Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centrestage in farming process.

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

Modern combine-harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest. Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press-cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.

About Salman Zafar

Salman Zafar is the CEO of BioEnergy Consult, and an international consultant, advisor and trainer with expertise in waste management, biomass energy, waste-to-energy, environment protection and resource conservation. His geographical areas of focus include Asia, Africa and the Middle East. Salman has successfully accomplished a wide range of projects in the areas of biogas technology, biomass energy, waste-to-energy, recycling and waste management. Salman has participated in numerous national and international conferences all over the world. He is a prolific environmental journalist, and has authored more than 300 articles in reputed journals, magazines and websites. In addition, he is proactively engaged in creating mass awareness on renewable energy, waste management and environmental sustainability through his blogs and portals. Salman can be reached at salman@bioenergyconsult.com or salman@cleantechloops.com.
Tagged , , , , , , , , , , , , , , , . Bookmark the permalink.

6 Responses to Biomass Harvesting

  1. Pingback: A Glance at Wood-based Biomass Resources | Cleantech Solutions

  2. Pingback: Requirements of Agricultural Biomass Plants | Cleantech Solutions

  3. Pingback: Biomass Exchange - Key to Success in Biomass Projects

  4. Pingback: Major Considerations in Biopower Projects

  5. Pingback: Resource Base for Second-Generation Biofuels

  6. Pingback: Biomass Energy in China

Share your Thoughts

This site uses Akismet to reduce spam. Learn how your comment data is processed.