A Glance at Drop-in Biofuels

drop-in-biofuelsBiofuel commercialization has proved to be costly and lingering than expected due to its high production cost and modification to flexibility in engines. Drop-in fuels are alternatives to existing liquid fuels without any significant modification in engines and infrastructures. According to IEA, “Drop-in biofuels are liquid bio-hydrocarbons that are functionally equivalent to petroleum fuels and are fully compatible with existing petroleum infrastructure”.

What are Drop-in Biofuels

Drop-in biofuels are can be produced from oilseeds via trans-esterification, lignocellulosic biomass via thermochemical process, sugars and alcohol via biochemical conversion or by hybrids of the above methods. Drop-in fuels encompass high hydrogen to carbon ratio with no/low sulfur and oxygen content, low water solubility and high carbon bond saturation. In short drop-in fuel is a modified fuel with close functional resemblance to fossil fuel.

Existing biofuels – bioethanol and biodiesel – have wide variation from fossil fuels in their blend wall properties – high oxygen content, hydrophilicity, energy density and mainly compatibility in existing engines and infrastructures. Oxygenated groups in biofuel have a domino effect such as reduction in the energy density, production of impurities which are highly undesirable to transportation components, instability during storage etc.

Major advantages of drop-in fuels over existing fuels are as follows:

  • Reduced sulphur oxide emissions by ultra low sulphur content.
  • Reduced ignition delay by high cetane value
  • Reduced hydrocarbons and nitrogen oxides emissions
  • Low aromatic content
  • Low olefin content, presence of olefin compounds undergo auto-oxidation leading to surface depositions.
  • High saturates, therefore leaving minimum residues
  • Low particulate emissions
  • No oxygenates therefore has high stability.

Potential Biomass Feedstock

Drop-in biofuels can be produced from various biomass sources- lipids (vegetable oils, animal fats, greases, and algae) and lignocellulosic material (such as crop residues, woody biomass, and dedicated energy crops). The prominent technologies for biomass conversion to drop-in fuel are the thermochemical and the biochemical process.

The major factor playing role in selection of biomass for thermochemical methods is the energy content or heating value of the material, which is correlated with ash content. Wood, wood chips accounts for less than 1% ash content, which is favorable thermal processing than biochemical process, whereas straws, husks, and majority of the other biomass have ash content ranging up to 25% of dry mass.

Free sugar generating plants such as sugarcane and sweet sorghum, are desirable feedstock for Acetone-Butanol-Ethanol fermentation and have been widely implemented. Presently there is a focus to exploit lignocellulosic residues, rich in hydrocarbon, for fuel production. However, this biomass requires harsh pretreatment to remove lignin and to transform holocellulose (cellulose & hemicelluloses) into fermentable products.

The lignocellulose transformation technology must be circumspectly chosen by its life cycle assessment, as it resists any changes in their structural integrity owing to its complexity. Lignocellulosic biomass, when deoxygenated, has better flexibility to turn to drop-in fuels. This is because, in its native state of the feedstock, each oxygen atom consumes two hydrogen atoms during combustion which in turn reduces effective H: C ratio. Biomass feedstock is characterized with oxygen up to 40%, and higher the oxygen content higher it has to be deoxygenated.

Thermochemical Route

Thermochemical methods adopted for biomass are pyrolysis and gasification, on thermolysis of biomass produce intermediate gas (syngas) and liquid (bio crude) serving as precursors for drop-in fuel. Biomass when exposed to temperature of 500oC-600oC in absence of oxygen (pyrolysis) produce bio-oil, which constitutes a considerable percentage of oxygen. After down streaming by hydroprocessing (hydrotreating and hydrocracking) the rich hydrocarbon tar (bio-oil) can be converted to an efficient precursor for drop-in fuel.

At a higher temperature, above 700, under controlled oxygen, biomass can be converted to liquid fuel via gas phase by the process, gasification. Syngas produced is converted to liquid fuel by Fischer-Tropsch with the help of ‘water gas shift’ for hydroprocessing. Hydroprocessing after the thermochemical method is however costly and complex process in case of pyrolysis and inefficient biomass to fuel yield with gasification process.

Biochemical Pathway

The advanced biocatalytic processes can divert the conventional sugar-ethanol pathway and convert sugars to fatty acids. Modified microbial strain with engineered cellular machineries, can reroute the pathway to free fatty acid that can be transformed into butanol or drop-in fuel with necessary processing.

Schematic for the preparation of jet fuel from biomass

Schematic for the preparation of jet fuel from biomass

Biological processing requires operation under the stressful conditions on the organisms to reroute the pathways, in additional to lowering NADPH (hydrogen) consumption. Other value added products like carboxylic acid, polyols, and alcohol in the same biological routes with lower operational requirements have higher market demands and commercial success. Therefore little attention is given by chemical manufacturers to the biological pathways for drop-in fuel production.

The mechanisms of utilization of lignocellulosic biomass to fuel by biological pathway rely heavily on the availability of monomeric C5 and C6 sugars during fermentation. Ethanol is perhaps the best-known and commercially successful alcohol from ABE fermentation. However, butanol has various significant advantages over ethanol- in the perception of energy content, feasibility to existing infrastructures, zero blend wall, safety and clean aspects. Although butanol is a closer drop-in replacement, existing biofuel ethanol, is a major commercial competitor. Low yield from fermentation due to the toxicity of butanol and complexity in down streaming are the vital reasons that hamper successful large scale butanol production.

Challenges to Overcome

Zero oxygen and sulphur content mark major challenges for production of drop-in fuels from conventional biomass. This demands high hydrogen input on the conventional biomass, with H: C ratio below 0.5, like sugar, starch, cellulose, lignocellulose to meet the effective hydrogen to carbon ratio of 2 as in drop-in fuel. This characterizes most of the existing biomass feedstock as a low-quality input for drop-in fuels. However oleochemicals like fats, oils, and lipids have closer H: C ratio to diesel, gasoline and drop-in fuels, thus easier to conversion. Oleochemical feedstock has been commercially successful, but to prolong in the platform will be a major challenge. Lipid feedstock is generally availed from crop-based vegetable oil, which is used in food sectors. Therefore availability, food security concerns, and economics are the major constraints to sustaining the raw material. Consequently switching to lignocellulosic biomass feedstock for drop-in holds on.

Conclusions

Despite the hurdles on biomass characteristics and process technology for drop-in fuel, it is a vital requirement to switch to better replacement fuel for fossil fuel, considering environmental and economic benefits. Understanding its concepts and features, drop-in fuel, can solve existing greenhouse emission debate on current biofuels. Through crucial ambiguities existing on future of alternative fuels, drop-in fuel has a substantial potential to repute itself as an efficient sustainable eco-friendly fuel in the naear future.

References

  • Neal K Van Alfen: ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS, Elsevier, Academic Press.
  • Pablo Domínguez de María John: INDUSTRIAL BIORENEWABLES:A Practical Viewpoint: Wiley & Sons.
  • Ram Sarup Singh, Ashok Pandey, Edgard Gnansounou: BIOFUELS- PRODUCTION AND FUTURE PERSPECTIVES, CRC Press.
  • Satinder Kaur Brar, Saurabh Jyoti Sarma, Kannan Pakshirajan : PLATFORM CHEMICAL BIOREFINERY-FUTURE GREEN CHEMISTRY, Elsevier.
  • Sergios Karatzos, James D. McMillan, Jack N. Saddle: Summary of IEA BIOENERGY TASK 39 REPORT-THE POTENTIAL AND CHALLENGES OF DROP-IN BIOFUELS, IEA Bioenergy.
  • Vijai Kumar Gupta, Monika Schmoll, Minna Maki, Maria Tuohy, Marcio Antonio Mazutti: APPLICATIONS OF MICROBIAL ENGINEERING, CRC Press.

Bioethanol: Challenges in India

bioethanol-indiaGlobal demand for fuel efficiency, environmental quality and energy security have elicited global attention towards liquid biofuels, such as bioethanol and biodiesel. Around the world, governments have introduced various policy measurements, mandatory fuel blending programmes, incentives for flex-fuel vehicles and agricultural subsidies for the farmers. In India, the government launched Ethanol Blended Petrol (EBP) programme in January 2013 for 5% ethanol blended petrol. The policy had significant focus on India’s opportunity to agricultural and industrial sectors with motive of boosting biofuel (bioethanol and biodiesel) usage and reducing the existing dependency on fossil fuel.

The Government of India initiated significant investments in improving storage and blending infrastructure. The National Policy on Biofuels has set a target of 20% blending of biofuel by 2017. However, India has managed to achieve only 5% by September 2016 due to certain technical, market and regulatory hurdles.

In India, sugarcane molasses is the major resource for bioethanol production and inconsistency of raw material supply holds the major liability for sluggish response to blending targets.  Technically speaking, blend wall and transportation-storage are the major challenges towards the biofuel targets. Blending wall is the maximum percent of ethanol that can be blended to fuel without decreasing the fuel efficiency.

Various vehicles are adaptable to various blending ratio based on the flexibility of engines. The technology for the engine modification for flex fuel is not new but making the engines available in India along with the supply chain and calibrating the engine for Indian conditions is the halting phase. The commonly used motor vehicles in the country are not effectual with flex fuel.

Sugarcane molasses is the most common feedstock for bioethanol production in India

Sugarcane molasses is the most common feedstock for bioethanol production in India

Ethanol being a highly flammable liquid marks obligatory safety and risk assessment measures during all phases of production, storage and transportation. The non-uniform distribution of raw material throughout the country, demands a compulsory transportation and storage, especially inter-state movement, encountering diverse climatic and topographic conditions.

Major ethanol consumers in India are potable liquor sector (45%), alcohol based chemical industry (40%), the rest for blending and other purposes. The yearly profit elevation in major sectors is a dare to an economical ethanol supply for Ethanol Blending Programme. Drastic fluctuation in pricing of sugar cane farming and sugar milling resulted to huge debt to farmers by mill owners. Gradually the farmers shifted from sugarcane cultivation other crops.

Regulatory and policy approaches on excise duty on storage and transportation of ethanol and pricing strategy of ethanol compared to crude oil are to be revised and implemented effectively. Diversifying the feedstocks (especially use of lignocellulosic biomass) and advanced technology for domestic ethanol production in blending sectors are to be fetched out from research laboratories to commercial scale. Above all the knowledge of economic and environmental benefits of biofuel like reduction in pollutants and import bills and more R&D into drop-in biofuels, need to be amplified for the common man.

Miscanthus: Reducing the Establishment Costs

Miscanthus has been lauded as a dynamic high potential biomass crop for some time now due to its high yields, low input requirements and perennial nature. Miscanthus is commonly used as a biomass fuel to produce heat and electricity through combustion, but studies have found that miscanthus can produce similar biogas yields to maize when harvested at certain times of the year.  Miscanthus is a C4 grass closely related to maize and sugarcane, it can grow to heights of three metres in a single growing season.

Miscanthus-Elephant-Grass

High Establishment Costs

However, high establishment costs have impeded the popularity of the crop. High establishment costs of miscanthus are as a result of the sterile nature of the crop, which means that miscanthus cannot be propagated from seed and instead must be propagated from vegetative material. The vegetative material commonly used is taken from the root structure known as rhizomes; rhizome harvesting is a laborious process and when combined with low multiplication rates, results in a high cost for miscanthus rhizomes. The current figure based on Irish figures is €1,900 ha for rhizomes.

Promising Breakthrough

Research conducted in Teagasc Oak Park Carlow Ireland, suggests that there may be a cost effective of method of propagating miscanthus by using the stem as the vegetative material rather than having to dig up expensive rhizomes. The system has been proven in a field setting over two growing seasons and plants have been shown to be perennial.

A prototype planter suitable for commercial up scaling has been developed to sow stem segments of miscanthus. Initial costs are predicted at €130 ha for plant material. The image below shows the initial stem that was planted in a field setting and the shoots, roots, and rhizome developed by the stem at the end of the first growing season.

miscanthus-stem

Feedstock for AD Plants

Switching from maize to miscanthus as a feedstock for anaerobic digestion plants would increase profitability and boost the GHG abatement credentials of the systems. Miscanthus is a perennial crop which would provide a harvest every year once established for 20 years in a row without having to be replanted compared to maize which is replanted every year. This would provide an obvious economic saving as well as allowing carbon sequestration in the undisturbed soil.

There would be further GHG savings from the reduced diesel consumption required for the single planting as opposed to carrying out heavy seedbed cultivation each year for maize. Miscanthus harvested as an AD feedstock would also alleviate soil compaction problems associated with maize production through an earlier harvest in more favourable conditions.

Future Perspectives

Miscanthus is a nutrient efficient crop due to nutrient cycling. With the onset of senescence nutrients in the stem are transferred back to the rhizome and over-wintered for the following year’s growth. However the optimum date to harvest biomass to produce biogas is before senescence. This would mean that a significant proportion of the plants nutrient stores would be removed which would need to be replaced. Fertiliser in the form of digestate generated from a biogas plant could be land spread to bridge nutrient deficiencies. However additional more readily available chemical N fertiliser may have to be applied.

Some work at Oak Park on September harvested miscanthus crops has seen significant responses from a range of N application rates. With dwindling subsidies to support anaerobic digestion finding a low cost perennial high yielding feedstock could be key to ensuring economic viability.

How Farmers Are Using Water Conservation

There is a quote attributed to Mark Twain: “Whiskey is for drinking; water is for fighting over.” Water has always been the first and most precious resource for any community.

Mark Twain would have seen this along the Mississippi River and the towns and farms it supplied. Then he would observe the role water played in the West when he followed the pioneers out to California and Nevada in the 1860s.

In modern times, no one knows better how vital water is to all of us than farmers. They need to keep their crops alive and flourishing but also be sure they are protecting their water source for all the dry seasons to come.

Farms, both big and small, are becoming examples for harnessing and preserving this life-giving resource.

100 Years of Water Use in Northern California

Farmers have come a long way in their ability to use water wisely. Take a typical family in Northern California. Many from this region have been farming the same 100 acres of land on the Sacramento River for 105 years.

Through three generations, the family has had horses, grapes, apples, nectarines, and apricots on the property. But the main crop has only changed once: peaches until the 1950s, and prunes to the current day.

The current farmers have a particular interest in water conservation. They have educated themselves on the best irrigation methods for crops in this area of the country.

Flooding the Crop

In the beginning, like all the farms in the area, farmers would water their crops with flood irrigation when the ground was dry. A pump would deliver water from a well into one field at a time. Water would stay in the field inside boundaries of built-up earth, and seep down to the roots.

Flood irrigation is simple and requires minimal equipment, but for most crops, it is an inefficient use of water. Often, it used about four acre-feet of water per year.

Sprinklers

To use less water and gain a little more precision about where the water went, farmers switched to a system of pipes and sprinklers. Workers would move large metal pipes from one section of the orchard to the next. They hooked the pipes up to the pump and pointed the spray directly onto the trees.

The sprinkler method used about three acre-feet of water per year. A significant improvement, but still not as efficient as they would like to be in a place where water supply is always at risk.

Hose and Drip

Now, the orchards used drip irrigation. The farmers lay flexible black roll pipe directly along the rows of trees, lining up the holes with the tree roots. Water goes only to the trees and is no longer watering all the weeds in the spaces between the rows.

The drip irrigation system has reduced water use to one acre-foot of water per year on some California farms. Combine this simple but efficient system with modern sensors to measure real-time water output, and every single drop of water is put to work.

Using Modern Tools to Measure Water

Finding the right method of water delivery for the land is the first and most significant step to managing your water source wisely. But modern-day farmers don’t stop there.

Tracking Where the Water Is

Farmers across the country use tools installed on their property to understand what the water is doing precisely on their land.

Ground sensors at one, two, three, and four feet deep in the soil track where the water level is below the surface. Ground sensors can be part of a tool such as a DTN ag weather station, which can send current moisture data and weather readings from each field.

A weather station can also tell the farmer what the soil temperature is, and how quickly the water is leaving their land and crops through evapotranspiration.

A pressure bomb can tell a farmer exactly how much water is available to a tree. Just before dawn, he takes a piece of plant and puts it inside the pressure bomb chamber. He then slowly adds pressurized gas until water comes out of the leaf or plant.

If it took too long for the pressure to extract water, the farmer knows his plants are not getting the supply they need. Taking a measurement predawn is usually the most indicative of how much moisture the plant has access to overall. However, farmers will often take a sample midday to learn about the stress level of the plant when the sun is the hottest.

Using Tools to Know the Weather

Every farmer knows the most valuable tool they have in conserving water is understanding the weather patterns in their area. The most efficient irrigation system is still wasting water if they spend one day saturating their crop, then watch the rain falling for free the next.

Organizations like the California Irrigation Management Information System will give access to weather data collected from a system of weather stations throughout a designated area. Farmers can learn things like:

  • How much water their kind of crop has used in their area
  • What the precipitation pattern has been in the past
  • What the weather is likely to do next.

Many farms see value in investing in weather stations directly on their property. Knowing precisely what the crop needs, and whether there will be rain soon, can save the farm thousands of dollars each day. And as more farmers become experts on what the water is doing on their land, they can work together to preserve the water in their area.

Taking Advantage of Water Education in Nebraska

The states of the Great Plains know how precious water can be. Eight states draw their water from the Ogallala Aquifer, stretching across 175,000 square miles. The U.S. Geological Survey states the aquifer level has dropped an average of 16 feet in the last several decades.

When the aquifer was being formed about 10 million years ago, it was fed by runoff into its western edge by the Rockies. That water source has since been closed off by erosion, and the water level depends solely on precipitation.

Farmers are Becoming Experts on Water Behavior

The farmers who depend on the Ogallala Aquifer know the urgency of using the water they have wisely. That’s why 1,500 farmers and cooperators have joined the Nebraska Agricultural Water Management Network (NAWMN).

The NAWMN is a knowledge-sharing group that tests out water-saving technologies. They share their experiences with types of irrigation, water sensors, erosion-reducing crops, and soil, among many other water-related topics. They are educating each other, and everyone who draws from the Ogallala aquifer will benefit.

Many farms in Nebraska use pivot-irrigation to bring water to their crops. Long pipes on wheels suspended over that crop rotate around a center pivot, creating the circular fields easy to spot from an airplane.

Pivot irrigation has been around for 50 years, but low-pressure nozzles and water sensors in the ground are making them more efficient than ever before.

When the surface of the ground starts to look dry, it’s natural to think it’s time to begin supplementing the crop’s water supply. But if ground sensors are saying the roots are still drinking, the sprinklers can wait a few more days.

A farmer can save about $2,000 for every 2 inches of water he doesn’t use. And that water stays where it is, ready to use on an even drier day.

Backing up Instinct

Strong instinct has always been an indispensable trait of a successful farmer. Farmers who know their land, their crops and their weather will have a much better chance of success. Today’s farmers know that. They still rely on their gut, but thanks to modern technologies, they can make informed decisions better than ever before.

Biomass Energy and Sustainability

biomass-sustainabilityBiomass energy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil. Biomass energy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced in a sustainable manner.

Biomass resources can play a major role in reducing the reliance on fossil fuels by making use of thermo-chemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in sustainable development of rural as well as urban areas. Biomass energy could also aid in modernizing the agricultural economy and creating significant job opportunities.

Harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

The impact of forest biomass utilization on the ecology and biodiversity has been found to be insignificant. Infact, forest residues are environmentally beneficial because of their potential to replace fossil fuels as an energy source.

A quick glance at popular biomass resources

A quick glance at popular biomass resources

Plantation of energy crops on abandoned agricultural land will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Short-rotation crops give higher yields than forests so smaller tracts are needed to produce biomass which results in the reduction of area under intensive forest management. An intelligent approach in forest management will go a long way in the realization of sustainability goals.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the biomass energy industry can also be achieved by laying more stress on green power marketing.

Role of Biomass Energy in Rural Development

Biomass energy systems not only offer significant possibilities for clean energy production and agricultural waste management but also foster sustainable development in rural areas. The increased utilization of biomass energy will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

biomass-bales

Biomass energy has the potential to modernize the agricultural economy and catalyze rural development. The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small, medium and large-scale biomass-based power plants can play a major role in rural development.

Sustainable harvesting practices remove only a small portion of branches and tops leaving sufficient biomass to conserve organic matter and nutrients. Moreover, the ash obtained after combustion of biomass compensates for nutrient losses by fertilizing the soil periodically in natural forests as well as fields.

Planting of energy crops on abandoned agricultural lands will lead to an increase in species diversity. The creation of structurally and species diverse forests helps in reducing the impacts of insects, diseases and weeds. Similarly the artificial creation of diversity is essential when genetically modified or genetically identical species are being planted.

Improvements in agricultural practices promises to increased biomass yields, reductions in cultivation costs, and improved environmental quality. Extensive research in the fields of plant genetics, analytical techniques, remote sensing and geographic information systems (GIS) will immensely help in increasing the energy potential of biomass feedstock.

Rural areas are the preferred hunting ground for the development of biomass sector worldwide. By making use of various biological and thermal processes (anaerobic digestion, combustion, gasification, pyrolysis), agricultural wastes can be converted into biofuels, heat or electricity, and thus catalyzing sustainable development of rural areas economically, socially and environmentally.

Biomass energy can reduce 'fuel poverty' in remote and isolated communities

Biomass energy can reduce ‘fuel poverty’ in remote and isolated communities

A large amount of energy is utilized in the cultivation and processing of crops like sugarcane, wheat and rice which can met by utilizing energy-rich residues for electricity production. The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs.

There are many areas in India where people still lack access to electricity and thus face enormous hardship in day-to-day lives. Biomass energy promises to reduce ‘fuel poverty’ commonly prevalent among remote and isolated communities.  Obviously, when a remote area is able to access reliable and cheap energy, it will lead to economic development and youth empowerment.

Biomass Energy in China

Biomass energy in China has been developing at a rapid pace. The installed biomass power generation capacity in China increased sharply from 1.4 GW in 2006 to 14.88 GW in 2017. While the energy share of biomass remains relatively low compared to other sources of renewable energy, China plans to increase the proportion of biomass energy up to 15 percent and total installed capacity of biomass power generation to 30 GW by 2030.

biomass-china

In terms of impact, the theoretical biomass energy resource in China is about 5 billion tons coal equivalent, which equals 4 times of all energy consumption. As per conservative estimates, currently China is only using 5 percent of its total biomass potential.

According to IRENA, the majority of biomass capacity is in Eastern China, with the coastal province of Shandong accounting for 14 percent of the total alone. While the direct burning of mass for heat remains the primary use of biomass in China, in 2009, composition of China’s biomass power generation consisted in 62 percent of straw direct-fired power generation and 29 percent of waste incineration, with a mix of other feedstock accounting for the remaining 9 percent.

Biomass Resources in China

Major biomass resources in China include waste from agriculture, forestry, industries, animal manure and sewage, and municipal solid waste. While the largest contributing sources are estimated to be residues from annual crop production like wheat straw, much of the straw and stalk are presently used for cooking and heating in rural households at low efficiencies. Therefore, agricultural residues, forestry residues, and garden waste were found to be the most cited resources with big potential for energy production in China.

Agricultural residues are derived from agriculture harvesting such as maize, rice and cotton stalks, wheat straw and husks, and are most available in Central and northeastern China where most of the large stalk and straw potential is located. Because straw and stalks are produced as by-products of food production systems, they are perceived to be sustainable sources of biomass for energy that do not threaten food security.

Furthermore, it is estimated that China produces around 700 Mt of straw per year, 37 percent of which is corn straw, 28 percent rice, 20 percent wheat and 15 percent from various other crops. Around 50 percent of this straw is used for fertilizers, for which 350 Mt of straw is available for energy production per year.

Biomass resources are underutilized across China

Biomass resources are underutilized across China

Forestry residues are mostly available in the southern and central parts of China. While a few projects that use forestry wastes like tree bark and wood processing wastes are under way, one of the most cited resources with analyzed potential is garden waste. According to research, energy production from garden waste biomass accounted for 20.7 percent of China’s urban residential electricity consumption, or 12.6 percent of China’s transport gasoline demand in 2008.

Future Perspectives

The Chinese government believes that biomass feedstock should neither compete with edible food crops nor cause carbon debt or negative environmental impacts. As biomass takes on an increasing significant role in the China’s national energy-mix, future research specific to technology assessment, in addition to data collection and supply chain management of potential resources is necessary to continue to understand how biomass can become a game-changer in China’s energy future.

References

IRENA, 2014. Renewable Energy Prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi. www.irena.org/remap

National Academy of Engineering and NRC, 2007: Energy Futures and Urban Air Pollution: Challenges for China and the United States.

Xingang, Z., Zhongfu, T., Pingkuo, L, 2013. Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renewable and Sustainable Energy Reviews, Volume 25, September 2013, 310–317.

Xingang, Z., Jieyu, W., Xiaomeng, L., Tiantian, F., Pingkuo, L, 2012. Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, Volume 16, Issue 6, August 2012, 3722–3729.

Li, J., Jinming, B. MOA/DOE Project Expert Team, 1998. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing, China.

Klimowicz, G., 2014. “China’s big plans for biomass,” Eco-Business, Global Biomass Series, accessed on Apr 6, 2015.

Shi, Y., Ge, Y., Chang, J., Shao, H., and Tang, Y., 2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews 22 (2013) 432–437

Xu, J. and Yuan, Z, 2015. “An overview of the biomass energy policy in China,” BESustainable, May 21, 2015.

Resource Base for Second-Generation Biofuels

Second-generation biofuels, also known as advanced biofuels, primarily includes cellulosic ethanol. The resource base for the production of second-generation biofuel are non-edible lignocellulosic biomass resources (such as leaves, stem and husk) which do not compete with food resources. The resource base for second-generation biofuels production is broadly divided into three categories – agricultural residues, forestry wastes and energy crops.

second-generation-biofuels

Agricultural Residues

Agricultural (or crop) residues encompasses all agricultural wastes such as straw, stem, stalk, leaves, husk, shell, peel, pulp, stubble, etc. which come from cereals (rice, wheat, maize or corn, sorghum, barley, millet), cotton, groundnut, jute, legumes (tomato, bean, soy) coffee, cacao, tea, fruits (banana, mango, coco, cashew) and palm oil.

Rice produces both straw and rice husks at the processing plant which can be conveniently and easily converted into energy. Significant quantities of biomass remain in the fields in the form of cob when maize is harvested which can be converted into energy.

Sugarcane harvesting leads to harvest residues in the fields while processing produces fibrous bagasse, both of which are good sources of energy. Harvesting and processing of coconuts produces quantities of shell and fibre that can be utilised while peanuts leave shells. All these lignocellulosic materials can be converted into biofuels by a wide range of technologies.

Forestry Biomass

Forest harvesting is a major source of biomass energy. Harvesting in forests may occur as thinning in young stands, or cutting in older stands for timber or pulp that also yields tops and branches usable for production of cellulosic ethanol.

Biomass harvesting operations usually remove only 25 to 50 percent of the volume, leaving the residues available as biomass for energy. Stands damaged by insects, disease or fire are additional sources of biomass. Forest residues normally have low density and fuel values that keep transport costs high, and so it is economical to reduce the biomass density in the forest itself.

Energy Crops

Energy crops are non-food crops which provide an additional potential source of feedstock for the production of second-generation biofuels. Corn and soybeans are considered as the first-generation energy crops as these crops can be also used as the food crops. Second-generation energy crops are grouped into grassy (herbaceous or forage) and woody (tree) energy crops.

Grassy energy crops or perennial forage crops mainly include switchgrass and miscanthus. Switchgrass is the most commonly used feedstock because it requires relatively low water and nutrients, and has positive environmental impact and adaptability to low-quality land. Miscanthus is a grass mainly found in Asia and is a popular feedstock for second-generation biofuel production in Europe.

Woody energy crops mainly consists of fast-growing tree species like poplar, willow, and eucalyptus. The most important attributes of these class species are the low level of input required when compared with annual crops. In short, dedicated energy crops as feedstock are less demanding in terms of input, helpful in reducing soil erosion and useful in improving soil properties.

Biomass Resources from Sugar Industry

Sugarcane is one of the most promising agricultural sources of biomass energy in the world. It is the most appropriate agricultural energy crop in most sugarcane producing countries due to its resistance to cyclonic winds, drought, pests and diseases, and its geographically widespread cultivation. Due to its high energy-to-volume ratio, it is considered one of nature’s most effective storage devices for solar energy and the most economically significant energy crop. The climatic and physiological factors that limit its cultivation to tropical and sub-tropical regions have resulted in its concentration in developing countries, and this, in turn, gives these countries a particular role in the world’s transition to sustainable use of natural resources.

Sugarcane_Biomass

According to the International Sugar Organization (ISO), Sugarcane is a highly efficient converter of solar energy, and has the highest energy-to-volume ratio among energy crops. Indeed, it gives the highest annual yield of biomass of all species. Roughly, 1 ton of Sugarcane biomass-based on Bagasse, foliage and ethanol output – has an energy content equivalent to one barrel of crude oil.

Sugarcane produces mainly two types of biomass, Cane Trash and Bagasse. Cane Trash is the field residue remaining after harvesting the Cane stalk and Bagasse is the milling by-product which remains after extracting sugar from the stalk. The potential energy value of these residues has traditionally been ignored by policy-makers and masses in developing countries. However, with rising fossil fuel prices and dwindling firewood supplies, this material is increasingly viewed as a valuable renewable energy resource.

Sugar mills have been using Bagasse to generate steam and electricity for internal plant requirements while Cane Trash remains underutilized to a great extent. Cane Trash and Bagasse are produced during the harvesting and milling process of Sugarcane which normally lasts 6 to 7 months.

Around the world, a portion of the Cane Trash is collected for sale to feed mills, while freshly cut green tops are sometimes collected for farm animals. In most cases, however, the residues are burned or left in the fields to decompose. Cane Trash, consisting of Sugarcane tops and leaves can potentially be converted into around 1kWh/kg, but is mostly burned in the field due to its bulkiness and its related high cost for collection/transportation.

On the other hand, Bagasse has been traditionally used as a fuel in the Sugar mill itself, to produce steam for the process and electricity for its own use. In general, for every ton of Sugarcane processed in the mill, around 190 kg Bagasse is produced. Low pressure boilers and low efficiency steam turbines are commonly used in developing countries. It would be a good business proposition to upgrade the present cogeneration systems to highly efficient, high pressure systems with higher capacities to ensure utilization of surplus Bagasse.

Importance of Biomass Energy

Biomass energy has rapidly become a vital part of the global renewable energy mix and account for an ever-growing share of electric capacity added worldwide. Renewable energy supplies around one-fifth of the final energy consumption worldwide, counting traditional biomass, large hydropower, and “new” renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels).

Traditional biomass, primarily for cooking and heating, represents about 13 percent and is growing slowly or even declining in some regions as biomass is used more efficiently or replaced by more modern energy forms. Some of the recent predictions suggest that biomass energy is likely to make up one third of the total world energy mix by 2050. Infact, biofuel provides around 3% of the world’s fuel for transport.

biomass_feedstock

Biomass energy resources are readily available in rural and urban areas of all countries. Biomass-based industries can foster rural development, provide employment opportunities and promote biomass re-growth through sustainable land management practices.

The negative aspects of traditional biomass utilization in developing countries can be mitigated by promotion of modern waste-to-energy technologies which provide solid, liquid and gaseous fuels as well as electricity. Biomass wastes encompass a wide array of materials derived from agricultural, agro-industrial, and timber residues, as well as municipal and industrial wastes.

The most common technique for producing both heat and electrical energy from biomass wastes is direct combustion. Thermal efficiencies as high as 80 – 90% can be achieved by advanced gasification technology with greatly reduced atmospheric emissions.

Combined heat and power (CHP) systems, ranging from small-scale technology to large grid-connected facilities, provide significantly higher efficiencies than systems that only generate electricity. Biochemical processes, like anaerobic digestion and sanitary landfills, can also produce clean energy in the form of biogas and producer gas which can be converted to power and heat using a gas engine.

Advantages of Biomass Energy

Bioenergy systems offer significant possibilities for reducing greenhouse gas emissions due to their immense potential to replace fossil fuels in energy production. Biomass reduces emissions and enhances carbon sequestration since short-rotation crops or forests established on abandoned agricultural land accumulate carbon in the soil.

Bioenergy usually provides an irreversible mitigation effect by reducing carbon dioxide at source, but it may emit more carbon per unit of energy than fossil fuels unless biomass fuels are produced unsustainably.

Biomass can play a major role in reducing the reliance on fossil fuels by making use of thermochemical conversion technologies. In addition, the increased utilization of biomass-based fuels will be instrumental in safeguarding the environment, generation of new job opportunities, sustainable development and health improvements in rural areas.

The development of efficient biomass handling technology, improvement of agro-forestry systems and establishment of small and large-scale biomass-based power plants can play a major role in rural development. Biomass energy could also aid in modernizing the agricultural economy.

Consistent and reliable supply of biomass is crucial for any biomass project

When compared with wind and solar energy, biomass power plants are able to provide crucial, reliable baseload generation. Biomass plants provide fuel diversity, which protects communities from volatile fossil fuels. Since biomass energy uses domestically-produced fuels, biomass power greatly reduces our dependence on foreign energy sources and increases national energy security.

A large amount of energy is expended in the cultivation and processing of crops like sugarcane, coconut, and rice which can met by utilizing energy-rich residues for electricity production.

The integration of biomass-fueled gasifiers in coal-fired power stations would be advantageous in terms of improved flexibility in response to fluctuations in biomass availability and lower investment costs. The growth of the bioenergy industry can also be achieved by laying more stress on green power marketing.