6 Freight Problems Companies Face While Transporting Goods To Other Country

Big businesses have routine activities and operations all over the world. But expanding a business overseas can be riskier if they are running out of cost and proper strategy. The foundational problem they face is transporting goods to other countries.

There are various risks businesses can face while transporting goods from one country to another. For example, many established businesses in China have difficulty in goods shipping from China to USA due to worrisome trade relations between both countries.

Organizations must consider every logistical aspect in international trade, especially the freight area. It does not revolve only around the cost factor, but also various other factors such as danger to life, etc. These challenges are common to every business. The following section will highlight these problems and challenges in detail.

Freight Problems Companies Face While Transporting Goods To Other Country

Key Freight Problems Found in International Trade

There are several problems in the logistics industry regarding international businesses. But the most impactful issues are shown as follows.

1. Major Inefficiencies Pertaining to Transportation

While transporting goods to neighboring countries, companies mainly rely on road or rail transport. There are various problems faced by them during transit through the road. For example, the tariff rates for rail transport are significantly high in most countries.

Besides, transporting goods through trucks can be prone to damage through accidents and harsh weather conditions. These moving trucks also face uncertain events like unnecessary inspection of goods. Apart from these goods may also witness congestion, damage due to poor roads and infrastructure, multiple checkpoints and many other unforeseen factors.

2. Trade and Economic Barriers

As stated earlier, laws and policies of different countries vary according to the legal and political relations between them. Countries with favorable trade policies will encourage more investment from other countries. Therefore, transportation to these countries will be smooth sailing.

But, the problem arises when the countries have strict terms on international trade. This makes the transportation and payment process challenging for both parties. This not only poses a challenge but also limits the companies to expand their operations.

3. Rise in Fuel Prices

One of the most common challenges faced during international transportation of goods is the increasing fuel prices. Transferring goods between gulf countries can be safe and pocket-friendly considering this factor. But usually transporting goods to other countries depends on the prices of fuel.

It might affect the overall profitability of the logistics department. Increment in fuel costs indirectly affects the choice of trucks. The mode of transportation also varies on this basis. Companies shift to sea transport due to petrol and diesel prices. If a business has difficulties selecting the best freight mode, service providers like Shipo.com are the right choice for solving such logistical problems.

4. Receiving and Transportation of Bulk Orders

It is difficult for companies to stay updated and loaded with bulk orders. Timely transportation of bulk orders has been a troublesome problem for many years. It has increased more due to paced up competition and traffic level.

This keeping up with the supply-chain timeline is a challenge even in interstate transportation. You can imagine how gruesome this challenge becomes when it comes to international transportation.

Due to the significant time gap in some countries, managing the timelines and transport cycle becomes more difficult. Festivals can also delay the payment cycle and transportation of bulk orders. The situation turns more challenging when the company is not financially sound and possesses limited resources. Check out atlanta 3pl if you are looking for a reliable supply chain partner.

5. Unknown and Unpredictable Delays in Transit

It is common to find variations in terrain in different countries. This problem minimizes when you transport goods within the national boundaries. These changes in weather and geographical conditions lead to postponement of delivery.

There are two phases of transportation. The first one occurs to carry goods from manufacturing plants to warehouses, and the second occurs to carry goods from warehouses to the final destination (retailer or customer). At both stages, rough and rugged terrain delays the reaching of trucks.

biomass-train

Sometimes, these delays occur due to accidents and calamities like landslides, vulnerable avalanches, etc. Traffic also results in these delays. These delays are minimal when an organization opts for air transportation.

6. Lack of Skilled Human Resources

Many global companies lack a proper system of recruitment, selection, and training of the workforce in the logistics department, especially in the transportation sector. They hire people on the basis of low recruitment costs.

As a result, they cannot handle many things while transporting goods. In case of hazardous goods like chemicals, a driver must be aware of do’s and don’ts. They should not light up a cigarette or flammable things. Due to a lack of knowledge and skills, they damage the goods.

Such problems indirectly lead to high labor turnover. So, this problem acts as twin challenges for companies. There is a high need for companies to train the personnel to make the process smoother and more efficient.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

How to Select an Organic Food Wholesale Supplier?

The organic food sector accounts for an increasing share of industrial food production year by year. For this reason, obtaining high-quality ingredients, of reliable and confirmed origin, in appropriate quantities is becoming an increasing problem. Organic food wholesale suppliers are difficult to find – many manufacturers of this type of ingredients are small farms that independently cannot provide their goods in bulk to meet the needs of the food industry on a mass scale. What should you pay attention to when signing a contract with a supplier to ensure stable long-term cooperation?

organic food wholesale supplier

How to select an organic food wholesale supplier?

The basic issue when starting cooperation is to establish standards for quality control. To ensure the highest purity of ingredients, analyzes should be carried out in accredited laboratories for each batch of goods. Unfortunately, there are organic food wholesale suppliers on the market who avoid third party auditors – this is one of the red flags that should make you consider continuing cooperation. Please remember that a reliable partner will not create obstacles if you want to test the delivered goods yourself to confirm its organic origin. Unfortunately, even having official certification will not always guarantee appropriate quality, so additional verification will be advisable, especially at the beginning of cooperation.

Another issue is the ability to ensure on-time deliveries. The stability of the logistics network is a key factor for all entrepreneurs in the food sector, where goods stored in warehouses quickly expire or lose their nutritional value. Many organic food wholesale suppliers cooperate with foreign companies, which makes the supply chain longer due to the distance between the producer and the recipient of the ingredients. Of course, there is no problem with this, as long as the delivery is carried out within the declared deadlines. When signing a contract with your partner, make sure that he is able to fulfill his declarations regarding supply flexibility.

growth of organic food industry

Pay attention to the product range

A common mistake when choosing a supplier is to focus only on your current needs. Even if you currently only use buckwheat in your production process, it is worth considering that in the near future you may also need millet. Some organic food wholesale suppliers focus on a very narrow range of ingredients, so if you plan to expand and develop, it is better to look for a partner with a wider offer at your disposal.

In some cases, it is worth choosing the possibility of working with a wider range of products, even at the expense of price. Cooperation with one supplier providing several types of products within one delivery often turns out to be more convenient than making appointments with several different companies at the same time. The largest organic food wholesale suppliers on the market are able to independently provide a full range of products from various manufacturers – peas, seeds, kernels, and even organic pseudocereal flours, ready for use in gluten-free products.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector. It is well-known that the supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

biomass-exchange

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of biomass logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the biomass value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

Biomass Exchange Model

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

4 Ways Businesses Can Become More Sustainable

You’ve probably heard the word “sustainable” many times by now, but you may wonder what it has to do with your business. Sustainable business means that you’ll be you’ll be increasing the odds that you company can continue indefinitely by minimizing social and environmental impacts while ensuring financial stability. Studies have shown that sustainable business perform better financially, including one report by nonprofit CDC, reported by The Guardian that found they secure an 18% greater return on investment (ROI) than organizations that aren’t, and 67% more than companies who refuse to. How can you help your business become more sustainable?

green-economy

1. Think Greener in Procurement Sources

One of the best, and easiest, things you can do to make your business more sustainable is to practice environmentally-friendly procurement. Take a close look at your current suppliers and make changes as necessary by using suppliers that don’t use excessive packaging or sell products that contain substances that are harmful to the environment.

As often as possible, choose recycled items made from renewable material. Ask plenty of questions when researching various suppliers to find out where their goods are coming from, including whether the manufacturer is a sustainable business.

Whenever possible, use local suppliers, rather than purchasing online.

2. Seek Help from an Energy Broker

An increasing number of businesses are embracing renewable energy and energy management today. Your office can be powered with a variety of alternative sources like biomass, hydropower, geothermal, solar and wind power. There are hundreds of companies that supply energy in a myriad of different ways, affecting your bottom line and sustainability.

While there are usually a few suppliers dominating any given market, many other small suppliers are known for getting more creative in their offerings. Trying to figure out which one is best for your organization can be a very difficult task which is why using an energy broker who is knowledgeable about all the complexities that come with this sector, can best analyze the energy market to provide you with the greenest, most cost-effective options.

3. Reduce Water Usage

Water shortages are becoming an increasingly bigger problem in many places around the world, including North America. Whether your organization is located in a drought-stricken area or not, decreasing water use will help to conserve a valuable resource and help you save money at the same time.

Instead of using a sprinkler system to keep lush lawns around the building, switch to a drip irrigation system to significantly reduce water usage or consider changing the landscaping to something more drought tolerant. Fix plumbing leaks and dripping taps and install low-flow faucet aerators in your bathrooms.

4. Switch From Gas To Electricity

Electricity is much easier to source sustainably than gas and oil, especially if you use solar panels to collect energy from the sun. So by switching over some of your gas-powered company owned equipment to their electric counterparts you can ultimately help your business become more sustainable.

Some equipment to consider switching could include: switching from gas powered to electric vehicles (especially for companies that rely heavily on transportation), switching from gas-powered to electric-powered riding mowers (especially for landscaping businesses).

As there are so many different types of lawn mowers available, sites like home gear expert show us interesting comparisons which will help you find the one which best matches your needs.

A good electric riding mower with good user ratings will cost you a couple thousand dollars but could save you money in the long term plus make your business more sustainable.

Recommended Reading: How to Make Your Business Sustainable

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management.

The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass-based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.

PKS From Africa Can Fuel Biomass Power Plants in Japan

Japan’s biomass fuel requirement is estimated to be tens of millions of tons each year on account of its projected biomass energy capacity of 6,000MW by the year 2030. To achieve this capacity, more than 20 million tons of biomass fuel will be needed every year which will be mainly met by wood pellets and palm kernel shell (PKS). The similarity of the properties of wood pellets with PKS makes PKS the main competitor of wood pellets in the international biomass fuel market.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Canada and USA are the biggest suppliers of wood pellets to the Japanese biomass market while PKS mainly comes from Indonesia and Malaysia. With the size of the material almost the same as wood pellets, but at a cheaper price (almost half the wood pellets) and also available in abundance, PKS is the preferred biomass fuel for the Japanese market. PKS can be used 100% in power plants that use fluidized bed combustion technology, while wood pellets are used in pulverized combustion.

Although there is abundant PKS in CPO (crude palm oil) producing countries, but fluctuations in CPO production and increase in domestic demand has led to reduction in PKS exports in Southeast Asia. In palm oil plantations, it is known as the low crop season and peak crop season. When the low crop season usually occurs in the summer or dry season, the supply of fruit to the palm oil mills decreases so that the CPO production decreases and also the supply of PKS automatically reduces, and vice versa in the peak crop season. When demand is high or even stable but supply decreases, the price of PKS tends to rise.

In addition, a wide range of industries in Indonesia and Malaysia have also began to use PKS as an alternative fuel triggering increased domestic demand. In recent years, PKS is also being processed into solid biomass commodities such as torrified PKS, PKS charcoal and PKS activated carbon. Thus, there is very limited scope of increasing PKS supply from Southeast Asia to large-scale biomass consumers like Japan and South Korea.

Palm oil mills process palm oil fruit from palm oil plantations, so the more fruit is processed the greater the PKS produced and also more processors or mills are needed. At present it is estimated that there are more than 1500 palm oil mills in Indonesia and Malaysia. Palm kernel shells from Indonesia and Malaysia is either being exported or used domestically by various industries. On the other hand, in other parts of the world PKS is still considered a waste which tends to pollute the environment and has no economic value.

Palm Oil Producers

Top palm oil producers around the world

West African countries, such Nigeria, Ghana and Togo, are still struggling to find a sustainable business model for utilization of PKS. Keeping in view the tremendous PKS requirements in the Asia-Pacific region, major PKS producers in Africa have an attractive business opportunity to export this much-sought after biomass commodity to the Japan, South Korea and even Europe.

Simply speaking, PKS collected from palm oil mills is dried, cleaned and shipped to the destination country. PKS users have special specifications related to the quality of the biomass fuel used, so PKS needs to be processed before exporting.

PKS-export

PKS exports from Indonesia and Malaysia to Japan are usually  with volume 10 thousand tons / shipment by bulk ship. The greater the volume of the ship or the more cargo the PKS are exported, the transportation costs will generally be cheaper. African countries are located quite far from the Asia-Pacific region may use larger vessels such as the Panamax vessel to export their PKS.

An Introduction to Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centerstage in farming process.

future of bioenergy

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

 

Modern combine harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest.

Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.

The Logistics of a Biomass Power Plant

Biomass logistics involves all the unit operations necessary to move biomass wastes from the land to the biomass energy plant. The biomass can be transported directly from farm or from stacks next to the farm to the processing plant. Biomass may be minimally processed before being shipped to the plant, as in case of biomass supply from the stacks. Generally the biomass is trucked directly from farm to the biomass processing facility if no processing is involved.

biomass_logistics

Another option is to transfer the biomass to a central location where the material is accumulated and subsequently dispatched to the energy conversion facility. While in depot, the biomass could be pre-processed minimally (ground) or extensively (pelletized). The depot also provides an opportunity to interface with rail transport if that is an available option. The choice of any of the options depends on the economics and cultural practices. For example in irrigated areas, there is always space on the farm (corner of the land) where quantities of biomass can be stacked.

The key components to reduce costs in harvesting, collecting and transportation of biomass can be summarized as:

  • Reduce the number of passes through the field by amalgamating collection operations.
  • Increase the bulk density of biomass
  • Work with minimal moisture content.
  • Granulation/pelletization is the best option, though the existing technology is expensive.
  • Trucking seems to be the most common mode of biomass transportation option but rail and pipeline may become attractive once the capital costs for these transport modes are reduced.

The logistics of transporting, handling and storing the bulky and variable biomass material for delivery to the biopower plant is a key part of the biomass supply chain that is often overlooked by project developers. Whether the biomass comes from forest residues on hill country, straw residues from cereal crops grown on arable land, or the non-edible components of small scale, subsistence farming systems, the relative cost of collection will be considerable.

Careful development of a system to minimize machinery use, human effort and energy inputs can have a considerable impact on the cost of the biomass as delivered to the biomass processing plant gate.

The logistics of supplying a biomass power plant with consistent and regular volumes of biomass are complex.

Most of the agricultural biomass resources tend to have a relatively low energy density compared with fossil fuels. This often makes handling, storage and transportation more costly per unit of energy carried. Some crop residues are often not competitive because the biomass resource is dispersed over large areas leading to high collection and transport costs.

The costs for long distance haulage of bulky biomass will be minimized if the biomass can be sourced from a location where it is already concentrated, such as sugar mill. It can then be converted in the nearby biomass energy plant to more transportable forms of energy carrier if not to be utilized on-site.

The logistics of supplying a biopower plant with sufficient volumes of biomass from a number of sources at suitable quality specifications and possibly all year round, are complex. Agricultural residues can be stored on the farm until needed. Then they can be collected and delivered directly to the conversion plant on demand. At times this requires considerable logistics to ensure only a few days of supply are available on-site but that the risk of non-supply at any time is low.

Losses of dry matter, and hence of energy content, commonly occur during the harvest transport and storage process. This can either be from physical losses of the biomass material in the field during the harvest operation or dropping off a truck, or by the reduction of dry matter of biomass material which occurs in storage over time as a result of respiration processes and as the product deteriorates. Dry matter loss is normally reduced over time if the moisture content of the biomass can be lowered or oxygen can be excluded in order to constrain pathological action.

To ensure sufficient and consistent biomass supplies, all agents involved with the production, collection, storage, and transportation of biomass require compensation for their share of costs incurred. In addition, a viable biomass production and distribution system must include producer incentives, encouraging them to sell their post-harvest plant residue.

The Role of Bioengineering in Sustainable Food Supply Chain

Every year, the production of food around the world accounts for almost a third of all global emissions of greenhouse gases. Deforestation, grazing livestock, and the use of fertilizers all contribute to climate change. Finding ways to minimize the damage that food production causes is becoming a priority in the fight against global warming. In addition, the United Nations’ Food and Agriculture Organization has estimated that every year, the world produces enough food waste to feed 2 billion people.

To address these problems, the field of bioengineering has found ways to recycle scrap food, reduce the amount thrown away, and find alternative ways to produce sufficient food to feed the world more sustainably and with less waste.

sustainability-food-supply-chain

Engineering Sustainable Food

A degree in bioengineering, or a masters in biomedical engineering online, involves the study of a range of scientific fields from computational biology and physiological systems to mechanical engineering and material sciences. This multidisciplinary approach lends itself well to improving the sustainability of food production. For many years, the genetic engineering of plants has created the potential of increasing production in a sustainable and environmentally-friendly way, and more recently, progress has been made in creating synthetic meat.

Now, without the use of genetic engineering, biomedical engineers have created the first bioprinted steak from cattle cells. The qualities of real meat are replicated by allowing living cells to grow and interact in the same way as they would in nature. The result is the creation of an authentic-tasting steak produced without the extensive environmental damage caused by farming livestock.

Converting Food Into Fuel

Every year in the US alone, 80 billion pounds of food is thrown away without being eaten. An increasing number of scientific projects are working on harnessing the valuable energy from food waste and converting it into renewable fuel. This can then be used to power a range of vehicles from privately owned cars to planes and trains.

In communities where food waste is collected along with other recyclable materials, anaerobic digestion can also be used to convert the high fat content of food waste into green electricity, which is put back into the grid to power households.

food-waste-behavior

Reducing Food Waste

Some food scraps are unavoidable, but now bioengineering is being applied to reduce some of the waste from over consumerism. Shoppers often buy excess food and leave fresh fruit and vegetables to go mouldy before they are eaten. Using plant derived-technology, the protective peels of fruit and vegetables can now be enhanced, allowing them to stay fresh for triple the amount of time of regularly grown produce. As the freshness of the products is protected for longer, the logistical costs of a strictly controlled refrigerated supply chain are reduced, and in the long-term, food waste is minimized.

As it exists at the moment, the food supply chain is environmentally damaging. From growing meat in a lab to extending the lifespan of fresh food, bioengineers are now finding ways to improve sustainability in food production.