Solid Waste Management in India – Role of Policies and Planning

Out of all the measures that are necessary in addressing India’s waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Solid-Wastes-Management-India

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

Important Statistics

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to better waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Role of Municipal Corporations

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites. Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products.

While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

waste-mountain

The increasing cost of waste disposal is a cause of major concern in developing nations

Good News on the Horizon

While the situation across India is grim and official action has to be demanded through courts or public protests, there are a handful of local governments which are planning ahead and leading the way. The steps taken to solve New Delhi’s waste management problem is laudable. If it was not for the kind of leadership and determination showcased in Delhi, India would not have had its only operating WTE plant. This plant was built in 2011, at a time when the need for waste-to-energy plants was being felt all over India. 1300 tons of Delhi’s waste goes into this facility every day to generate electricity. The successful operation of this facility reinvigorated dormant projects across the nation.

After living with heaps of garbage for months, Thiruvananthapuram Municipal Corporation started penalizing institutions which dump their waste openly. It has also increased the subsidy on the cost of small scale biogas units to 75% and aerobic composting units to 90% to encourage decentralized waste management. The corporation is optimistic with the increase in number of applications for the subsidy from 10 in an entire year to 18 in just a few months after the announcement.

In Bengaluru, improper waste management led to the change of the city’s municipal commissioner. The new commissioner was handed over the job to particularly improve waste management in the city. As a response to the dengue outbreak in Kolkata, the state’s Chief Minister went door to door to create awareness about waste management, and also included the topic in her public speeches. For good or bad, many cities in India have started or initiated steps for banning plastics without performing life cycle analyses.

5 Interesting Facts About Waste-to-Energy Projects

Waste-to-energy (also known as energy-from-waste) is a complicated technology in the realm of renewable energy. There are a lot of hidden truths and myths about this technology that people need to be aware of. Renewable energy technologies, like solar and wind, have much more simple processes and gain most of the attention from media outlets.

On the converse, renewable energy sources that are highly complex like nuclear energy have a bunch of media attention as well.

So, why don’t we discuss a bit more about this relatively unknown technology and asset class? Here I’ll discuss a number of the most important facts about waste-to-energy (abbreviated as WTE).

Interesting Facts About Waste-to-Energy

Let’s get into our facts about waste-to-energy that you need to know.

1. Waste-to-Energy Can Provide Baseload Power

The most familiar renewable energy resources such as wind and solar can only provide power if the sun is shining or the wind is blowing. WTE projects can actually provide baseload power that is used to serve consumers and the grid no matter the time of day or if the sun is shining or not.

Baseload power is essentially when intermittent resources like solar and wind become more prevalent.

2. Not All WTE Projects are Clean and Green

While waste-to-energy projects would seem to be green and clean because they turn trash into power or gas. However, some projects require long hauling of trash to bring to the actual incineration facility. This actually ends up require much more emissions from the trash haulers than alternatives.

One solution to this would be to help promote the use of electric vehicles and electric vehicle technology to be installed in trucking, like waste hauling.

3. WTE Projects Can Reduce Use of Landfills

Landfills have increased at an exponential pace the in last 100 years. Waste-to-energy projects are an awesome alternative to landfills as the trash is used to provide electricity or fuel.

WTE projects reduce waste volumes by approximately 90%, which results in fewer landfills that are needed to process ash. This ends up protecting our natural resources and land in a dramatic fashion.

5. WTE Projects have Multiple Revenue Streams

Waste-to-energy projects are extremely complicated and expensive to build. Most of the investor economic interest is driven by financial incentives, renewable identification numbers, tax credits, etc. to help these projects get financed.

Beyond these other financial incentives, some of the waste-to-energy projects produce a byproduct, named biochar, which has multiple applications and fetches good prices. The biochar can usually end up providing the most value in the revenue stream or investability of the project itself.

In addition to other economic streams, waste-to-energy projects usually require high tipping fees. A tipping fee is what the trash hauler has to pay in order to dump the trash at the facility. With WTE projects, the tipping fee can end up being 50-60% of the overall revenue stack.

5. WTE Facilities are Net Greenhouse Gas Reducers

Methane has more than 20 times the potency of carbon dioxide and is ranked as a very dangerous contributor to climate change and warming of our planet. WTE facilities avoid the productions of methane and end up producing up to 10 times more the electricity than landfill gas projects. If you didn’t know, landfills can actually end up producing electricity by capture the methane gas and compressing it into a consumable natural gas for power.

Sysav–WTE-plant-Sweden

Sweden is one of the best proponents of waste-to-energy in the world

WTE projects will usually have much more capacity than any landfill gas projects.

Conclusions

You can’t use waste-to-energy projects at your home similar to solar or even wind to get free electricity. However, knowing about projects in your area and the relevant suppliers will help you understand whether or not the technology is a perfect fit for your community. If you see a project coming online in your surrounding area, you should know how to ask the right questions.

At the end of the day, WTE projects are green and clean. They just need to have the right systems in place to make them more efficient and less risky to appeal new investor appetite. What fact was your favorite about waste-to-energy?

Do you know much about waste-to-energy projects? Let us know in the comments below. We’d love to hear from you.

WTE Prospects in the Middle East

A combination of high fuel prices and a search for alternative technologies, combined with massive waste generation has led to countries in the Middle East region to consider Waste to Energy (or WtE) as a sustainable waste management strategy and cost-effective fuel source for the future. We look at the current state of the WtE market in the Middle East.

wastetoenergy-plant-qatar

It is estimated that each person in the United Arab Emirates produces 2 kg of municipal solid waste per day – that puts the total waste production figure somewhere in the region of 150 million tonnes every year. Given that the population currently stands at over 9.4 million (2013) and is projected to see an annual average growth figure of 2.3% over the next six years, over three times the global average, it’s clear that this is a lot of waste to be disposed of.

In addition, the GCC nations in general rank in the bottom 10% of the sustainable nations in the world and are also amongst the top per capita carbon-releasers.

When we also consider that UAE are actively pursuing alternative energy technologies to supplement rapidly-decreasing and increasingly-costly traditional fossil fuels, mitigate the harmful effects of landfill, and reduce an ever-increasing carbon footprint, it becomes apparent that high on their list of proposed solutions is Waste to Energy (WtE). It could be an ideal solution to the problem.

What is WtE

Waste-to-Energy works on the simple principle of taking waste and turning it into a form of energy. This can be electricity, heat or transport fuels, and can be achieved in a variety of ways – the most common of which is incineration. MSW is taken to a WtE plant, incinerated at high temperatures and the resultant heat is used to boil water which creates steam to turn turbines, in the same way that burning gas or coal produces power. Gasification and anaerobic digestion are two further WtE methods which are also used.

However, WtE has several advantages over burning fossil fuels. Primarily amongst them are the potential to minimise landfill sites which have caused serious concern for many years. They are not only unsightly, but can also be contaminated, biologically or chemically. Toxic waste can leach into the ground beneath them and enter the water table.

Landfill sites also continuously emit carbon dioxide and methane, both harmful greenhouse gases – in addition methane is potentially explosive. Sending MSW to landfill also discourages recycling and necessitates more demand for raw materials. Finally, landfill sites are unpleasant places which attract vermin and flies and give off offensive odours.

Waste to Energy Around the World

WtE has been used successfully in many countries around the world for a long time now. Europe is the most enthusiastic proponent of WtE, with around 450 facilities; the Asia-Pacific region has just over 300; the USA has almost 100. In the rest of the world there are less than 30 facilities but this number is growing. Globally, it is estimated that the WtE industry is growing at approximately US $2 billion per annum and will be valued at around US $80 billion by the year 2022.

WTE_Plant_Belgium

Waste-to-Energy is now widely accepted as a part of sustainable waste management strategy.

The USA ranks third in the world for the percentage of waste which is incinerated for energy production. Around 16% of the rubbish that America produces every day is burned in its WtE plants. Advocates claims the advantages are clear:

  • reducing the amount of greenhouse gas emitted into the environment (estimates say that burning one ton of waste in a WtE plant saves between one half and one ton of greenhouse gases compared to landfill emissions, or the burning of conventional fuels),
  • freeing up land which would normally be used for landfill (and, therefore, extending the life of existing landfill sites),
  • encouraging recycling (some facilities have managed to reduce the amount of waste they process by up to 90% and the recycling of ferrous and non-ferrous metals provides an additional income source), and,
  • most importantly, producing a revenue stream from the sale of the electricity generated.

In one small county alone, Lancaster, Pennsylvania, with a population of just over half-a-million people, more than 4.4 billion kWh of electricity has been produced through WtE in the last 20 years. This has generated over USD $256 million through its sale to local residents.

Waste-to-Energy in the Middle East

Given WtE’s potential to not only reduce greenhouse gas emissions and pollution on a local scale, but also to produce much-needed electricity in the region, what is the current state of affairs in the Middle East. There are several WtE initiatives already underway in the Middle East.

Qatar was the first GCC country to implement a waste-to-energy programme and currently generates over 30MW of electricity from its Domestic Solid Waste Management Center (DSWMC) located at Messeid (Doha). Saudi Arabia and the UAE have both stated that they have WtE production capacity targets of 100MW. Bahrain, Kuwait and Oman are also seriously considering waste-to-energy as a means to tackle the worsening waste management problem.

Abu Dhabi’s government is currently spending around US $850 million to build a 100 MW plant which will supply around 20,000 households with electricity. In Sharjah, the world’s largest household waste gasification plant, costing in excess of US $480 million, is due to be open soon.

However, not all the GCC members are as enthusiastic about WtE. Dubai’s government has recently scrapped plans for a US $2 billion project which would have made use of the 7,800 tonnes of domestic waste which is produced in Dubai every single day.

We asked Salman Zafar, Founder of Doha-based EcoMENA, a popular sustainability advocacy, why given the sheer scale of the waste in the Gulf region, the production of this form of energy is still in its infancy. “The main deterrent in the implementation of WtE projects in the Middle East is the current availability of cheap sources of energy already available, especially in the GCC,” he commented.

Salman Zafar further says, “WtE projects demand a good deal of investment, heavy government subsidies, tipping fees, power purchase agreements etc, which are hard to obtain for such projects in the region.” “The absence of a sustainable waste management strategy in Middle East nations is also a vital factor behind the very slow pace of growth of the WtE sector in the region. Regional governments, municipalities and local SWM companies find it easier and cost-effective to dump untreated municipal waste in landfills,” he added.

So, how can WtE contribute towards the region’s growing power demand in the future?

“Modern WtE technologies, such as RDF-based incineration, gasification, pyrolysis, anaerobic digestion etc, all have the ability to transform power demand as well as the waste management scenario in the region,” he continued. “A typical 250 – 300 tons per day WtE plant can produce around 3 – 4 MW of electricity and a network of such plants in cities across the region can make a real difference in the energy sector as well as augmenting energy reserves in the Middle East. In fact, WtE plants also produce a tremendous about of heat energy which can be utilised in process industries, further maximising their usefulness,” Salman Zafar concluded.

New technologies naturally take time to become established as their efficiency versus cost ratios are analysed. However, it is becoming increasingly clearer that waste-to-energy is a viable and efficient method for solid waste management and generation of alternative energy in the Middle East.

The Top 7 Benefits of Composting

The impact of human activities on the environment is rapidly changing. One such activity gaining much attention is waste disposal. A lot of waste products go to landfills despite constituting a reasonable fraction of organic matter, such as paper materials, food wastes, and pet droppings.

The new preferred way to dispose of organic waste is composting. Composting refers to the process through which materials biodegrade. It is a means by which organic waste can be safely recycled. Composting can be effectively done with compost systems.

benefits-composting

Take note that this process of waste disposal is still in its early stages, especially when adopted in homes. Still, here are 7 benefits of composting:

1. Improved Soil Quality

Composted materials become humus, a known nutrient-rich constituent of soil. The newly formed humus replenishes soil nutrients and improves water retention in loose soil. Thus, soil quality considerably improves as a result of composting.

Composted materials are also rich in fungi and bacteria. These microbes prevent insect infestation and suppress weed growth. With these nutrient draining agents out of the way, your soil quality dramatically improves, too.

2. Saves Time and Money

It is a waste of time and money when a yard being cultivated does not experience normal growth, nor does it yield the expected harvest. Fortunately, you can save money and time in the long term with composting practices. This is possible because of the compost’s ability to fight insect infestation, weed growth, and to replenish the soil of lost nutrients.

The three nutrients that are sought in chemical fertilizers, Nitrogen, Phosphorus, and Potassium (NPK), are made available by humus. This directly saves you the cost of purchasing fertilizers. Without the presence of compost, farmers need to spend a lot of money to buy pesticides and weed killers.

3. Environment Friendliness

Composting is an environmentally friendly option compared to landfills. Landfills are currently the most common destination for organic waste. In landfills, organic waste cannot decay properly, so they generate a specific greenhouse gas called methane.

landfills-methane-gas

Methane is known to cause harmful effects on the environment – similar to that of carbon dioxide but even more dangerous. The more organic waste ends up in landfills, the more methane gas that is produced.

Composting solves this problem in a whiff by reducing the amount of methane produced while organic matter decays. Composting allows carbon to be retained in the soil, which lowers the carbon footprint caused by decaying matter.

The ability of compost to bypass the incineration of yard waste also makes it a preferred option for organic waste in yards.

4. Improved Human Health

There are several ways for composting to indirectly enhance human health. The reduction of greenhouse gas emissions, as mentioned above, by composting is not only good for the environment but also for people – a reduction of greenhouse gas means a healthier environment to live in.

Organic food production credited to composting also improves human health in significant ways. It reduces the number of chemicals from fertilizers and pesticides that end up in meals, translating to healthier humans.

5. Higher Agricultural Yield

A higher yield of crops is very important to farmers. Through its ability to increase soil quality, composting achieves a higher return in agricultural products. More plant yield accounts for more plants to be sold, which also means more money to be made.

Soil quality also translates to the quality of the food which is produced. Food produced from high-quality, organic soil is free from all toxins from chemical fertilizers and pesticides.

6. Reduced Erosion

Erosion is harmful to the soil because it makes soil matter and nutrients to be washed away. This is compounded by the fact that soils are loose.

Compost averts erosion by remedying the existing structure of the soil. It further prevents erosion by:

  • Aiding water infiltration in the soil structure.
  • Aiding water retention, thereby slowing runoff and loss of soil matter.
  • Allows for quicker vegetation growth.

7. Aids Biodiversity

Microorganisms present in the soil, such as bacteria, fungi, and protozoa, will cause the decay of organic material. Their presence is important because they aid soil aeration. Soil aeration on its own accelerates the composting process, making nutrients available in their usable state as quickly as possible.

Other organisms that are present in composted soil include worms and beneficial insects. All these aids the process of plant growth.

Conclusion

Composting is a sustainable and environmentally friendly way to dispose of organic waste. It is particularly important even now as the world struggles with creating solutions to waste disposal.

Composting results in better soil quality. It is also a process that saves them time and money of farmers. Humans can benefit from composting through improved health. There is a higher yield of farm produce as a result of composting. Erosion is significantly reduced, and biodiversity is achieved in the soil through composting.

Waste Management Scenario in Oman

Waste management is a challenging issue for the Sultanate of Oman due to high waste generation rates and scarcity of disposal sites. With population of almost 3 million inhabitants, the country produced about 1.6 million tons of solid waste in 2010. The per capita waste generation is more than 1.5 kg per day, among the highest worldwide.

Oman_Solid_Wastes_Management

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in marked by lack of collection and disposal facilities. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater). All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish engineered landfills, waste transfer stations, recycling projects and waste-to-energy facilities in different parts of the country.

Modern MSW management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place.

The state-owned Oman Environment Services Holding Company (OESHCO), which is responsible for waste management projects in Oman, has recently started the tendering process for eight important projects. OESHCO has invited tenders from specialised companies for an engineered landfill and material recovery facility in Barka, apart from advisory services for 29 transfer stations and a couple of tenders for waste management services in the upcoming Special Economic Zone (SEZ) in Duqm, among others. Among the top priorities is that development of Barka engineered landfill as the existing Barka waste disposal site, which serve entire wilayat and other neighbouring wilayats in south Batinah governorate, is plagued by environmental and public health issues.

Waste Management in Sweden: Perspectives

Sweden is considered as a global leader in sustainable waste management and in the reduction of per capita carbon footprint. The country consistently works to lower its greenhouse gas emissions, improve energy efficiency and increase public awareness. Over the past 10 years, Sweden developed methods of repurposing waste, so less than one percent of the total waste generated in the country makes it to landfills. To accomplish this, the country changed their perspective of garbage.

Increase Recycling

Recycling is a part of Swedish culture. Residents regularly sort recyclable materials and food scraps from other waste in their homes before disposal. This streamlines the recycling process and reduces the effort required to sort large volumes of waste at larger recycling centers. As another way to promote recycling, the Swedish government created legislation stating recycling centers must be within 1,000 feet of residential areas. Conveniently located facilities encourage citizens to properly dispose of their waste.

Repurpose Materials

Citizens are also encouraged to reuse or repurpose materials before recycling or disposing of them. Repurposing and reusing products requires less energy when compared to the recycling or waste disposal process. As Swedes use more repurposed products, they reduce the volume of new products they consume which are created from fresh materials. In turn, the country preserves more of its resources.

Invest in Waste to Energy

Over 50 percent of the waste generated in Sweden is burned in waste-to-energy facilities. The energy produced by these facilities heats homes across the country during the long winter months. Localized heating — known as district heating — has improved air quality throughout the nation. It’s easier and more economical to control the emissions from several locations as opposed to multiple, smaller non-point sources.

Another benefit of waste-to-energy facilities is that ash and other byproducts of the burning process can be used for road construction materials. As a whole, Sweden doesn’t create enough waste to fuel its waste to energy plants — the country imports waste from its neighbors to keep its facilities going.

In the early 1990’s, the Swedish government shifted the responsibility for waste management from cities to the industries producing materials which would eventually turn to waste. To promote burning waste for energy, the government provides tax incentives to companies which make more economically attractive.

Impact of Waste-to-Energy

Although Sweden has eliminated the volume of trash entering landfills, they have increased their environmental impacts in other ways. Waste-to-energy facilities are relatively clean in that most harmful byproducts are filtered out before entering the environment, though they still release carbon-dioxide and water as their primary outputs. On average, waste-to-energy plants generate nearly 20 percent more carbon-dioxide when compared to coal plants.

 

waste-management-sweden

Coal plants burn and release carbon which is otherwise sequestered in the ground and unable to react with the earth’s atmosphere. Waste-to-energy facilities consume and release carbon from products made of organic materials, which naturally release their carbon over time. The downside to this process is that it frees the carbon from these materials at a much faster rate than it would be naturally.

The reliance on the waste-to-energy process to generate heat and the tax incentives may lower Swedish motivation to recycle and reuse materials. The country already needs to import trash to keep their waste-to-energy plants running regularly. Another disadvantage of this process is the removal and destruction of finite materials from the environment.

Even though Sweden continues to make strides in lowering their environmental impact as a whole, they should reevaluate their reliance on waste to energy facilities.

Solid Waste Management – History and Future Outlook

The disposal of municipal solid waste is the second most major concern for public health in developing countries because of population explosion, rampant poverty and high urbanization rates combined with poor government funding to curb waste management. Factors such as waste composition, technologies and lack of infrastructure have been found to set apart the good management of solid wastes in developing nations. Municipal waste is mainly comprised of paper, vegetable matter, plastics, metals, textiles, rubber and glass. In some countries (developing as well as developed), municipal solid waste is mixed with medical wastes and this may pose health risk to waste handlers and general public.

Historically, burying the wastes is the most preferred method for waste management in many countries. This method is still used in many more countries. Tackling environmental issues has become more important and more preferred than pollution and consumption of unsustainable utilization of resources. Most importantly, the primary objective of waste management is to put emphasis on protecting the people and environment from potentially harmful effects of waste.

Methods of Solid Waste Management

Depending on the types of wastes generated, four methods of solid waste management has been used throughout the history, i.e. dumping, incineration, recycling and waste prevention. Waste generated from household is much different from industrial waste, agricultural waste, medical waste or mining wastes.

When wastes contain any hazardous component, or it has capability to become hazardous with time, poses very serious threat to environment and health. Hazardous wastes generated needs to be handled very carefully, with special techniques. This is one of the major reasons of open landfills are getting replaced with sanitary landfills.

At a landfill, wastes are covered with thick layer of soil. By the late 1950, this practice was very common for waste management across the world. Earlier landfills had considerable sludge and methane emissions, which were harmful to the environment as well as animal and human health. But these issues have been resolved largely by modern disposal methods, which were developed around 20 years ago. Modern landfills are equipped with thick layer of clay followed by plastic sheets. This method was practiced by some nations and still going on.

In 1930-1940, many cities in USA adopted new technology to curb waste issues by burning at high temperature, this method is known as incineration. During initial years, this method was not very efficient and emit very large amount of poisonous gasses, this is the major reason of incinerators shut down during that period. During mid-1970s, scientists modified incinerators to generate energy, which are known as waste to energy plants. But after around a decade, it has become major issue to build these plants, again because of emission issues.

With development of technology, waste burning in advanced form of incinerators became common in 1970s, researchers across the world bet on incinerators or waste to energy plants for solution to energy crisis in 1973. However, with realisation of impact on environment and air quality, it become very difficult to find location to build any waste to energy plants, mainly because of public opposition. Another issue with incinerator is production of ashes, which contain huge amount of heavy metals, toxic and inorganic compounds.

waste-to-energy-plant

Incineration is the most common waste-to-energy method used worldwide.

Future of Solid Waste Management

The overall concept of wastes needs to be considered economically, it will be more considered as economically viable product if waste is considered as an inefficiency of the production process not as rejected residue of waste product. A permanent rejection or heavy restriction into products which produces waste that cannot be accumulated back into the environment safely.

The major challenge in waste management is to persuade people/community to consider waste as a resource, rather than a liability on society, which can be created with more innovation and technological development of manufacturing industry, waste processing industry and new business model and plans.

This planning system will create circular economy where product value created by inputs (e.g. energy, materials, labour etc.) is extended by enabling a material that goes into circular economy, beyond product life. We go from mineral to metals to product then back to minerals/metals. By understanding economic cycle of waste, people will understand the creation of opportunities to more sustainable product in future with limited resources.

Key Challenges in the Implementation of Waste-to-Energy

The biggest challenge in the implementation of Waste-to-Energy projects lies not in the technology itself but in the acceptance of citizens. Citizens who are environmentally minded but lack awareness of the current status of MSW-to-energy bring up concerns of environmental justice and organize around this. They view waste-to-energy as ‘dumping’ of pollutants on lower strata of society and their emotional critique rooted in the hope for environmental justice tends to move democracy.

Spittelau-Incinceration-Plant

An advocate of public understanding of science, Shawn Lawrence Otto regrets that the facts are not able to hold the same sway. Some US liberal groups such as the Center for American Progress are beginning to realize that the times and science have changed. It will take more consensus on the science and the go ahead from environmental groups before the conversation moves forward, seemingly improbable but not without precedent.

Spittelau Waste-to-Energy Plant

The Spittelau waste-to-energy plant is an example of opposition coming together in consensus over WTE. It was built in Vienna in 1971 with the purpose of addressing district heating and waste management issues. Much later awareness of the risks of dioxins emitted by such plants grew and the people’s faith in the technology was called into question.

It also became a political issue whereby opposition parties challenged the mayor on the suitability of the plant. The economic interests of landfill owners also lay in the shutting down of the WTE facility. The alternative was to retrofit the same plant with advanced technology that would remove the dioxins through Selective Catalytic Reduction (SCR).

Through public discussions it appeared that the majority of the people were against the plant altogether though thorough studies by informed researchers showed that the science backs WTE. The mayor, Helmut Zilk eventually consulted Green Party members on how to make this technology better perceived in the eyes of the people, and asked the famous Austrian artist Freidensreich Hundertwasser, who was a green party member to design the look of the plant.

Freidensreich Hundertwasser after carefully studying the subject wrote a letter of support, stating his belief as to why WTE was needed and accepted Mayor Helmut Zilk’s request. Later public opinion polls showed that there were a majority of people who were either in favor of or not opinionated about the plant, with only 3% in outright opposition of the plant.

Polarized Discussion

Waste-to-Energy or recycling has kept public discourse from questioning whether there may not be intermediate or case specific solutions. This polarization serves to move the conversation nowhere. For now it can be agreed that landfills are devastating in their contribution to Climate Change and must be done away with.

The choice then, of treatment processes for municipal solid waste are plentiful. If after recovery of recyclable materials there remains a sizeable waste stream the option of waste-to-energy can be explored.

Primary Considerations in WTE Projects

  • Environmental implications (i.e. CO2 emissions vis-à-vis the next best fuel source) given the composition of the local waste stream. If the waste stream consists of a high percentage of recyclables the more sustainable waste strategy would be to ramp up recycling efforts rather than to adopt WTE,
  • Likely composition and variation of the waste stream and the feasibility of the technology to handle such a waste stream,
  • Financial considerations with regards to the revenue stream from the WTE facility and its long term viability,
  • Efforts at making citizens aware of the high standards achieved by this technology in order to secure their approval.

Note: This excerpt is being published with the permission of our collaborative partner Be Waste Wise. The original excerpt and its video recording can be found at this link

Sustainable Waste Management in the Construction Industry

Construction is booming worldwide driven by population growth, urbanization and increased need for dwellings, business sites and commercial spaces with volume output expected to grow by 85% to $15.5 trillion by 2030. Unfortunately, it also means that there is a serious challenge to implement sustainable waste management in the construction industry.

It is not only the duty of waste management contractors and companies to ensure sustainable collection and management of construction wastes responsibly but also individuals who are doing their own DIY projects at home. Without a concerted effort to collect, recycle and dispose waste properly, there is real danger to the environment that will eventually spill over to people, vegetation, and wildlife.

Role of education and behavior change

On a global scale, over half of the world’s population have no access to a steady collection of trash. Illegal dumpsites hold over 40% of the world’s waste. It’s not only the lack of facilities but also inadequate information that is contributing to waste-related pollution all over the world.

Sustainable waste collection begins by educating people about reducing, reusing and recycling efforts or the 3R approach. From education and information campaigns to changes in behavior and attitudes, when people know and are aware of the benefits of reducing, segregating, collection, reusing and recycling, they become a collective and conscious effort.

Right materials and equipment

The availability of bins, collection containers, and recycling centers also has a great influence on how much a person and their communities recycle and reuse or dispose of construction waste properly. For people who are able to hire a 20 yard dumpster in West Chester, Lancaster, Norrington, Reading or any other town in the world, it is easier and convenient to remove construction and renovation waste knowing that the company will dispose of it properly by bringing it to approved landfills.

What is also important is for clients, contractors and recycling specialists to put their heads together to minimize construction waste according to Oyenuga and Bhamidimarri.

General awareness to reduce dumping is increasing as about 35% of construction and demolition waste (CDW) goes to landfills. Construction rubbish can contain lots of toxic materials such as lead, asbestos, and other dangerous substances that can find their way into the soil, groundwater, and the air that we breathe.

The construction industry has also recognized that reusing components and materials in making or erecting structures is sustainable and saves money. Most of the parts of construction consist of wood, sticks, steel, and concrete. Rubble can be compacted and reused. Demolition is carefully considered if renovation can be carried out.

The Way Forward

Waste generated from construction sites need not be a nuisance to the environment. With the right education to increase awareness to reduce/recycle/reuse, provision of collection and recycling points and the newer and better techniques to reuse construction materials, sustainable management of construction waste can become a reality.

Waste-to-Energy in Saudi Arabia

Urban waste management has emerged as a big challenge for the government and local bodies in Saudi Arabia. The country generates more than 15 million tons of municipal solid waste each year with per capita waste production estimated to be 2 kg per day, among the highest worldwide. Municipal waste production in three largest cities – Riyadh, Jeddah and Dammam – exceeds 6 million tons per annum which gives an indication of the enormity of the problem faced by civic bodies.

waste-jeddah

The Problem of Waste

Municipal waste generation in Saudi Arabia is increasing at an unprecedented rate. Due to high population growth rate, rapid urbanization and fast-paced economic development, MSW generation is expected to cross 30 million tons per year by 2033. More than 75 percent of Kingdom’s population is concentrated in urban areas, and collected garbage is thrown in landfills or dumpsites without any processing or treatment.

Most of the landfills in Saudi Arabia are non-sanitary and prone to problems like leachate, vermin, flies and spontaneous fires, apart from greenhouse gas emissions.  It has become necessary for the Saudi government to devise an integrated waste management strategy, using international best practices and modern technologies, to tackle heaps of garbage accumulating across the country.

Promise of Waste-to-Energy

Waste-to-energy provides a cost-effective and eco-friendly solution to both energy demand and MSW disposal problems in Saudi Arabia. Increasing waste generation, inability of existing solutions to tackle waste and expansion of cities into ex-dump sites are strong drivers for large-scale deployment of WTE systems in the Kingdom.

Saudi Arabia has tremendous waste-to-energy potential due to plentiful availability of good quality municipal waste. Modern waste-to-energy technologies, such as RDF-based incineration, gasification, pyrolysis and anaerobic digestion have the ability to transform power demand and waste management scenario in the country.

A typical 250 – 300 tons per day garbage-to-energy plant can produce around 3 – 4 MW of electricity and a network of such plants in cities around the country can make a real difference in waste management as well as energy sectors.  In fact, such plants also produce tremendous about of heat energy which can be utilized in process industries and district cooling systems, further maximizing their usefulness.

Key Challenges

Around the world, waste-to-energy finds wide acceptance as a tool to manage urban wastes, with more than 1,000 waste-to-energy plants in operation globally, especially in Europe, China and the Asia-Pacific. However, waste-to-energy is struggling to get off-the-ground in Saudi Arabia due to several issues, the main reason being the cheap and plentiful availability of oil which prevents decision-makers to set effective regulations for waste-to-energy development in the country.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Waste-to-Energy is widely accepted as a part of sustainable waste management strategy worldwide.

Policy-makers in KSA should consider waste-to-energy as a sustainable waste management solution, rather than as a power-producing industry. Unlike Western countries, waste management services are practically free-of-cost for the waste generators which act as a deterrent for governmental investment in new waste management solutions and technologies, such as waste-to-energy. Infact, waste collection, transport and disposal methods in Saudi Arabia do not match the standards of a developed country.

Future Outlook

Vision 2030, touted as most comprehensive economic reform package in Saudi history, puts forward a strong regulatory and investment framework to develop Saudi waste-to-energy sector. An ambitious target of 3GW of energy from waste is to be achieved by 2025.  A methodical introduction of modern waste management techniques like material recovery facilities, waste-to-energy systems and recycling infrastructure can significantly improve waste management scenario and can also generate good business opportunities.

To sum up, environmental issues associated with non-sanitary landfills, ineffectiveness of prevalent waste management model and rising energy demand are key drivers for development of waste-to-energy sector in Saudi Arabia.