About Emily Folk

Emily Folk is freelance writer and blogger on topics of renewable energy, environment and conservation. You may read more of her work on http://www.conservationfolks.com. Follow her on Twitter @EmilySFolk

Unending Benefits of Biomass Energy

Biomass is material originating from plant and animal matter. Biomass energy uses biomass to create energy by burning organic materials. The heat energy released through burning these materials can heat homes or water. Heated water produces steam, which in turn can generate electricity. Using organic materials to create heat and power is an eco-friendlier alternative compared to using fossil fuels.

Indefinitely Renewable

The majority of the world’s energy comes from burning fossil fuels. Fossil fuels are a finite resource. Once fossil fuel resources run out, new fuel sources will be needed to meet global energy demands. Biomass offers a solution to meet this need.

Organic waste material from agriculture and logging operations, animal manure, and sludge from wastewater treatment are all viable fuels for generating biomass energy. As long as the earth is inhabited, these materials will be readily available.

Reduce, Reuse, Recycle

Waste organic material that would typically be disposed of in landfills could be redirected for biomass energy use. This reduces the amount of material in landfills and slows the rate at which landfills are filled. Some of the most common waste products used for biomass energy are wood chips and agricultural waste products. Wood materials can easily be converted from already existing wood structures that will be destroyed, such as wooden furniture and log cabins, preferably both would also come from responsible logging and practices as well.

As more organic material is diverted from landfills, the number of new landfills needed would be reduced. Older landfills are at risk for leaking leachate. Leachate contains many environmental pollutants that can contaminate groundwater sources.

Burning fossil fuel releases carbon into the atmosphere which was previously trapped below ground. Trapped carbon isn’t at risk for contributing to global climate change since it can’t interact with air. Each time fossil fuels are burned, they allow previously trapped carbon to enter the atmosphere and contribute to global climate change. In comparison, biofuel is carbon-neutral.

The materials used to create biomass energy naturally release carbon into the environment as they decompose. Living plants and trees use carbon dioxide to grow and release oxygen into the atmosphere. Carbon dioxide released by burning organic material will be absorbed by existing plants and trees. The biomass cycle is carbon-neutral as no new carbon is introduced to the system.

Smaller Carbon Footprint

The amount of unused farmland is increasing as agriculture becomes more efficient. Maintaining open land is expensive. As a result, farmers are selling off their property for new developments. Unused open agricultural land could be used to grow organic material for biofuels.

Converting open tracts of land to developed areas increases the amount of storm-water runoff. Storm-water runoff from developed areas contains more pollutants than storm-water runoff from undeveloped areas. Using open areas to grow biomass sources instead of creating new developments would reduce water pollution.

Biomass-Resources

A quick glance at popular biomass resources

Forested areas also provide sources of biofuel material. Open land converted to sustainable forestry would create new animal habitats and offset carbon emissions from existing fossil fuel sources as more plants and trees would be available to absorb carbon dioxide.

Societal Benefits

Burning fossil fuels releases sulfur dioxide, mercury and particulate matter into the atmosphere which can cause asthma, cancer and respiratory problems. Biomass energy emits less harmful byproducts compared to fossil fuels, which means cleaner air and healthier people.

Biofuel can improve rural economies by providing more people with unused land the opportunity to grown biomass material for energy use. Workers would be needed to harvest and process the materials needed to generate biofuel.

Since biofuel is a renewable energy source, energy providers can receive tax credits and incentives. Countries with land resources will be less reliant on foreign fossil fuel providers and can improve their local economies.

Increasing biofuel energy usage can reduce forest fires. Selectively reducing brush can still reduce the risk of wildfires spreading. Exposing underbrush and groundcover to rainfall decreases the change of it drying out and creating optimal, fire spreading conditions.

Denmark and Biomass Energy

Denmark is an example of how effective biomass energy can be in developing energy efficiency. Approximately 70 percent of renewable-energy consumption in Denmark comes from biomass.

Woody biomass creates an increasing percentage of heating from combined heat and power (CHP) plants with a goal to for 100 percent of hearing to be derived from woody biomass by 2035. Another form of biomass is agricultural biomass. This form utilizes materials such as straw and corn to create end-products like electricity, heating and biofuels.

The Danish Energy Agency has developed a plan including four scenarios that will help Denmark become fossil fuel free by 2050. The biomass scenario involves CHP for electricity and district heating, indicating that biomass energy is important in Denmark’s energy sector today and will play an increasingly important role in the future.

Biomass offers an eco-friendly and renewable method of reducing pollution and the effects of global climate change. And, like other forms of renewable energy, the products needed to develop biomass energy are readily available.

Is Aquaculture the Answer to World Hunger?

aquaculture-fish-farmsFeeding a growing world population could become problematic, but aquaculture might hold the key. If humans are anything, we are resourceful. We see a problem with the world, and we do what we can to fix it.  When being nomadic and following food sources was no longer sustainable, we solved the problem by developing agriculture.  Currently, as the population continues to grow and our taste for seafood increases, we’re trying to find ways to meet demand and, at the same time, sustain wild populations of fishes.

Aquaculture is the answer to this current dilemma. Farming fish for food has been around since about 2000 B.C. Since then, technology has helped it advanced and developed better techniques to raise fish for food.

Benefits of Aquaculture

Fish is a great source of protein, and it also contains essential minerals including potassium, zinc, iodine and magnesium. Fish are also rich in phosphorus and calcium. For a healthy heart, the American Heart Association recommends eating fish twice a week.

The health benefits of fish are more than enough reason to eat them, but they are also a delicious meal. There is a large variety of fish to choose from, including freshwater and saltwater varieties. However, the increased amount of people eating fish has had an impact on wild populations. To prevent certain species from being overfished, it is important to find an alternative to providing fish to people, and that includes aquaculture.

Different types of aquaculture must be used to raise different species of fish. Large companies can engage in aquaculture on an industrial scale with fish held in tanks or in pens in lakes, ponds or even the ocean. Families can even perform aquaculture in their backyard.  The variety of fish that you can raise for food includes catfish, bait minnow, trout, carp and tilapia, among others.  It’s also possible to raise shellfish, including oysters and shrimp. Want to try your hand at growing water plants?  You can also use aquaculture principles for water chestnuts and red and brown algae.

Studies have shown that marine aquaculture has the potential to produce 16.5 billion tons of fish per year, which is more than enough to feed the growing population and meet nutritional needs.

Different types of aquaculture must be used to raise different species of fish.

Different types of aquaculture must be used to raise different species of fish.

In some areas, such as parts of Africa, aquaculture has made an enormous impact on the local community’s economy and employment as well. The food produced helps to sustain Africa’s growing population and provides local jobs with steady income.

The Downside of Aquaculture

While it has the potential to feed hungry communities and contribute to local economies, there are some problems associated with aquaculture. Having too many fish in a tank can lead to the spread of disease.  Also, the type of feed the fish eat can impact how healthy they are for humans. Keeping fish in pens in lakes, ponds or the ocean might cause the spread of parasites to wild populations.  Farmed fish could also escape their enclosure and, as a result, alter the natural ecosystem.

Recognizing the shortcomings of aquaculture is the first step to remedying its problems. As technology and farming practices advance and techniques improve, it’s possible that we will resolve many of these issues. This will lead to greater benefits for the human population that depends on fish for food.

Humans have the ingenuity and drive to make the world a better place for themselves and others. Population growth isn’t going to slow down any time soon, and we need to make sure everyone is taken care of and has enough to eat. While aquaculture has its pros and cons, it can be a sustainable and economic way to feed hungry people.  In time, it may even be the answer to world hunger.

Tackling China’s Smog Problem with Renewable Energy

smog-chinaChina is currently facing serious environmental problems, with potentially few solutions. Currently, this is mostly taking the form of serious smog issues plaguing North China, with more than 24 cities on red alert. However, with airports being shut down due to lacking visibility and the economy of China being heavily disrupted, action needs to be taken to solve this serious smog problem.

While limited action has been taken, perhaps renewable energy is the key to cutting down China’s smog.

How Bad Is the Problem?

The smog problem in China has become increasing worse from 2015 to 2017, with more than 90 micrograms of pollution per meter squared. These levels of air pollution are similar to the levels recorded previous to 2014, when the Chinese premier declared a war on pollution due to the health dangers posed by rising air pollution levels.

However, since 2015, levels of air pollution have risen once again. This pollution has had hard hitting effects on urban areas, especially the Chinese capital Beijing, and has caused widespread disruption to the lives of Chinese citizens and economy of the country.

The air pollution leads to the cities becoming hotter than ever. Urban Heat Island effect, which refers to buildings absorbing the sun’s heat well, is exacerbated by the smog. In fact, a car in the heat can reach temperatures of 114 degrees Fahrenheit after just 20 minutes, making travelling on hot days nearly unbearable for any living creature. In order to decrease the heated condition of China, it is essential to decrease the amount of smog covering the cities.

What Has the Chinese Government Done?

The Chinese government has taken limited action in an attempt to minimize the air pollution being created in the country. This includes the Atmospheric Pollution Prevention Plan, which acknowledged the danger posed by air pollution levels and aimed to reduce coal usage in urban areas like Beijing.

However, this is not representative of the main action the government has taken. Primarily, the Chinese government has focused on individual areas and attempting to reduce local pollution levels through efficient coal burning and banning the burning of waste materials, especially on farms. These solutions, while effective on a short-term basis, are not all that is needed, though.

Investment in renewables can reduce China's dependence on coal for power generation

Investment in renewables can reduce China’s dependence on coal for power generation

China needs to reduce its overall usage of coal produced energy, which currently stands at 64 percent of total energy consumption. While this has already been happening in China, the further introduction of renewable energy could be of great help to China’s pollution levels.

How Could Renewable Energy Help?

Many people believe renewable energy to be a small affair, something undertaken by the Western world in a vain attempt to reduce our collective guilt concerning climate change and wastage levels. This is simply not the case. Renewable energy is a $120 billion industry that receives investment and application across the world. This includes solar energy, waste-to-energy technology, wind energy, hydroelectric energy and many more attempts to reduce overall energy usage.

Through investment in renewable energy, China could reduce its dependence on coal and increase the efficiency of its energy production and economy. Smog is directly created by China’s use of coal for its energy production, and by investing in other renewable means, China can simultaneously improve its health situation.

In fact, the obviously positive nature of investment in renewable energy can be clearly seen through the Chinese government’s already existing plans to further incorporate it into the economy. In the five-year plan announced in 2016, the Chinese government explicitly stated it would decrease air pollution levels through investment in wind, solar and biomass energy production technologies.

While the plans additionally included investment in making the coal industry more efficient and reducing emissions on an industrial and commercial level, clearly renewable energy is believed to be a valid alternative energy source.

Overall, it is clear that renewable energy can certainly help with China’s serious smog problem. Whether this should be in tangent with further investment in the coal industry or necessitate the end of widespread coal usage in China is still a question for debate.

About the Author

Emily Folk is freelance writer and blogger on topics of renewable energy and conservation. To get her latest posts, check out her blog Conservation Folks, or follow her on Twitter.

Renewable Energy and its Applications

renewables-applicationsRenewable energy. Clean energy. Green energy. Sustainable energy. Alternative Energy. Renewal Energy. No matter what you call it, energy such as wind, solar, biomass and hydroelectric is having an impact on your life and could have an even bigger impact in the future. Renewable energy, in the most basic terms, is precisely what it sounds like. It’s power that comes from sources that regenerate, unlike fossil fuels, which only exist in a limited amount.

From 2000 to 2016, the use of renewables in the United States more than doubled and is expected to continue to grow. In 2016, they made up about 10 percent of total energy consumption and 15 percent of electricity generation. Consumption of renewable energy has grown in large part due to government incentives and requirements for renewable energy and the desire to switch to cleaner fuel in order to protect the environment.

There are a number of different sources of renewable energy in use today. Here are some of the most common ones.

Solar Energy

The U.S. solar industry has grown at an average annual rate of 68 percent over the last decade in the form of rooftop solar panels for individual buildings, solar farms built by utility companies and community solar projects, which produce solar for energy users in a certain area through a collection of solar panels.

In Australia the solar industry is also increasing with a record breaking 3.5 million panels installed last year. Queensland was the leader in solar panels that were installed.

Solar photovoltaic panels capture sunlight and convert it directly into electricity, which can power a small device such as a watch or sent into the grid to be distributed to a utility’s customers.

Wind Energy

People have been using windmills to utilize the wind’s energy for a long time, but today wind turbines are used to capture that energy and turn it into electricity. There are approximately 53,000 wind turbines operating in the United States today.

Wind turbines consist of a large tower, which is often around 100 feet tall, and several blades that use the power of the wind to spin. The blades are connected to a shaft that spins a generator in order to create electricity.

Like solar energy, power generated with wind can either be used for a specific application such as pumping water or powering a farm, or transferred into the electrical grid to meet other energy needs.

Biomass Energy

Biomass is another common form of renewable energy. Biomass is any natural substance such as wood, plant matter, gas from landfills and even municipal solid waste that contains stored energy from the sun.

When those substances are burned, they release that energy, which can be used as heat or fuel. Biomass can also be made into a liquid or gas that can be used as fuel.

Bioliquids, such as ethanol and biodiesel, are frequently used to power vehicles. Around 40 percent of the corn grown in the U.S. today is used for biofuels. Researchers are currently exploring new ways biomass can be used and additional substances that could be used for biomass energy.

Hydro Energy

Hydropower, energy generated with water, is one of the oldest and the most common renewable energy resource in the U.S., making up 6.5 percent of utility-scale electricity generation and 44 percent of generated renewable energy.

When water flows, it produces energy. We capture this energy by allowing moving water in rivers, waterfalls or elsewhere to turn generators that produce electricity. Hydroelectric plants can also be man-made, as is the case with dams. Man-made reservoirs hold water through the use of dams. That water is then released to flow through a turbine and create electricity.

Benefits Galore

The main benefit of renewable energy sources is the fact that they release very little greenhouse gases and so are better for the environment. Because electricity makes up the largest share of our greenhouse gas emissions, changing how we get our energy is crucial in the fight against global warming.

Biofuels are increasingly being used to power vehicles

Biofuels are increasingly being used to power vehicles

Another key advantage is the fact that they are renewable, which means we won’t ever run out of them. This stability could make access to energy more stable in the future. It can also keep energy prices more predictable, because the markets are subject to changes in supply.

Renewable energy is also flexible and can power large areas or single homes. Additionally, renewable energy projects create a number of well-paying jobs and tend to have a significant economic impact.

Key Drawbacks

Just like with fossil fuels, there are some disadvantages as well. Renewable energy plants are subject to fluctuations in wind, sunlight and other natural resources, meaning some days or in some particular months, a facility might produce more electricity than others. Today, in areas where renewables are common, fossil fuels are often used to make up any shortcoming in renewable energy production.

Due to their reliance on natural occurrences, renewables may fare better in some areas than others. An area with lots of direct sun all day long will be more suitable for a solar plant than somewhere that’s often dark and cloudy. Renewable energy farms also often require large areas of land, and while renewable energy tends to be cheap, initial construction and development costs can be quite high.

Despite these disadvantages, renewables are proving an important part of the energy mix of today and of the future, especially in the face of environmental concerns and worry about the availability of fossil fuels. Chances are we won’t see the end of the growing renewable energy industry any time soon.

About the Author

Emily Folk is a freelance writer and blogger on topics of renewable energy and conservation. To get her latest posts, check out her blog, Conservation Folks, or follow her on Twitter.

Zero Waste Trends to Watch

Most people have heard about concepts such as single-stream recycling, but there’s another approach known as zero waste. People who support the concept of zero waste agree that, in a broader sense, it means reducing dependence on landfills and increasing reliance on material recovery facilities. But, after that, the definition varies primarily based on industries, manufacturers and even entire countries.

Even so, there are inspiring trends that show how people and companies are working hard to reduce the amount of waste produced, thereby getting ever closer to that desirable zero benchmark. Below are some of the major trends taking place across the world in the field of zero waste:

More Reusable Packaging

We live in a world where it’s possible to order almost anything online and have it quickly arrive on a doorstep — sometimes the same day a person placed the order. And, society loves the convenience, but the dependence on delivered products causes an increase in packaging materials.

It is often astounding how many packing peanuts, layers of bubble wrap and cardboard cartons come with the things we buy. And, the manufacturers and shipping companies consistently bring up how boxes get dropped or otherwise mishandled during transit, making the extraordinary amounts of protective packaging products necessary.

On a positive note, a company called Limeloop makes a shipping envelope designed from recycled billboard wrapping people can reuse thousands of times. Another company called Returnity communicates with distributors to urge them to use the establishment’s boxes and envelopes, both of which people can rely on dozens of times instead of throwing them away after single uses.

If you are a business looking to adopt eco-friendly practices, you should read this article on green packaging methods.

Ceramic Mugs in British Coffee Shops

In some regions of the world, customers who visit coffee shops don’t get asked whether they’ll be drinking their coffee on site or taking it with them to go. However, many leading coffee shops in the United Kingdom find out that detail from customers who order drinks, then serve the beverages in non-disposable mugs to people who’ll enjoy their purchases on the spot.

Also, all 950 Starbucks locations in Great Britain recently began charging customers five cents for getting their drinks in disposable cups. Conversely, it rewards them by taking 25 cents off the costs of their orders when they bring reusable cups into the stores.

Creative Ways to Cut Down on Farm Waste

Manure (or fertilizer) is a reality on farms around the world. And, the commercially bought versions of it contribute to excessive waste and inflated costs. Some even harm future growth when farmers apply manure too heavily and negatively affect the soil’s balance.

But, besides avoiding commercially-sold manure and not applying it excessively if used, what else can people in the agriculture sector do to make farm waste more manageable? They can look for unique outlets that may want to buy it.

One startup uses a detailed manure-refining process to extract the cellulose from cow dung. Business representatives then use the cellulose — a byproduct from the grass and corn cows eat — for a new kind of fabric.

What about using animal waste for energy? A forward-thinking farmer did that with his manure lagoons, making them produce biogas that powers homes.

These unusual solutions highlight unconventional use cases for animal droppings, such as poultry litter, that support zero-waste goals, provided farmers want to explore them.

An Uptick in Reusable Food Containers

People often pack their lunches in plastic containers before heading off to work, but when they get food delivered or pick it up from a provider to eat at home later, the associated containers usually fill up garbage cans after people chow down.

Some facilities are trying to change that. At The University of California Merced campus, a pilot program occurred where students who stopped by dining halls for meals to take away brought reusable containers with them. After people ate the food from them, they could return them to get washed and ready for future meals.

Moreover, a pizza restaurant in Wales provides an aluminum box for people to use again and again when taking their pies home. One of the problems with cardboard pizza containers is they can’t be recycled when contaminated with grease. However, people can buy the metal ones for a small, one-time fee.

Opt for reusable containers for food and beverages

Then, by using them, they get 50-cent discounts on their pizza. The restaurant also backs the boxes with a lifetime guarantee and will replace them for no charge if necessary due to breakage or damage. Also, because metal conducts heat, the material helps pizza stay hotter for longer than it would in cardboard boxes.

Innovations to Complement Commitment

Adhering to a zero waste lifestyle undoubtedly requires dedication and a willingness to look beyond old habits. However, for people who show those characteristics, numerous inventions and improvements make it easier to do away with the throw-away culture.

Zero-Waste Trends in the United States

Most people don’t see what happens to their trash. They throw it in a black plastic bag, toss the bag into a dumpster and the trash man collects it once a week and makes it disappear. Magic, right?

Wrong.

Most of our trash ends up in a landfill where it is buried and mixed in with decades-worth of junk. Certain items will break down over time while others are essentially just stored there, in a graveyard of forgotten items and a mountain of garbage.

In the year since China banned the import of other countries’ plastic recyclables, the global recycling industry has been in flux, resulting in plastics ending up in landfills, incinerators and littering the environment. This is causing countries and citizens across the globe to reexamine their recycling systems and highlights the need for zero waste practices.

Zero waste is the concept of eliminating the amount of trash thrown away by only purchasing reusable items. That’s a significant shift from the 4.4 pounds of trash that the average American tosses every day. But certain trends are helping make the idea of zero waste a reality in the United States. Let us have a look:

Replace Single-Use Packaging With Reusable Materials

Way too many plastic items that we use every day are meant to be used only once. And the amount of packaging that goes into shipping one box, that will simply get tossed in the garbage after the parcel is unwrapped, is astounding. In fact, 40 percent of plastic produced is packaging, which is thrown away after it arrives at your doorstep.

Plastic bag and straw bans are on the rise across the globe. Consumers are becoming more conscious of how their use of these items contributes to the trash crisis. Recent data shows that customers are more likely to buy products from brands that promote sustainable business practices.

Reduce Energy Waste By Choosing Renewable Options

Many industries are opting to reduce energy waste by pursuing renewable energy sources. U.S. manufacturers account for 30 percent of the nation’s energy consumption, which means manufacturers must take the lead in reducing fossil fuel consumption and energy waste.

The U.S. is the leader in energy waste. Americans spend $350 billion on energy costs each year, yet three-quarters of that energy goes to waste. One way to reduce the burden on our power grid — and our wallets — from all that lost energy is by switching to renewable sources.

Air compressors are vital to the upkeep of a successful farm, and many producers in the agricultural sector are also reducing waste by switching to high-powered air compressors that, when properly maintained, can reduce energy usage and cut costs.

Eliminate Food Waste

About 94 percent of food waste ends up in landfills, which contribute to methane gas emissions. Reducing food waste not only helps the environment, but it also decreases the amount you have to spend at the grocery store. It also helps to conserve energy, as less power is needed to grow and produce food if less is wasted.

Individual consumers can help eliminate food waste by freezing leftovers to preserve them and composting uneaten food, as opposed to tossing in the trash.

Restaurants can use these tactics and others to cut down on food waste, such as donating leftovers and properly training staff to get on board with waste reduction. They can also hire auditors to help them identify ways to reduce waste and streamline business practices.

Never Too Late to Make a Change

Though the statistics may seem disheartening, the reality is that it’s never too late to make a change in your individual or business habits to help cut down on waste and work toward the goal of accomplishing zero waste. Following these trends and implementing others is just one way to do your part to eliminate waste and protect the environment.

Biomethane from Food Waste: A Window of Opportunity

food-waste-behaviorFor most of the world, reusing our food waste is limited to a compost pile and a home garden. While this isn’t a bad thing – it can be a great way to provide natural fertilizer for our home-grown produce and flower beds – it is fairly limited in its execution. Biomethane from food waste is an interesting idea which can be implemented in communities notorious for generating food wastes on a massive scale. Infact, the European Union is looking for a new way to reuse the millions of tons of food waste that are produced ever year in its member countries – and biomethane could be the way to go.

Bin2Grid

The Bin2Grid project is designed to make use of the 88 million tons of food waste that are produced in the European Union every year. For the past two years, the program has focused on collecting the food waste and unwanted or unsold produce, and converting it, first to biogas and then later to biomethane. This biomethane was used to supply fueling stations in the program’s pilot cities – Paris, Malaga, Zagreb and Skopje.

Biomethane could potentially replace fossil fuels, but how viable is it when so many people still have cars that run on gasoline?

The Benefits of Biomethane

Harvesting fossil fuels is naturally detrimental to the environment. The crude oil needs to be pulled from the earth, transported and processed before it can be used.  It is a finite resource and experts estimate that we will exhaust all of our oil, gas and coal deposits by 2088.

Biomethane, on the other hand, is a sustainable and renewable resource – there is a nearly endless supply of food waste across the globe and by converting it to biomethane, we could potentially eliminate our dependence on our ever-shrinking supply of fossil fuels. Some companies, like ABP Food Group, even have anaerobic digestion facilities to convert waste into heat, power and biomethane.

Neutral Waste

While it is true that biomethane still releases CO2 into the atmosphere while burned, it is a neutral kind of waste. Just hear us out. The biggest difference between burning fossil fuels and burning biomethane is that the CO2 that was trapped in fossil fuels was trapped there millions of years ago.  The CO2 in biomethane is just the CO2 that was trapped while the plants that make up the fuel were alive.

Biofuel in all its forms has a bit of a negative reputation – namely, farmers deforesting areas and removing trees that store and convert CO2 in favor of planting crops specifically for conversion into biofuel or biomethane. This is one way that anti-biofuel and pro-fossil fuel lobbyists argue against the implementation of these sort of biomethane projects – but they couldn’t be more wrong, especially with the use of food waste for conversion into useful and clean energy.

Using biogas is a great way to reduce your fuel costs as well as reuse materials that would otherwise be wasted or introduced into the environment. Upgrading biogas into biomethane isn’t possible at home at this point, but it could be in the future.

If the test cities in the European Union prove successful, biomethane made from food wastes could potentially change the way we think of fuel sources.  It could also provide alternative fuel sources for areas where fossil fuels are too expensive or unavailable. We’ve got our fingers crossed that it works out well – if for no other reason that it could help us get away from our dependence on finite fossil fuel resources.

Benefits of Biodegradable Packaging for Businesses

Consumers want companies to reflect their values. They’re far more likely to purchase from a business with an identity, whether it manifests in charitable efforts or eco-friendly practices. As a greater number of people show interest in green living, biodegradable packaging presents an opportunity for growth.

That said, the virtues of biodegradable packaging extend beyond an improved public image. While business owners enjoy the superficial advantages of this transition, they often find it’s only a fraction of what the shift entails. Through switching to biodegradable plastics, they see considerable changes elsewhere.

bioplastics

In this article, we’ll detail five of those changes, exploring the subject to lend business owners a better understanding of biodegradable packaging within their operation. As we touch on the benefits, it’ll become clear that eco-friendly materials aren’t only better for the environment, but better for a company’s bottom line.

Free of Toxins & Allergens

Biodegradable packaging options are still somewhat limited, but most of the available materials are non-toxic and allergy-free. This is an essential consideration to consumers who care about the products they’re purchasing and the composition of their packaging. If either is potentially harmful, it hurts a business.

An informed consumer will almost invariably choose products packaged with bioplastic over traditional alternatives, aware of the implications of their purchase. Considering the negative health effects of phthalates — a common chemical in plastic packaging — business owners should be aware of the implications as well.

Require Fewer Resources

Biodegradable packaging has the potential to reduce water usage, solid waste, electricity and emissions. This is beneficial for the environment, of course, but it also lowers expenses associated with the packaging process. Over time, the accumulated savings prove well worth the cost of the transition.

If a company were to replace their standard packaging materials with bioplastic, they would enjoy weight savings on par with regular plastic. Research shows plastic packaging enables weight savings of over 78 percent compared to alternative materials, a notable statistic for business owners looking to convert.

Lower Production Costs

Most biodegradable materials follow the three basic R’s of sustainability.

  1. A business can reduce them, using fewer resources to create thinner and tougher materials which do the same job.
  2. A business can reuse them, taking advantage of materials with special coating which improves their durability.
  3. A business can recycle them, diverting refuse from landfills as they minimize the costs of new materials.

A business owner who invests in biodegradable packaging can cut costs by a significant margin, using fewer resources, reusing their inventory and purchasing inexpensive recycled materials. In doing so, they’ll see reduced packaging expenses over time, and more freely allocate their money elsewhere.

Reduced Footprint

A business owner has financial goals they have to meet, but they have environmental goals as well. Every professional in an upper-management position has a responsibility to ensure their company meets high standards of environmental compliance, and biodegradable packaging can help — outside a legal context.

To reinforce an earlier point, 70 percent of consumers between the ages of 15 and 20 want to buy goods from companies committed to sustainability, and biodegradable plastics affect the appeal of businesses which would otherwise see less attention. To reduce emissions and increase interest, change is necessary.

Convenient Disposal

Recyclable, compostable and biodegradable packaging simplifies disposal for the consumer. It affords them more options in discarding these materials, and companies should always seek to make their products convenient, from start to finish. Biodegradable materials exemplify this mindset.

For example, consumers who prefer to compost their refuse won’t have to make exceptions for packaging. They can add biodegradable packaging to their compost in much the same way they would with any other compost-friendly material, contributing to the product’s value beyond its primary utility.

Looking Toward the Future

When reviewing the benefits listed above, business owners should feel confident in their decision to adopt biodegradable packaging. More than superficial benefits, they’ll enjoy reduced costs and carbon emissions while increasing consumer convenience and reducing plastic pollution. The advantages are clear.

Looking toward the future, it’s safe to speculate more companies will transition toward eco-friendly practices. With this in mind, taking action now is the best option, and though biodegradable packaging is a small step, it’s an important one.

Biogas Prospects in Rural Areas: Perspectives

Biogas, sometimes called renewable natural gas, could be part of the solution for providing people in rural areas with reliable, clean and cheap energy. In fact, it could provide various benefits beyond clean fuel as well, including improved sanitation, health and environmental sustainability.

What Is Biogas?

Biogas is the high calorific value gas produced by anaerobic decomposition of organic wastes. Biogas can come from a variety of sources including organic fraction of MSW, animal wastes, poultry litter, crop residues, food waste, sewage and organic industrial effluents. Biogas can be used to produce electricity, for heating, for lighting and to power vehicles.

Using manure for energy might seem unappealing, but you don’t burn the organic matter directly. Instead, you burn the methane gas it produces, which is odorless and clean burning.

Biogas Prospects in Rural Areas

Biogas finds wide application in all parts of the world, but it could be especially useful to developing countries, especially in rural areas. People that live in these places likely already use a form of biomass energy — burning wood. Using wood fires for heat, light and cooking releases large amounts of greenhouse gases into the atmosphere.

The smoke they release also has harmful health impacts, particularly when used indoors. You also need a lot to burn a lot of wood when it’s your primary energy source. Collecting this wood is a time-consuming and sometimes difficult as well as dangerous task.

Many of these same communities that rely on wood fires, however, also have an abundant supply of another fuel source. They just need the tools to capture and use it. Many of these have a lot of dung from livestock and lack sanitation equipment. This lack of sanitation creates health hazards.

Turning that waste into biogas could solve both the energy problem and the sanitation problem. Creating a biogas system for a rural home is much simpler than building other types of systems. It requires an airtight pit lined and covered with concrete and a way to feed waste from animals and latrines into the pit. Because the pit is sealed, the waste will decompose quickly, releasing methane.

This methane flows through a PCV pipe to the home where you can turn it on and light on when you need to use it. This system also produces manure that is free of pathogens, which farmers can use as fertilizer.

A similar but larger setup can provide similar benefits for urban areas in developing countries and elsewhere.

Benefits of Biogas

Anaerobic digestion systems are beneficial to developing countries because they are low-cost compared to other technologies, low-tech, low-maintenance and safe. They provide reliable fuel as well as improved public health and sanitation. Also, they save people the labor of collecting large amounts of firewood, freeing them up to do other activities. Thus, biomass-based energy systems can help in rural development.

Biogas also has environmental benefits. It reduces the need to burn wood fires, which helps to slow deforestation and eliminates the emissions those fires would have produced. On average, a single home biogas system can replace approximately 4.5 tons of firewood annually and eliminate the associated four tons of annual greenhouse gas emissions, according to the World Wildlife Fund.

Biogas is also a clean, renewable energy source and reduces the need for fossil fuels. Chemically, biogas is the same as natural gas. Biogas, however, is a renewable fuel source, while natural gas is a fossil fuel. The methane in organic wastes would release into the atmosphere through natural processes if left alone, while the greenhouse gases in natural gas would stay trapped underground. Using biogas as a fuel source reduces the amount of methane released by matter decomposing out in the open.

What Can We Do?

Although biogas systems cost less than some other technologies, affording them is often still a challenge for low-income families in developing countries, especially in villages. Many of these families need financial and technical assistance to build them. Both governments and non-governmental organizations can step in to help in this area.

Once people do have biogas systems in place though, with minimal maintenance of the system, they can live healthier, more comfortable lives, while also reducing their impacts on the environment.

Progress of Waste-to-Energy in the USA

Rising rates of consumption necessitate an improved approach to resource management. Around the world, from Europe to Asia, governments have adapted their practices and policies to reflect renewability. They’ve invested in facilities that repurpose waste as source of energy, affording them a reliable and cheap source of energy.

This seems like progress, given the impracticality of older methods. Traditional sources of energy like fossil fuels are no longer a realistic option moving forward, not only for their finite nature but also within the context of the planet’s continued health. That said, the waste-to-energy sector is subject to scrutiny.

We’ll detail the reasons for this scrutiny, the waste-to-energy sector’s current status within the United States and speculations for the future. Through a concise analysis of obstacles and opportunities, we’ll provide a holistic perspective of the waste-to-energy progress, with a summation of its positive and negative attributes.

Status of Waste-to-Energy Sector

The U.S. currently employs 86 municipal waste-to-energy facilities across 25 states for the purpose of energy recovery. While several have expanded to manage additional waste, the last new facility opened in 1995. To understand this apparent lack of progress in the area of thermochemical treatment of MSW, budget represents a serious barrier.

One of the primary reasons behind the shortage of waste-to-energy facilities in the USA is their cost. The cost of construction on a new plant often exceeds $100 million, and larger plants require double or triple that figure to build. In addition to that, the economic benefits of the investment aren’t immediately noticeable.

The Palm Beach County Renewable Energy Facility is a RDF-based waste-to-energy (WTE) facility.

The U.S. also has a surplus of available land. Where smaller countries like Japan have limited space to work within, the U.S. can choose to pursue more financially viable options such as landfills. The expenses associated with a landfill are far less significant than those associated with a waste-to-energy facility.

Presently, the U.S. processes 14 percent of its trash in waste-to-energy (WTE) plants, which is still a substantial amount of refuse given today’s rate of consumption. On a larger scale, North America ranks third in the world in the waste-to-energy movement, behind the European nations and the Asia Pacific region.

Future of WTE Sector

Certain factors influence the framework of an energy policy. Government officials have to consider the projected increase in energy demand, concentrations of CO2 in the atmosphere, space-constrained or preferred land use, fuel availability and potential disruptions to the supply chain.

A waste-to-energy facility accounts for several of these factors, such as space constraints and fuel availability, but pollution remains an issue. Many argue that the incineration of trash isn’t an effective means of reducing waste or protecting the environment, and they have evidence to support this.

The waste-to-energy sector extends beyond MSW facilities, however. It also encompasses biofuel, which has seen an increase in popularity. The aviation industry has shown a growing dedication to biofuel, with United Airlines investing $30 million in the largest producer of aviation biofuel.

If the interest of United Airlines and other companies is any indication, the waste-to-energy sector will continue to expand. Though negative press and the high cost of waste-to-energy facilities may impede its progress, advances in technology promise to improve efficiency and reduce expenses.

Positives and Negatives

The waste-to-energy sector provides many benefits, allowing communities a method of repurposing their waste. It has negative aspects that are also important to note, like the potential for pollution. While the sector offers solutions, some of them come at a cost.

It’s true that resource management is essential, and adapting practices to meet high standards of renewability is critical to the planet’s health. However, it’s also necessary to recognize risk, and the waste-to-energy sector is not without its flaws. How those flaws will affect the sector moving forward is critical to consider.