market diffusion.

Biomethane Industry in Europe

Biomethane is a well-known and well-proven source of clean energy, and is witnessing increasing demand worldwide, especially in European countries. Between 2012 and 2016, more than 500 biomethane production plants were built across Europe which indicates a steep rise of 165 percent. The main reasons behind the growth of biomethane industry in Europe is increasing interest in industrial waste-derived biogas sector and public interest in biogas.  Another important reason has been the guaranteed access to gas grid for all biomethane suppliers.

Biomethane production in Europe has swiftly increased from 752 GWh in 2011 to 17,264 GWh in 2016 with Germany being the market leader with 195 biomethane production plants, followed by United Kingdom with 92 facilities. Biogas generation across Europe also witnessed a rapid growth of 59% during the year 2011 and 2016. In terms of plant capacities, the regional trend is to establish large-scale biomethane plants.

Sources of Biomethane in Europe

Landfill gas and AD plants (based on energy crops, agricultural residues, food waste, industrial waste and sewage sludge) are the major resources for biomethane production in Europe, with the predominant source being agricultural crops (such as maize) and dedicated energy crops (like miscanthus). In countries, like Germany, Austria and Denmark, energy crops, agricultural by-products, sewage sludge and animal manure are the major feedstock for biomethane production. On the other hand, France, UK, Spain and Italy rely more on landfill gas to generate biomethane.

A large number of biogas plants in Europe are located in agricultural areas having abundant availability of organic wastes, such as grass silage and green waste, which are cheaper than crops. Maize is the most cost-effective raw material for biomethane production. In many parts of Europe, the practice of co-digestion is practised whereby energy crops are used in combination with animal manure as a substrate. After agricultural biogas plants, sewage sludge is one of the most popular substrates for biomethane production in Europe.

Biomethane Utilization Trends in Europe

Biomethane has a wide range of applications in the clean energy sector. In Europe, the main uses of biomethane include the following:

  1. Production of heat and/or steam
  2. Power generation and combined heat and power production(CHP)
  3. Replacement for natural gas (gas grid injection)
  4. Replacement for compressed natural gas & diesel – (bio-CNG for use as transport fuel)
  5. Replacement for liquid natural gas – (bio-LNG for use as transport fuel)

Prior to practically all utilization options, the biogas has to be dried (usually through application of a cooling/condensation step). Furthermore, elements such as hydrogen sulphide and other harmful trace elements must be removed (usually trough application of an activated carbon filter) to prevent adverse effects on downstream processing equipment (such as compressors, piping, boilers and CHP systems).

biomethane-transport

Biomethane is getting popularity as a clean vehicle fuel in Europe. For example, Germany has more than 900 CNG filling stations, with a fleet of around 100,000 gas-powered vehicles including cars, buses and trucks. Around 170 CNG filling stations in Germany sell a blend mixture of natural gas and biomethane while about 125 filling stations sell 100% biomethane from AD plants.

Barriers to Overcome

The fact that energy crops can put extra pressure on land availability for cultivation of food crops has led many European countries to initiate measures to reduce or restrict biogas production from energy crops. As far as waste-derived biomethane is concerned, most of the EU nations are phasing out landfill-based waste management systems which may lead to rapid decline in landfill gas production thus putting the onus of biomethane production largely on anaerobic digestion of food waste, sewage sludge, industrial waste and agricultural residues.

The high costs of biogas upgradation and natural gas grid connection is a major hurdle in the development of biomethane sector in Eastern European nations. The injection of biomethane is also limited by location of suitable biomethane production facilities, which should ideally be located close to the natural gas grid.  Several European nations have introduced industry standards for injecting biogas into the natural gas grid but these standards differ considerably with each other.

Another important issue is the insufficient number of biomethane filling stations and biomethane-powered vehicles in Europe. A large section of the population is still not aware about the benefits of biomethane as a vehicle fuel. Strong political backing and infrastructural support will provide greater thrust to biomethane industry in Europe.

Trends in Utilization of Biogas

The valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. The proportion of methane depends on the feedstock and the efficiency of the process, with the range for methane content being 40% to 70%.

Biogas is saturated and contains H2S, and the simplest use is in a boiler to produce hot water or steam. The gas can also be upgraded and used in gas supply networks. The use of biogas in solid oxide fuel cells is also being researched.

biogas uses

Biogas can be combusted directly to produce heat. In this case, there is no need to scrub the hydrogen sulphide in the biogas. Usually the process utilize dual-fuel burner and the conversion efficiency is 80 to 90%. The main components of the system are anaerobic digester, biogas holder, pressure switch, booster fan, solenoid valve, dual fuel burner and combustion air blower.

The most common method for utilization of biogas in developing countries is for cooking and lighting. Conventional gas burners and gas lamps can easily be adjusted to biogas by changing the air to gas ratio. In more industrialized countries boilers are present only in a small number of plants where biogas is used as fuel only without additional CHP. In a number of industrial applications biogas is used for steam production.

Burning biogas in a boiler is an established and reliable technology. Low demands are set on the biogas quality for this application. Pressure usually has to be around 8 to 25 mbar. Furthermore it is recommended to reduce the level of hydrogen sulphide to below 1 000 ppm, this allows to maintain the dew point around 150 °C.

CHP Applications

Biogas is the ideal fuel for generation of electric power or combined heat and power. A number of different technologies are available and applied.

combined-heat-and-power

The most common technology for power generation is internal combustion. Engines are available in sizes from a few kilowatts up to several megawatts. Gas engines can either be SI-engines (spark ignition) or dual fuel engines. Dual fuel engines with injection of diesel (10% and up) or sometimes plant oil are very popular in smaller scales because they have good electric efficiencies up to guaranteed 43%.

The biogas pressure is turbo-charged and after-cooled and has a high compression ratio in the gas engines. The cooling tower provides cooling water for the gas engines. The main component of the system required for utilizing the technology are anaerobic digester, moisture remover, flame arrester, waste gas burner, scrubber, compressor, storage, receiver, regulator, pressure switch and switch board.

Gas turbines are an established technology in sizes above 500 kW. In recent years also small scale engines, so called micro-turbines in the range of 25 to 100kW have been successfully introduced in biogas applications. They have efficiencies comparable to small SI-engines with low emissions and allow recovery of low pressure steam which is interesting for industrial applications. Micro turbines are small, high-speed, integrated power plants that include a turbine, compressor, generator and power electronics to produce power.

New Trends

The benefit of the anaerobic treatment will depend on the improvement of the process regarding a higher biogas yield per m3 of biomass and an increase in the degree of degradation. Furthermore, the benefit of the process can be multiplied by the conversion of the effluent from the process into a valuable product.

In order to improve the economical benefit of biogas production, the future trend will go to integrated concepts of different conversion processes, where biogas production will still be a significant part. In a so-called biorefinery concept, close to 100% of the biomass is converted into energy or valuable by-products, making the whole concept more economically profitable and increasing the value in terms of sustainability.

Typical layout of a modern biogas facility

One example of such biorefinery concept is the Danish Bioethanol Concept that combines the production of bioethanol from lignocellulosic biomass with biogas production of the residue stream. Another example is the combination of biogas production from manure with manure separation into a liquid and a solid fraction for separation of nutrients.

One of the most promising concepts is the treatment of the liquid fraction on the farm-site in a UASB reactor while the solid fraction is transported to the centralized biogas plant where wet-oxidation can be implemented to increase the biogas yield of the fiber fraction. Integration of the wet oxidation pre-treatment of the solid fraction leads to a high degradation efficiency of the lignocellulosic solid fraction.

Biomethane from Food Waste: A Window of Opportunity

For most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

food-waste-behavior

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Popular Feedstock for Biogas Plants

Anaerobic digestion is the natural biological process which stabilizes organic waste in the absence of air and transforms it into biofertilizer and biogas. Almost any organic material can be processed with anaerobic digestion.

Biogas_Plant

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment.  The popular feedstock for biogas production includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste.

Large quantity of waste, in both solid and liquid forms, is generated by the industrial sector like breweries, sugar mills, distilleries, food processing industries, tanneries, and paper and pulp industries. Poultry waste has the highest per ton energy potential of electricity per ton but livestock have the greatest potential for energy generation in the agricultural sector.

1. Agricultural Feedstock

2. Community-Based Feedstock

  • Organic fraction of MSW (OFMSW)
  • MSW
  • Sewage sludge
  • Grass clippings/garden waste
  • Food wastes
  • Institutional wastes etc.

 3. Industrial Feedstock

  • Food/beverage processing
  • Dairy
  • Starch industry
  • Sugar industry
  • Pharmaceutical industry
  • Cosmetic industry
  • Biochemical industry
  • Pulp and paper
  • Slaughterhouse/rendering plant etc.

Anaerobic digestion is particularly suited to wet organic material and is commonly used for effluent and sewage treatment. Almost any organic material can be processed with anaerobic digestion process. This includes biodegradable waste materials such as waste paper, grass clippings, leftover food, sewage and animal waste. The exception to this is woody wastes that are largely unaffected by digestion as most anaerobic microorganisms are unable to degrade lignin.

Anaerobic digesters can also be fed with specially grown energy crops such as silage for dedicated biogas production. A wide range of crops, especially C-4 plants, demonstrate good biogas potentials. Corn is one of the most popular co-substrate in Germany while Sudan grass is grown as an energy crop for co-digestion in Austria. Crops like maize, sunflower, grass, beets etc., are finding increasing use in agricultural digesters as co-substrates as well as single substrate.

biogas-energy-crop

A wide range of organic substances are anaerobically easily degradable without major pretreatment. Among these are leachates, slops, sludges, oils, fats or whey. Some wastes can form inhibiting metabolites (e.g.NH3) during anaerobic digestion which require higher dilutions with substrates like manure or sewage sludge. A number of other waste materials often require pre-treatment steps (e.g. source separated municipal organic waste, food residuals, expired food, market wastes and crop residues).

Ultrasonic Pretreatment in Anaerobic Digestion of Sewage Sludge

Anaerobic digestion process comprises of four major steps – hydrolysis, acidogenesis, acetogenesis and methanogenesis. The biological hydrolysis is the rate limiting step and pretreatment of sludge by chemical, mechanical or thermal disintegration can improve the anaerobic digestion process. Ultrasonic disintegration is a method for breakup of microbial cells to extract intracellular material.

Ultrasound activated sludge disintegration could positively affect anaerobic digestion of sewage sludge. Due to sludge disintegration, organic compounds are transferred from the sludge solids into the aqueous phase resulting in an enhanced biodegradability. Therefore disintegration of sewage sludge is a promising method to enhance anaerobic digestion rates and lead to reduce the volume of sludge digesters.

The addition of disintegrated surplus activated sludge and/or foam to the process of sludge anaerobic digestion can lead to markedly better effects of sludge handling at wastewater treatment plants. In the case of disintegrated activated sludge and/or foam addition to the process of anaerobic digestion it is possible to achieve an even twice a higher production of biogas. Here are few examples:

STP Bad Bramstedt, Germany (4.49 MGD)

  • First fundamental study on pilot scale by Technical University of Hamburg-Harburg, 3 years, 1997 – 1999
  • reduction in digestion time from 20 to 4 days without losses in degradation efficiency
  • increase in biogas production by a factor of 4
  • reduction of digested sludge mass of 25%

STP Ahrensburg, Germany (2.64 MGD)

  • Preliminary test on pilot-scale by Technical University of Hamburg-Harburg, 6 months, 1999
  • increase in VS destruction of 20%
  • increase in biogas production of 20%

STP Bamberg, Germany (12.15 MGD)

  • Preliminary full-scale test, 4 months, 2002 2) Full-scale installation since June 2004
  • increase in VS destruction of 30%
  • increase in biogas production of 30%
  • avoided the construction of a new anaerobic digester

STP Freising, Germany (6.87 MGD)

  • Fundamental full-scale study by University of Armed Forces, Munich, 4 months, 2003
  • increase in biogas production of 15%
  • improved sludge dewatering of 10%

STP Meldorf, Germany (1.06 MGD)

  • Preliminary full-scale test, 3 months, 2004 2) Full-scale installation since December 2004
  • increase in VS destruction of 25%
  • increase in biogas production of 25%
  • no foam or filamentous organisms present in the anaerobic sludge digester

STP Ergolz 2, Switzerland (3.43 MGD)

  • Full-scale test, 3 months, 2004
  • increase in VS destruction of 15%
  • increase in biogas production of 25%

STP Beverungen, Germany (2.64 MGD)

  • Full-scale test, 3 months, 2004/2005
  • increase in VS destruction of 25%
  • increase in biogas production of 25%

To sum up, ultrasonication has a positive effect on sludge solubilisation, sludge volume, biogas production, flock size reduction and cells lyses. Ultrasonic pretreatment enhances the subsequent anaerobic digestion resulting in a better degradation of volatile solids and an increased production of biogas.

The use of low power ultrasound in bioreactors may present a significant improvement in cost reduction. Therefore, ultrasonic pretreatment enhances the subsequent anaerobic digestion of sewage sludge resulting in a better sludge digestion and efficient recovery of valuables.