Waste Management in Iraq

Iraq is one of the most populous Arab countries with population exceeding 32 million. Rapid economic growth, high population growth, increasing individual income and sectarian conflicts have led to worsening problem of solid waste management problem in Iraq. The country is estimated to produce 31,000 tons of solid waste every day with per capita waste generation exceeding 1.4 kg per day. Baghdad alone produces more than 1.5 million tons of solid wastes each year.

Rapid increase in waste generation is putting tremendous strain on Iraqi waste handling infrastructure which have heavily damaged after decades of conflict and mismanagement. In the absence of modern and efficient waste handling and waste disposal infrastructure most of the wastes are disposed in unregulated landfills across Iraq, with little or no concern for both human health and environment. Spontaneous fires, groundwater contamination, surface water pollution and large-scale greenhouse gas emissions have been the hallmarks of Iraqi landfills.

The National Solid Waste Management Plan (NSWMP) for Iraq was developed in 2007 by collaboration of international waste management specialist. The plan contains the recommendations for development and which explains the background for decisions.

The plan states that Iraq will build 33 engineered landfills with the capacity of 600 million m3 in all of the 18 governorates in Iraq by 2027. In addition to constructing landfills the plan also focuses on the collection and transportation, disposable, recycling and reuses systems. Environment education was also taken into consideration to ensure provision of educational system which supports the participation of both communities and individuals in waste management in Iraq.

Besides Iraqi national waste management plan, the Iraqi ministry of environment started in 2008 its own comprehensive development program which is part of the ministry of environment efforts to improve environmental situation in Iraq. Ministry of Municipalities and Public Work, in collaboration with international agencies like UN Habitat, USAID, UNICEF and EU, are developing and implementing solid waste management master plans in several Iraqi governorates including Kirkuk, Anbar, Basra, Dohuk, Erbil, Sulaimaniya and Thi Qar.

Recent Progress

Kirkuk was the first city in Iraq to benefit from solid waste management program when foreign forces initiated a solid-waste management program for the city in 2005 to find an environmentally safe solution to the city’s garbage collection and disposal dilemma. As a result the first environmentally engineered and constructed landfill in Iraq was introduced in Kirkuk In February 2007. The 48-acre site is located 10 miles south of Kirkuk, with an expected lifespan of 10–12 years and meets both the U.S. Environmental Protection Agency and European Union Landfill Directive standards.

The Iraqi city of Basra also benefited from international aid with the completion of the first landfill that is compliant with international environmental standards has been completed. Basra solid waste management program developed by UNICEF will not only restore efficient waste collection systems in the city but will also create informal “recycling schools” that will help in spreading environmental awareness in in the city’s society by launching a campaign to educate the public about effective waste disposal practices.

In addition, Basra city program plans to establish a regional treatment and disposal facility and initiate street sweeping crews. Basrah city waste management program is part of the UNICEF program supported by the European Union to develop Iraq’s water and sanitation sector.

Erbil’s solid waste management master plan has also been developed by UNICEF with funding from the European Union. Recently a contract was signed by the Kurdistan Region’s Ministry of Municipalities and Tourism and a Canadian company to recycle the city’s garbage which will involve the construction of two recycling plants in the eastern and western outskirts of Erbil.

UNICEF has also developed a master plan to improve the management of solid waste in Dohuk Governorate which has been finalized in June 2011. Solid waste management master plans for Anbar, Sulaimaniya and Thi Qar governorates are also a part of UNICEF and EU efforts to attaining Iraq’s Millennium Development Goal targets of ensuring environmental sustainability by 2015.

Even though all of the effort by the international organizations are at local level and still not enough to solve solid waste management problem in Iraq, however these initiatives have been able to provide a much needed information regarding the size of the issue and valuable lessened learned used later by the Iraqi government to develop the Iraqi national waste management plan with the support of organizations such as UN Habitat, UNDG Iraq Trust Fund and USAID. The Iraqi national waste management plan is expected to ease the solid waste management problem in Iraq in the near future.

Behavioral Drivers Behind Food Wastes

food-waste-behaviorBy 2075, the United Nations estimates the global population will peak at 9.5 billion, an extra 3 billion mouths to feed by the end of the century. Meanwhile, while we produce about four billion tonnes of food annually, it is estimated that 30-50% of this never reaches our plates. Of the food that does reach us, some western societies throw away up to a third of all food purchased. This has enormous implications for the global environment, from wasting the water used to grow the food to adverse effects on climate, land and biodiversity.

The drivers behind these phenomenal levels of food waste are complex and include food pricing, logistical and storage issues. However, given the significant level of waste that happens within the households of societies like the UK and US, it is useful and informative to consider those behaviours that drive this level of waste.

The quality of data around food waste, as with much of waste data, has historically been poor. To this end, WRAP commissioned groundbreaking research in the UK in 2006/7 to act as a baseline to their Love Food Hate Waste campaign. This came up with the alarming statistic that 1/3 of food bought by a UK household was thrown away. Until this time, there had been no comprehensive research, either by food manufacturers, retailers or interest groups, suggesting the importance of government, or some other dis-interested party, taking a lead on the issue.

Back to Basics

There may be a link between the amount of time spent preparing food, and the skill and effort that goes into this, and the amount of food waste produced. This has led to a loss of confidence in the kitchen, with individuals losing basic skills that allow them to cook with leftovers, understand food labeling, including Best Before and Use By, even basic storing. WRAP had found little evidence of best practice storage advice so carried out the research themselves – leading the (surprising for many) conclusion that fruit such as apples and pears are best stored in the fridge wrapped in a plastic cover. However, this has masked a larger trend of less time spent in the kitchen, due to demographic changes. This of course begs the question – how should we use this when trying to reduce food waste? Should we encourage people to cook from scratch as a principle?

Although waste prevention and recycling are clearly separated within the waste hierarchy, there are apparent links between the two when considering food waste. There is an urgent need for legislation to enforce separate food waste collections, not only to ensure it was diverted to anaerobic digestion or composting, but also as it led to greater self awareness around food waste. WRAP research has clearly showed a fall in food waste when separate food waste collections were introduced.

Role of Packaging

Historically, packaging has always been a high priority to the public when asked about priorities for reducing waste. However, as awareness of food waste has grown, a more nuanced position has developed among waste managers. While excess packaging is clearly undesirable, and, within the UK for instance, the Courtauld Commitment  has helped reduced grocery packaging by 2.9 million tonnes of waste so far, there is a realization of the importance of food packaging in preserving food and hence reducing food waste.

Making food easily accessible and affordable by many, it could be argued, is one of the crowning achievements of our age. Over the last century, the proportion of household income that is spent on food has plummeted, and there is a direct link to malnutrition and food prices, particularly for children. But does cheap food mean that it is less valued and hence greater wastage? Is the answer expensive food? The evidence from WRAP in the UK is that food waste is still a serious economic issue for households, and underlining the economic case for reducing food waste a major incentive for households, especially as food prices are not entering an era of increase and instability, providing added economic urgency

Political Persuasions

Different political persuasions often differ in the approaches they take to changing behaviours and food waste is no different. In the UK, the Courtauld Commitment is a voluntary agreement aimed at encouraging major retailers to take responsibility mainly for packaging, later growing to encompass food waste, voluntary and so far has seen a 21% reduction in food waste post-consumer.

Meanwhile Wales (in the UK) effectively banned food waste from landfill. Scotland has ensured that businesses make food waste available for separate collection – again it’s only once you see it, you can manage it. Campaigns like the UK’s Love Food Hate Waste have been successful but measuring food waste prevention, as with all waste prevention, is notoriously difficult. But, people are now widely aware of food waste as an issue – we even see celebrity chefs actively talking about food waste reduction and recipes involving leftovers or food that is about to go off.

There is clearly a balance between food waste and food safety, with a commitment to reducing food waste throughout the retail and catering world, not just at home. By engaging environmental health officers to help deliver this, a potentially conflicting message can be delivered in a nuanced and balanced way. Indeed, environmental health officers in Scotland will be responsible for ensuring that Scottish food businesses present their food waste for separate collection.

Role of Communication

It is worth considering how the message should be communicated, and by whom. The community sector are more trusted by the public than government and the private sector are more effective at imparting personal, deeply held beliefs – the sort of beliefs that need to change if we are to see long term changes in attitudes towards consumption and hence waste production.

Furthermore, communications can engage wider audiences that hold an interest in reducing food waste that is perhaps not primarily environmental. The health and economic benefits of issues and behaviours that also result in food waste prevention may be the prevalent message that fits with a particular audience. So whilst the main aim of a training session might be food waste prevention, this is may not be the external message. And this has wider implications for waste prevention, and how we engage audiences around it.

Municipal authorities tasked with waste prevention will need to engage with new groups, in new ways. They will have to consider approaches previously considered to be beyond their powers to engage new audiences – should they be partnering with public health authorities with an interest in nutrition, or social housing providers that are focused on financial inclusion.

Should waste prevention even be a discipline in itself? After all, across material streams it is a motley assortment of behaviours with different drivers. Furthermore, with the knots that one can tie oneself in trying to measure waste that doesn’t get generated, – therefore doesn’t exist – should we integrate waste prevention in to other socio-economic programmes and position it as an “added benefit” to them?

Note: The article is being republished with the permission of our collaborative partner be Waste Wise. The unabridged version can be found at this link. Special thanks to the author Mike Webster.

Recycling of EPS Foam Packaging

Municipalities and organisations are facing a growing problem in disposal and recycling of EPS foam packaging and products. EPS foam (Encapsulated Poly-Styrene) packaging is a highly popular plastic packaging material which finds wide application in packaging of food items, electronic goods, electrical appliances, furniture etc due to its excellent insulating and protective properties. EPS foam (also known as polystyrene) is also used to make useful products such as disposable cups, trays, cutlery, cartons, cases etc. However, being large and bulky, polystyrene take up significant space in rubbish bins which means that bins becomes full more quickly and therefore needs to be emptied more often.

Polystyrene is lightweight compared to its volume so it occupies lots of precious landfill space and can be blown around and cause a nuisance in the surrounding areas. Although some companies have a recycling policy, most of the polystyrene still find its way into landfill sites around the world.

Environmental Hazards of EPS Foam

While it is estimated that EPS foam products accounts for less than 1% of the total weight of landfill materials, the fraction of landfill space it takes up is much higher considering that it is very lightweight.  Furthermore, it is essentially non-biodegradable, taking hundreds perhaps thousands of years to decompose.

Even when already disposed of in landfills, polystyrene can easily be carried by the wind and litter the streets or end up polluting water bodies. When EPS foam breaks apart, the small polystyrene components can be eaten by marine organisms which can cause choking or intestinal blockage.

Polystyrene can also be consumed by fishes once it breaks down in the ocean.  Marine animals higher up the food chain could eat the fishes that have consumed EPS, thus concentrating the contaminant.  It could be a potential health hazard for us humans who are on top of the food chain considering that styrene, the plastic monomer used in manufacturing EPS has been classified by the US National Institutes of Health (NIH) and the International Agency for Research on Cancer (IARC) as a possible human carcinogen.

Styrene is derived from either petroleum or natural gas, both of which are non-renewable and are rapidly being depleted, creating environmental sustainability problems for EPS.

Trends in EPS Foam Recycling

Although the Alliance of Foam Packaging Recyclers have reported that the recycling rate for post-consumer and post-commercial EPS in the United States have risen to 28% in 2010 from around 20% in 2008, this value is still lower than most solid wastes.  According to USEPA, auto batteries, steel cans and glass containers have recycle rates of 96.2%, 70.6% and 34.2% respectively.

Because it is bulky, EPS foam takes up storage space and costs more to transport and yet yields only a small amount of polystyrene for re-use or remolding (infact, polystyrene accounts for only 2% of the volume of uncompacted EPS foams). This provides little incentive for recyclers to consider EPS recycling.

Products that have been used to hold or store food should be thoroughly cleaned for hygienic reasons, thus compounding the costs.  For the same reasons, these products cannot be recycled to produce the same food containers but rather are used for non-food plastic products.  The manufacture of food containers, therefore, always requires new polystyrene.  At present, it is more economical to produce new EPS foam products than to recycle it, and manufacturers would rather have the higher quality of fresh polystyrene over the recycled one.

The cost of transporting bulky polystyrene waste discourages recyclers from recycling it.  Organizations that receive a large amount of EPS foam (especially in packaging) can invest in a compactor that will reduce the volume of the products. Recyclers will pay more for the compacted product so the investment can be recovered relatively easier.

There are also breakthroughs in studies concerning EPS recycling although most of these are still in the research or pilot stage.  Several studies have found that the bacteria Pseudomonas putida is able to convert polystyrene to a more biodegradable plastic.  The process of polystyrene depolymerization – converting polystyrene back to its styrene monomer – is also gaining ground.

Municipal Solid Waste Management in Oman

Municipal solid waste management is a challenging issue for the Sultanate of Oman because of its adverse impacts on environment and public health. With population of almost 3 million inhabitants, the country produces about 1.9 million tons of solid waste each year. The per capita waste generation in Oman is more than 1.5 kg per day, among the highest worldwide.

Prevalent Scenario

Solid waste in Oman is characterized by very high percentage of recyclables, primarily paper (26%), plastics (12%), metals (11%) and glass (5%). However the country is yet to realize the recycling potential of its municipal waste stream.

The predominant waste disposal method in Oman is landfilling. Most of the solid waste is sent to authorized and unauthorized dumpsites for disposal which is creating environment and health issues. There are several dumpsites which are located in the midst of residential areas or close to catchment areas of private and public drinking water bodies.

Solid waste management scenario in Oman is marked by lack of collection and disposal facilities, as well as lack of public awareness about waste in the country. Solid waste, industrial waste, e-wastes etc are deposited in very large number of landfills scattered across the country. Oman has around 350 landfills/dumpsites which are managed by municipalities. In addition, there are numerous unauthorized dumpsites in Oman where all sorts of wastes are recklessly dumped.

Al Amerat Sanitary Landfill

Al Amerat landfill is the first engineered sanitary landfill in Oman which began its operations in early 2011. The landfill site, spread over an area of 9.6 hectares, consists of 5 cells with a total capacity of 10 million m3 of solid waste and spread over an area of over 9.6 hectares. Each cell has 16 shafts to take care of leachate (contaminated wastewater).

All the shafts are interconnected, and will help in moving leachate to the leachate pump. The project is part of the government’s initiatives to tackle solid waste in a scientific and environment-friendly manner. Being the first of its kind, Al Amerat sanitary landfill is expected to be an example for the future solid waste management projects in the country.

The Way Forward

Solid waste management is among the top priorities of Oman government which has chalked out a robust strategy to resolve waste management problem in the Sultanate. The country is striving to establish 16 engineered landfills, 65 waste transfer stations and 4 waste treatment plants in different parts of the country.

Modern solid waste management facilities are under planning in several wilayat, especially Muscat and Salalah. The new landfills will eventually pave the way for closure of authorized and unauthorized garbage dumps around the country. However investments totaling Omani Rial 2.5 billion are required to put this waste management strategy into place. Oman is also seriously exploring waste-to-energy as a tool to manage garbage in a sustainable manner.

Waste Disposal Methods: Perspectives for Africa

Waste disposal methods vary from city to city, state to state and region to region. It equally depends on the kind and type of waste generated. In determining the disposal method that a city or nation should adopt, some factors like type, kind, quantity, frequency, and forms of waste need to be considered.

For the purpose of this article, we will look at the three common waste disposal methods and the kind of waste they accept.

Open Dumping/Burning

This is the crudest means of disposing of waste and it is mostly practiced in rural areas, semi-urban settlements, and undeveloped urban areas. For open dumping or open burning, every type and form of waste (including household waste, hazardous wastes, tires, batteries, chemicals) is dumped in an open area within a community or outside different homes in a community and same being set on fire after a number of days or when the waste generator or community feels it should be burnt.

There is no gainsaying that the negative health and environmental impact of such practice are huge only if the propagators know better.

Controlled Dumping

This is apparent in most States in Nigeria, if not all and some cities in Africa like Mozambique, Ghana, Kenya, Cameroon, to mention but a few. It is a method of disposing of all kinds of waste in a designated area of land by waste collectors and it is usually controlled by the State or City Government.

Opening burning of trash is a common practice across Africa

Controlled dumps are commonly found in urban areas and because they are managed by the government, some dumps do have certain features of a landfill like tenure of usage, basic record keeping, waste covering, etc. Many cities in Nigeria confuse the practice of controlled dumping as landfilling but this not so because a landfill involves engineering design, planning, and operation.

Sanitary Landfill

A sanitary landfill is arguably the most desired waste management option in reducing or eliminating public health hazards and environmental pollution. The landfill is the final disposal site for all forms and types of waste after the recyclable materials must have been separated for other usages and other biodegradables have been extracted from the waste for use as compost, heat, or energy; or after incineration. These extractions can be done at household level or Material Recovery Facilities (MRFs) operated by the government or private individuals.

As desirable as a landfill is, so many factors need to be put into consideration in its siting and operation plus it requires a huge investment in construction and operation. Some of these factors include but not limited to distance from the residential area, proximity to water bodies, water-table level of the area the landfill is to be sited, earth material availability, and access road.

Note: The original version of the article was published on Waste Watch Africa website at this link.

Waste Management Outlook for India

Waste management crisis in India should be approached holistically; while planning for long term solutions, focus on addressing the immediate problems should be maintained. National and local governments should work with their partners to promote source separation, achieve higher percentages of recycling and produce high quality compost from organics. While this is being achieved and recycling is increased, provisions should be made to handle the non-recyclable wastes that are being generated and will continue to be generated in the future.

Recycling, composting and waste-to-energy are all integral parts of the waste disposal solution and they are complementary to each other; none of them can solve India’s waste crisis alone. Any technology should be considered as a means to address public priorities, but not as an end goal in itself. Finally, discussion on waste management should consider what technology can be used, to what extent in solving the bigger problem and within what timeframe.

Experts believe India will have more than nine waste-to-energy projects in different cities across India in the next three years, which will help alleviate the situation to a great extent. However, since waste-to-energy projects are designed to replace landfills, they also tend to displace informal settlements on the landfills. Here, governments should welcome discussions with local communities and harbor the informal recycling community by integrating it into the overall waste management system to make sure they do not lose their rights for the rest of the city’s residents.

This is important from a utilitarian perspective too, because in case of emergency situations like those in Bengaluru, Kerala, and elsewhere, the informal recycling community might be the only existing tool to mitigate damage due to improper waste management as opposed to infrastructure projects which take more than one year for completion and public awareness programs which take decades to show significant results.

Involvement of informal recycling community is vital for the success of any SWM program in India

Indian policy makers and municipal officials should utilize this opportunity, created by improper waste management examples across India, to make adjustments to the existing MSW Rules 2000, and design a concrete national policy based on public needs and backed by science. If this chance passes without a strong national framework to improve waste management, the conditions in today’s New Delhi, Bengaluru, Thiruvananthapuram, Kolkata, Mumbai, Chennai, Coimbatore and Srinagar will arise in many more cities as various forcing factors converge. This is what will lead to a solid waste management crisis affecting large populations of urban Indians.

The Indian Judiciary proved to be the most effective platform for the public to influence government action. The majority of local and national government activity towards improving municipal solid waste management is the result of direct public action, funneled through High Courts in each state, and the Supreme Court. In a recent case (Nov 2012), a slew of PILs led the High Court of Karnataka to threaten to supersede its state capital Bengaluru’s elected municipal council, and its dissolution, if it hinders efforts to improve waste management in the city.

In another case in the state of Haryana, two senior officials in its urban development board faced prosecution in its High Court for dumping waste illegally near suburbs. India’s strong and independent judiciary is expected to play an increasing role in waste management in the future, but it cannot bring about the required change without the aid of a comprehensive national policy.

Landfill Liners and Alternative Daily Cover

The old garbage dumps of days gone by are no more. Today’s waste disposal solutions are increasingly sophisticated. Environmental regulation, recycling, and the development of plastics – of all things – have contributed to far more tightly managed landfills, with goals inching towards zero waste.

Garbage dumps used to be large holes, usually on the edge of town, where garbage could be buried. While this was an improvement on how people have historically dealt with their trash – by throwing it out the window, into rivers and fields, or alongside the road – it was still a health hazard, an increasingly offensive thing as populations grew, and an environmental burden.

 

In the United States, the Resource Conservation and Recovery Act, passed by the US Congress in 1976, changed how garbage is processed, managed and stored. The garbage dumps of the past were simply places where garbage was buried. Today’s landfills are much more complexly engineered sites.

They are extensively planned locations that are constantly monitored. This move toward increasingly more environmentally sound methods has also increased the efficiency of these sites. Before selecting a site for a landfill, city planners must work with engineers to determine what the effects a landfill will have in the long term.

An additional safety measure came when the EPA examined using alternative materials for landfill “daily cover”. Landfills are required to be covered at the end of each working day, and the original method was to use a layer of soil. This was obviously wasteful of resources, and used up the landfill quickly.

Since the EPA report in 1993, landfills and state regulations have increasingly adopted alternative daily cover (ADC), typically turning to geosynthetic materials such as polyethylene and PVC, which work well both to contain and to filter, and can be manufactured in very large and custom-fitting sheets.

Geomembranes and geotextiles (the “geo” part simply means working with the land) had already been used as part of the liner underneath the landfill. It now became possible to use them as the top cover also.

Landfill Bottom Liners and Top Covers

One of the biggest issues surrounding landfills is their impact on the environment, particularly the potential of contaminants reaching the groundwater supply. To prevent this, a bottom liner is used. While it is well known that placing large qualities of garbage in one location can have long lasting consequence, scientists and engineers continue to work toward better solutions that are more environmentally friendly.

The EPA constantly works to regulate how landfills are designed and managed so that any new discoveries of more environmentally friendly methods can be incorporated quickly. Currently for landfill liners, it requires multiple layers of materials be used for landfills.

The underlying liner of new landfill sites will often consist of a soil or clay layer combined with a geotextile – a synthetic permeable membrane that screens solids out from the ever-present liquid descending from the trash, the “leachate”. This liquid is a severe pollutant and is contained and directed to a treatment process by yet another geosynthetic layer, this one impermeable. And underneath this layer will often be another impermeable layer of dense clay.

Landfill daily cover used to be almost as elaborate, taking 6 inches of soil or clay for each day’s landfill cap. With the continued improvement of geosynthetic materials, these over-engineered solutions can be replaced by a more plastic material. Landfill covers made of a synthetic reinforced polyethylene can create greater safety for the environment, combined with being easier to use, and less costly than other alternative daily covers. They can also be re-used.

Daily cover must contain gasses generated by the garbage, control odor and dust, minimize windblown litter, discourage birds, and prevent pests and the sp[read of disease. Geomembranes do all these things very well, as well as reducing fire risk, improving community tolerance of the landfill, and most importantly, shedding surface water efficiently – thus avoiding adding to the leachate.

The light yet tear-resistant qualities of geosynthetic materials make them easy for operators to install. To further reduce the risk of tears or holes, manufacturers can create the liner in very large or even one piece to fit the landfill size.

The benefit of using this type of cover is that it reusable. This saves cities a lot of money. Also, because operators don’t have to add additional materials to landfill, the lifespan of the site is extended. The combination of a good landfill liner and an alternative daily cover significantly decreases the long term impact the landfill has on the environment.

The federal government provides oversight of landfill operations to ensure that improvements are made Landfilthat make them more environmentally friendly. This involves tracking recycling and composting efforts. Both government and operators are also exploring ways of generating energy from waste processes.

The United States generates 262.4 metric tons of solid waste each year. That number has grown each year – but efforts in recycling and composting have caused it to plateau, and since 2005, the growth has been minimal.

Bottom Line

Landfills are becoming better about preserving the environment. Their efforts, coupled with increased recycling efforts, are improving how waste is managed in the United States. The development of synthetic materials for landfill liners and alternative daily cover has significantly advanced the design and management of landfills.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.

SWM in India – Role of Policies and Planning

Out of all the measures that are necessary in addressing India’s impending waste management crisis, the most efficient will be changes at the national policy and planning level. It is well known among the small but growing waste management sector that urban India will hit rock bottom due to improper waste management.

Solid-Wastes-Management-India

Unfortunately, they think such a crisis is required to bring about policy changes, as they generally tend to happen only after the damage has been done. This attitude is unfortunate because it indicates a lack of or failed effort from the sector to change policy, and also the level of India’s planning and preparedness.

Important Statistics

An average of 32,000 people will be added to urban India every day, continuously, until 2021. This number is a warning, considering how India’s waste management infrastructure went berserk trying to deal with just 25,000 new urban Indians during the last decade. The scale of urbanization in India and around the world is unprecedented with planetary consequences to Earth’s limited material and energy resources, and its natural balance.

Rate of increase in access to sanitation infrastructure generally lags behind the rate of urbanization by 33% around the world; however, the lack of planning and impromptu piecemeal responses to waste management issues observed in India might indicate a much wider gap. This means urban Indians will have to wait longer than an average urban citizen of our world for access to proper waste management infrastructure.

The clear trend in the outbreak of epidemic and public protests around India is that they are happening in the biggest cities in their respective regions. Kolkata, Bengaluru, Thiruvananthapuram, and Srinagar are capitals of their respective states, and Coimbatore is the second largest city in Tamil Nadu. However, long term national level plans to improve waste management in India do not exist and guidance offered to urban local bodies is meager.

Apart from the Jawaharlal Nehru National Urban Renewal Mission (JnNURM), there has been no national level effort required to address the problem. Even though JnNURM was phenomenal in stimulating the industry and local governments, it was not enough to address the scale and extent of the problem. This is because of JnNURM is not a long term financing program, sorts of which are required to tackle issues like solid waste management.

Role of Municipal Corporations

In the short term, municipal corporations have their hands tied and will not be able to deliver solutions immediately. They face the task of realizing waste management facilities inside or near cities while none of their citizens want them near their residences. Officials of Hyderabad’s municipal corporation have been conducting interviews with locals for about eight years now for a new landfill site, to no avail.

In spite of the mounting pressure, most corporations will not be able to close the dumpsites that they are currently using. This might not be the good news for which local residents could be waiting, but, it is important that bureaucrats, municipal officials and politicians be clear about it. Residents near Vellalore dump protested and blocked roads leading to the site because Coimbatore municipal officials repeatedly failed to fulfill their promises after every landfill fire incident.

Due to lack of existing alternatives, other than diverting waste fractionally by increasing informal recycling sector’s role, closing existing landfills would mean finding new sites. Finding new landfills in and around cities is nearly impossible because of the track record of dumpsite operations and maintenance in India and the Not in My Backyard (NIMBY) phenomenon.

However, the corporations can and should take measures to reduce landfill fires and open burning, and control pollution due to leachate and odor and vector nuisance. This will provide much needed relief to adjacent communities and give the corporations time to plan better. While navigating through an issue as sensitive this, it is of the utmost importance that they work closely with the community by increasing clarity and transparency.

Municipal officials at the meeting repeatedly stressed the issue of scarcity of land for waste disposal, which led to overflowing dumpsites and waste treatment facilities receiving more waste than what they were designed for. Most municipal officials are of the sense that a magic solution is right around the corner which will turn all of their city’s waste into fuel oil or gas, or into recycled products.

While such conversion is technologically possible with infinite energy and financial sources, that is not the reality. Despite their inability to properly manage wastes, the majority of municipal officials consider waste as “wealth” when approached by private partners. Therefore, a significant portion of officials expect royalty from private investments without sharing business risk.

Good News on the Horizon

While the situation across India is grim and official action has to be demanded through courts or public protests, there are a handful of local governments which are planning ahead and leading the way. The steps taken to solve New Delhi’s waste management problem is laudable. If it was not for the kind of leadership and determination showcased in Delhi, India would not have had its only operating WTE plant. This plant was built in 2011, at a time when the need for waste-to-energy plants was being felt all over India. 1300 tons of Delhi’s waste goes into this facility every day to generate electricity. The successful operation of this facility reinvigorated dormant projects across the nation.

After living with heaps of garbage for months, Thiruvananthapuram Municipal Corporation started penalizing institutions which dump their waste openly. It has also increased the subsidy on the cost of small scale biogas units to 75% and aerobic composting units to 90% to encourage decentralized waste management. The corporation is optimistic with the increase in number of applications for the subsidy from 10 in an entire year to 18 in just a few months after the announcement.

In Bengaluru, improper waste management led to the change of the city’s municipal commissioner. The new commissioner was handed over the job to particularly improve waste management in the city. As a response to the dengue outbreak in Kolkata, the state’s Chief Minister went door to door to create awareness about waste management, and also included the topic in her public speeches. For good or bad, many cities in India have started or initiated steps for banning plastics without performing life cycle analyses.

5 Interesting Facts About Waste-to-Energy Projects

Waste-to-energy (also known as energy-from-waste) is a complicated technology in the realm of renewable energy. There are a lot of hidden truths and myths about this technology that people need to be aware of. Renewable energy technologies, like solar and wind, have much more simple processes and gain most of the attention from media outlets.

On the converse, renewable energy sources that are highly complex like nuclear energy have a bunch of media attention as well.

So, why don’t we discuss a bit more about this relatively unknown technology and asset class? Here I’ll discuss a number of the most important facts about waste-to-energy (abbreviated as WTE).

Interesting Facts About Waste-to-Energy

Let’s get into our facts about waste-to-energy that you need to know.

  1. Waste-to-Energy Can Provide Baseload Power

The most familiar renewable energy resources such as wind and solar can only provide power if the sun is shining or the wind is blowing. WTE projects can actually provide baseload power that is used to serve consumers and the grid no matter the time of day or if the sun is shining or not.

Baseload power is essentially when intermittent resources like solar and wind become more prevalent.

  1. Not All WTE Projects are Clean and Green

While waste-to-energy projects would seem to be green and clean because they turn trash into power or gas. However, some projects require long hauling of trash to bring to the actual incineration facility. This actually ends up require much more emissions from the trash haulers than alternatives.

One solution to this would be to help promote the use of electric vehicles and electric vehicle technology to be installed in trucking, like waste hauling.

  1. WTE Projects Are Crucial to Help Reduce Landfills

Landfills have increased at an exponential pace the in last 100 years. Waste-to-energy projects are an awesome alternative to landfills as the trash is used to provide electricity or fuel.

WTE projects reduce waste volumes by approximately 90%, which results in fewer landfills that are needed to process ash. This ends up protecting our natural resources and land in a dramatic fashion.

  1. Most WTE Projects have Multiple Revenue Streams

Waste-to-energy projects are extremely complicated and expensive to build. Most of the investor economic interest is driven by financial incentives, renewable identification numbers, tax credits, etc. to help these projects get financed.

Beyond these other financial incentives, some of the waste-to-energy projects produce a byproduct, named biochar, which has multiple applications and fetches good prices. The biochar can usually end up providing the most value in the revenue stream or investability of the project itself.

In addition to other economic streams, waste-to-energy projects usually require high tipping fees. A tipping fee is what the trash hauler has to pay in order to dump the trash at the facility. With WTE projects, the tipping fee can end up being 50-60% of the overall revenue stack.

  1. WTE Facilities are Net Greenhouse Gas Reducers

Methane has more than 20 times the potency of carbon dioxide and is ranked as a very dangerous contributor to climate change and warming of our planet. WTE facilities avoid the productions of methane and end up producing up to 10 times more the electricity than landfill gas projects. If you didn’t know, landfills can actually end up producing electricity by capture the methane gas and compressing it into a consumable natural gas for power.

Sysav–WTE-plant-Sweden

Sweden is one of the best proponents of waste-to-energy in the world

WTE projects will usually have much more capacity than any landfill gas projects.

Conclusions

You can’t use waste-to-energy projects at your home similar to solar or even wind to get free electricity. However, knowing about projects in your area and the relevant suppliers will help you understand whether or not the technology is a perfect fit for your community. If you see a project coming online in your surrounding area, you should know how to ask the right questions.

At the end of the day, WTE projects are green and clean. They just need to have the right systems in place to make them more efficient and less risky to appeal new investor appetite. What fact was your favorite about waste-to-energy?

Do you know much about waste-to-energy projects? Let us know in the comments below. We’d love to hear from you.