Key Challenges in the Implementation of Waste-to-Energy

The biggest challenge in the implementation of Waste-to-Energy projects lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of MSW-to-energy bring up concerns of environmental justice and organize around this. They view waste-to-energy as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

Spittelau-Incinceration-Plant

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question.

It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant.

Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with.

The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations in WTE Projects

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise

Challenges in Hazardous Medical Waste Management

Medical waste management is a concern of healthcare facilities all over the world; about 10-20% of the facility’s budget every year is spent on waste disposal. According to the WHO, about 85% of the total amount of generated waste is non hazardous but the remaining 15% is considered infectious, toxic or radioactive. While non-hazardous medical waste poses less problems, the risks and challenges of hazardous medical waste management must be considered carefully, since incineration or open burning of hazardous medical waste can result in emissions of dangerous pollutants such as dioxins and furans. If you’ve been injured due to hazardous waste emissions, contact Pittsburgh Injury Lawyers, P.C. to learn your legal options.

medical-waste-management

For this reason, measures must be taken to ensure safe disposal of hazardous medical waste waste in order to prevent negative impact on the environment or biological hazards, especially in developing countries.

1. Health Risks

Biologically hazardous waste can be a source of infection due to the harmful microorganisms it contains; the most exposed are hospital patients, hospital staff, health workers. However, the situation is potentially harmful for the general public as well. The risks include chemical burns, air pollution, radiation burns and toxic exposure to harmful pharmaceutical products and substances, such as mercury or dioxins, especially during the process of waste incineration.

Other risks can also derive from the incorrect disposal of needles and syringes; worldwide, it is estimated that, every year, about 16 billion infections are administered. Unfortunately, not all needles are safely eliminated, creating risk of infection but also the possibility of unintentional reuse. Even though this risk has decreased in recent years, unsafe infections are still responsible for many new cases of HIV, hepatitis B and hepatitis C.

2. Environmental Impacts

Incorrect disposal of untreated healthcare waste can contaminate drinking and ground water in landfill, and also release dangerous chemical substances in the environment. Deficient waste incineration can also release hazardous pollutants in the air, and generate dioxins and furans, substances which have been linked to cancer and other adverse health conditions. Heavy metals, if incinerated, can lead to the diffusion of toxic metals in the environment.

The Way Forward

There is still a long way to go in order to ensure safe disposal of hazardous healthcare waste. A joint WHO/UNICEF assessment conducted in 2015 found that only 58% of analyzed facilities over 24 countries had appropriate medical waste disposal systems in place.

Strategies to improve healthcare waste segregation is an essential step in medical waste management

In the workplace, it is important to raise awareness and promote self-practices. Training in the areas of infection control and clinical waste management is important in order to maintain a clean, safe environment for patients and staff alike. Specialized industrial cleaning can also be effective in reducing risk of infection.

It is also essential to develop safe methods and technologies of treating hazardous medical waste, as opposed to medical waste incineration, which has already been shown to be ineffective and dangerous. Alternatives to incineration, such as microwaving or autoclaving, greatly reduce the release of hazardous emissions.

Finally, developing global strategies and systems to improve healthcare waste segregation is another essential step; since only about 15% of clinical waste is hazardous, treatment and disposal costs could be reduced significantly with proper segregation practices. Furthermore, these practices also reduce risks of infections for those workers who handle clinical waste.

Medical Waste Management in Developing Countries

Healthcare sector is growing at a very rapid pace, which in turn has led to tremendous increase in the quantity of medical waste generation in developing countries, especially by hospitals, clinics and other healthcare establishments. The quantity of healthcare waste produced in a typical developing country depends on a wide range of factors and may range from 0.5 to 2.5 kg per bed per day.

medical-waste-management

For example, India generates as much as 500 tons of biomedical wastes every day while Saudi Arabia produces more than 80 tons of healthcare waste daily. The growing amount of medical wastes is posing significant public health and environmental challenges across the world. The situation is worsened by improper disposal methods, insufficient physical resources, and lack of research on medical waste management. The urgent need of the hour is to healthcare sustainable in the real sense of the word.

Hazards of Healthcare Wastes

The greatest risk to public health and environment is posed by infectious waste (or hazardous medical waste) which constitutes around 15 – 25 percent of total healthcare waste. Infectious wastes may include items that are contaminated with body fluids such as blood and blood products, used catheters and gloves, cultures and stocks of infectious agents, wound dressings, nappies, discarded diagnostic samples, swabs, bandages, disposal medical devices, contaminated laboratory animals etc.

Improper management of healthcare wastes from hospitals, clinics and other facilities in developing nations pose occupational and public health risks to patients, health workers, waste handlers, haulers and general public. It may also lead to contamination of air, water and soil which may affect all forms of life. In addition, if waste is not disposed of properly, ragpickers may collect disposable medical equipment (particularly syringes) and to resell these materials which may cause dangerous diseases.

In some countries, there may be legal remedies for such losses. For example, Floridians in the US can go to a medical malpractice lawyer in West Palm Beach. In others, especially developing countries, it may be harder to get compensated, and disease may be spread more easily as a result.

Inadequate healthcare waste management can cause environmental pollution, growth and multiplication of vectors like insects, rodents and worms and may lead to the transmission of dangerous diseases like typhoid, cholera, hepatitis and AIDS through injuries from syringes and needles contaminated with human.

In addition to public health risks associated with poor management of biomedical waste, healthcare wastes can have deleterious impacts on water bodies, air, soil as well as biodiversity. The situation is further complicated by harsh climatic conditions in many developing nations which makes disposal of medical waste more challenging.

healthcare-waste-india

The predominant medical waste management method in the developing world is either small-scale incineration or landfilling. However, the WHO policy paper of 2004 and the Stockholm Convention, has stressed the need to consider the risks associated with the incineration of healthcare waste in the form of particulate matter, heavy metals, acid gases, carbon monoxide, organic compounds, pathogens etc.

In addition, leachable organic compounds, like dioxins and heavy metals, are usually present in bottom ash residues. Due to these factors, many industrialized countries are phasing out healthcare incinerators and exploring technologies that do not produce any dioxins. Countries like United States, Ireland, Portugal, Canada and Germany have completely shut down or put a moratorium on medical waste incinerators.

Alternative Medical Waste Treatment Technologies

The alternative technologies for healthcare waste disposal are steam sterilization, advanced steam sterilization, microwave treatment, dry heat sterilization, alkaline hydrolysis, biological treatment and plasma gasification.

Steam sterilization is one of the most common alternative treatment method. Steam sterilization is done in closed chambers where both heat and pressure are applied over a period of time to destroy all microorganisms that may be present in healthcare waste before landfill disposal. Among alternative systems, autoclaving has the lowest capital costs and can be used to process up to 90% of medical waste, and are easily scaled to meet the needs of any medical organization.

Advanced autoclaves or advanced steam treatment technologies combine steam treatment with vacuuming, internal mixing or fragmentation, internal shredding, drying, and compaction thus leading to as much as 90% volume reduction. Advanced steam systems have higher capital costs than standard autoclaves of the same size. However, rigorous waste segregation is important in steam sterilization in order to exclude hazardous materials and chemicals from the waste stream.

Microwave treatment is a promising technology in which treatment occurs through the introduction of moist heat and steam generated by microwave energy. A typical microwave treatment system consists of a treatment chamber into which microwave energy is directed from a microwave generator. Microwave units generally have higher capital costs than autoclaves, and can be batch or semi-continuous.

Chemical processes use disinfectants, such as lime or peracetic acid, to treat waste. Alkaline hydrolysis is a unique type of chemical process that uses heated alkali to digest tissues, pathological waste, anatomical parts, or animal carcasses in heated stainless steel tanks. Biological processes, like composting and vermicomposting, can also be used to degrade organic matter in healthcare waste such as kitchen waste and placenta.

Plasma gasification is an emerging solution for sustainable management of healthcare waste. A plasma gasifier is an oxygen-starved reactor that is operated at the very high temperatures which results in the breakdown of wastes into hydrogen, carbon monoxide, water etc. The main product of a plasma gasification plant is energy-rich syngas which can be converted into heat, electricity and liquids fuels. Inorganic components in medical wastes, like metals and glass, get converted into a glassy aggregate.