4 Ways Businesses Can Become More Sustainable

You’ve probably heard the word “sustainable” many times by now, but you may wonder what it has to do with your business. Sustainable business means that you’ll be you’ll be increasing the odds that you company can continue indefinitely by minimizing social and environmental impacts while ensuring financial stability. Studies have shown that sustainable business perform better financially, including one report by nonprofit CDC, reported by The Guardian that found they secure an 18% greater return on investment (ROI) than organizations that aren’t, and 67% more than companies who refuse to. How can you help your business become more sustainable?

green-economy

1. Think Greener in Procurement Sources

One of the best, and easiest, things you can do to make your business more sustainable is to practice environmentally-friendly procurement. Take a close look at your current suppliers and make changes as necessary by using suppliers that don’t use excessive packaging or sell products that contain substances that are harmful to the environment.

As often as possible, choose recycled items made from renewable material. Ask plenty of questions when researching various suppliers to find out where their goods are coming from, including whether the manufacturer is a sustainable business.

Whenever possible, use local suppliers, rather than purchasing online.

2. Seek Help from an Energy Broker

An increasing number of businesses are embracing renewable energy and energy management today. Your office can be powered with a variety of alternative sources like biomass, hydropower, geothermal, solar and wind power. There are hundreds of companies that supply energy in a myriad of different ways, affecting your bottom line and sustainability.

While there are usually a few suppliers dominating any given market, many other small suppliers are known for getting more creative in their offerings. Trying to figure out which one is best for your organization can be a very difficult task which is why using an energy broker who is knowledgeable about all the complexities that come with this sector, can best analyze the energy market to provide you with the greenest, most cost-effective options.

3. Reduce Water Usage

Water shortages are becoming an increasingly bigger problem in many places around the world, including North America. Whether your organization is located in a drought-stricken area or not, decreasing water use will help to conserve a valuable resource and help you save money at the same time.

Instead of using a sprinkler system to keep lush lawns around the building, switch to a drip irrigation system to significantly reduce water usage or consider changing the landscaping to something more drought tolerant. Fix plumbing leaks and dripping taps and install low-flow faucet aerators in your bathrooms.

4. Switch From Gas To Electricity

Electricity is much easier to source sustainably than gas and oil, especially if you use solar panels to collect energy from the sun. So by switching over some of your gas-powered company owned equipment to their electric counterparts you can ultimately help your business become more sustainable.

Some equipment to consider switching could include: switching from gas powered to electric vehicles (especially for companies that rely heavily on transportation), switching from gas-powered to electric-powered riding mowers (especially for landscaping businesses).

As there are so many different types of lawn mowers available, sites like home gear expert show us interesting comparisons which will help you find the one which best matches your needs.

A good electric riding mower with good user ratings will cost you a couple thousand dollars but could save you money in the long term plus make your business more sustainable.

Recommended Reading: How to Make Your Business Sustainable

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management.

The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass-based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.

PKS From Africa Can Fuel Biomass Power Plants in Japan

Japan’s biomass fuel requirement is estimated to be tens of millions of tons each year on account of its projected biomass energy capacity of 6,000MW by the year 2030. To achieve this capacity, more than 20 million tons of biomass fuel will be needed every year which will be mainly met by wood pellets and palm kernel shell (PKS). The similarity of the properties of wood pellets with PKS makes PKS the main competitor of wood pellets in the international biomass fuel market.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Canada and USA are the biggest suppliers of wood pellets to the Japanese biomass market while PKS mainly comes from Indonesia and Malaysia. With the size of the material almost the same as wood pellets, but at a cheaper price (almost half the wood pellets) and also available in abundance, PKS is the preferred biomass fuel for the Japanese market. PKS can be used 100% in power plants that use fluidized bed combustion technology, while wood pellets are used in pulverized combustion.

Although there is abundant PKS in CPO (crude palm oil) producing countries, but fluctuations in CPO production and increase in domestic demand has led to reduction in PKS exports in Southeast Asia. In palm oil plantations, it is known as the low crop season and peak crop season. When the low crop season usually occurs in the summer or dry season, the supply of fruit to the palm oil mills decreases so that the CPO production decreases and also the supply of PKS automatically reduces, and vice versa in the peak crop season. When demand is high or even stable but supply decreases, the price of PKS tends to rise.

In addition, a wide range of industries in Indonesia and Malaysia have also began to use PKS as an alternative fuel triggering increased domestic demand. In recent years, PKS is also being processed into solid biomass commodities such as torrified PKS, PKS charcoal and PKS activated carbon. Thus, there is very limited scope of increasing PKS supply from Southeast Asia to large-scale biomass consumers like Japan and South Korea.

Palm oil mills process palm oil fruit from palm oil plantations, so the more fruit is processed the greater the PKS produced and also more processors or mills are needed. At present it is estimated that there are more than 1500 palm oil mills in Indonesia and Malaysia. Palm kernel shells from Indonesia and Malaysia is either being exported or used domestically by various industries. On the other hand, in other parts of the world PKS is still considered a waste which tends to pollute the environment and has no economic value.

Palm Oil Producers

Top palm oil producers around the world

West African countries, such Nigeria, Ghana and Togo, are still struggling to find a sustainable business model for utilization of PKS. Keeping in view the tremendous PKS requirements in the Asia-Pacific region, major PKS producers in Africa have an attractive business opportunity to export this much-sought after biomass commodity to the Japan, South Korea and even Europe.

Simply speaking, PKS collected from palm oil mills is dried, cleaned and shipped to the destination country. PKS users have special specifications related to the quality of the biomass fuel used, so PKS needs to be processed before exporting.

PKS-export

PKS exports from Indonesia and Malaysia to Japan are usually  with volume 10 thousand tons / shipment by bulk ship. The greater the volume of the ship or the more cargo the PKS are exported, the transportation costs will generally be cheaper. African countries are located quite far from the Asia-Pacific region may use larger vessels such as the Panamax vessel to export their PKS.

An Introduction to Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centerstage in farming process.

future of bioenergy

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

 

Modern combine harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest.

Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.

The Logistics of a Biomass Power Plant

Biomass logistics involves all the unit operations necessary to move biomass wastes from the land to the biomass energy plant. The biomass can be transported directly from farm or from stacks next to the farm to the processing plant. Biomass may be minimally processed before being shipped to the plant, as in case of biomass supply from the stacks. Generally the biomass is trucked directly from farm to the biomass processing facility if no processing is involved.

biomass_logistics

Another option is to transfer the biomass to a central location where the material is accumulated and subsequently dispatched to the energy conversion facility. While in depot, the biomass could be pre-processed minimally (ground) or extensively (pelletized). The depot also provides an opportunity to interface with rail transport if that is an available option. The choice of any of the options depends on the economics and cultural practices. For example in irrigated areas, there is always space on the farm (corner of the land) where quantities of biomass can be stacked.

The key components to reduce costs in harvesting, collecting and transportation of biomass can be summarized as:

  • Reduce the number of passes through the field by amalgamating collection operations.
  • Increase the bulk density of biomass
  • Work with minimal moisture content.
  • Granulation/pelletization is the best option, though the existing technology is expensive.
  • Trucking seems to be the most common mode of biomass transportation option but rail and pipeline may become attractive once the capital costs for these transport modes are reduced.

The logistics of transporting, handling and storing the bulky and variable biomass material for delivery to the biopower plant is a key part of the biomass supply chain that is often overlooked by project developers. Whether the biomass comes from forest residues on hill country, straw residues from cereal crops grown on arable land, or the non-edible components of small scale, subsistence farming systems, the relative cost of collection will be considerable.

Careful development of a system to minimize machinery use, human effort and energy inputs can have a considerable impact on the cost of the biomass as delivered to the biomass processing plant gate.

The logistics of supplying a biomass power plant with consistent and regular volumes of biomass are complex.

Most of the agricultural biomass resources tend to have a relatively low energy density compared with fossil fuels. This often makes handling, storage and transportation more costly per unit of energy carried. Some crop residues are often not competitive because the biomass resource is dispersed over large areas leading to high collection and transport costs.

The costs for long distance haulage of bulky biomass will be minimized if the biomass can be sourced from a location where it is already concentrated, such as sugar mill. It can then be converted in the nearby biomass energy plant to more transportable forms of energy carrier if not to be utilized on-site.

The logistics of supplying a biopower plant with sufficient volumes of biomass from a number of sources at suitable quality specifications and possibly all year round, are complex. Agricultural residues can be stored on the farm until needed. Then they can be collected and delivered directly to the conversion plant on demand. At times this requires considerable logistics to ensure only a few days of supply are available on-site but that the risk of non-supply at any time is low.

Losses of dry matter, and hence of energy content, commonly occur during the harvest transport and storage process. This can either be from physical losses of the biomass material in the field during the harvest operation or dropping off a truck, or by the reduction of dry matter of biomass material which occurs in storage over time as a result of respiration processes and as the product deteriorates. Dry matter loss is normally reduced over time if the moisture content of the biomass can be lowered or oxygen can be excluded in order to constrain pathological action.

To ensure sufficient and consistent biomass supplies, all agents involved with the production, collection, storage, and transportation of biomass require compensation for their share of costs incurred. In addition, a viable biomass production and distribution system must include producer incentives, encouraging them to sell their post-harvest plant residue.

The Role of Bioengineering in Sustainable Food Supply Chain

Every year, the production of food around the world accounts for almost a third of all global emissions of greenhouse gases. Deforestation, grazing livestock, and the use of fertilizers all contribute to climate change. Finding ways to minimize the damage that food production causes is becoming a priority in the fight against global warming. In addition, the United Nations’ Food and Agriculture Organization has estimated that every year, the world produces enough food waste to feed 2 billion people.

To address these problems, the field of bioengineering has found ways to recycle scrap food, reduce the amount thrown away, and find alternative ways to produce sufficient food to feed the world more sustainably and with less waste.

sustainability-food-supply-chain

Engineering Sustainable Food

A degree in bioengineering, or a masters in biomedical engineering online, involves the study of a range of scientific fields from computational biology and physiological systems to mechanical engineering and material sciences. This multidisciplinary approach lends itself well to improving the sustainability of food production. For many years, the genetic engineering of plants has created the potential of increasing production in a sustainable and environmentally-friendly way, and more recently, progress has been made in creating synthetic meat.

Now, without the use of genetic engineering, biomedical engineers have created the first bioprinted steak from cattle cells. The qualities of real meat are replicated by allowing living cells to grow and interact in the same way as they would in nature. The result is the creation of an authentic-tasting steak produced without the extensive environmental damage caused by farming livestock.

Converting Food Into Fuel

Every year in the US alone, 80 billion pounds of food is thrown away without being eaten. An increasing number of scientific projects are working on harnessing the valuable energy from food waste and converting it into renewable fuel. This can then be used to power a range of vehicles from privately owned cars to planes and trains.

In communities where food waste is collected along with other recyclable materials, anaerobic digestion can also be used to convert the high fat content of food waste into green electricity, which is put back into the grid to power households.

food-waste-behavior

Reducing Food Waste

Some food scraps are unavoidable, but now bioengineering is being applied to reduce some of the waste from over consumerism. Shoppers often buy excess food and leave fresh fruit and vegetables to go mouldy before they are eaten. Using plant derived-technology, the protective peels of fruit and vegetables can now be enhanced, allowing them to stay fresh for triple the amount of time of regularly grown produce. As the freshness of the products is protected for longer, the logistical costs of a strictly controlled refrigerated supply chain are reduced, and in the long-term, food waste is minimized.

As it exists at the moment, the food supply chain is environmentally damaging. From growing meat in a lab to extending the lifespan of fresh food, bioengineers are now finding ways to improve sustainability in food production.

Everything You Should Know About Biomass Storage Methods

Sufficient biomass storage is necessary to accommodate seasonality of production and ensure regular supply to the biomass utilization plant. The type of storage will depend on the properties of the biomass, especially moisture content.

For high moisture biomass intended to be used wet, such as in fermentation and anaerobic digestion systems, wet storage systems can be used, with storage times closely controlled to avoid excessive degradation of feedstock. Storage systems typically used with dry agricultural residues should be protected against spontaneous combustion and excess decomposition, and the maximum storage moisture depends on the type of storage employed.

Consistent and reliable supply of biomass is crucial for any biomass project

Moisture limits must be observed to avoid spontaneous combustion and the emission of regulated compounds. Cost of storage is important to the overall feasibility of the biomass enterprise. In some cases, the storage can be on the same site as the source of the feedstock. In others, necessary volumes can only be achieved by combining the feedstock from a number of relatively close sources. Typically, delivery within about 50 miles is economic, but longer range transport is sometimes acceptable, especially when disposal fees can be reduced.

Storage of biomass fuels is expensive and increases with capacity.

Agricultural residues such as wheat straw, rice husk, rice straw and corn stover are usually spread or windrowed behind the grain harvesters for later baling. Typically these residues are left in the field to air dry to moisture levels below about 14% preferred for bales in stacks or large piles of loose material.

After collection, biomass may be stored in the open or protected from the elements by tarps or various structures. Biomass pelletization may be employed to increase bulk density and reduce storage and transport volume and cost.

Biomass Storage Options

  • Feedstock is hauled directly to the plant with no storage at the production site.
  • Feedstock is stored at the production site and then transported to the plant as needed.
  • Feedstock is stored at a collective storage facility and then transported to the plant from the intermediate storage location.

Biomass Storage Systems

The type of biomass storage system used at the production site, intermediate site, or plant can greatly affect the cost and the quality of the fuel. The most expensive storage systems, no doubt, are the most efficient in terms of maintaining the high fuel quality. Typical storage systems, ranked from highest cost to lowest cost, include:

  • Enclosed structure with crushed rock floor
  • Open structure with crushed rock floor
  • Reusable tarp on crushed rock
  • Outside unprotected on crushed rock
  • Outside unprotected on ground
  • Subterranean

The storage of biomass is often necessary due to its seasonal production versus the need to produce energy all year round. Therefore to provide a constant and regular supply of fuel for the plant requires either storage or multi-feedstock to be used, both of which tend to add cost to the system.

Reducing the cost of handling and stable storage of biomass feedstock are both critical to developing a sustainable infrastructure capable of supplying large quantities of biomass to biomass processing plants. Storage and handling of biomass fuels is expensive and increases with capacity. The most suitable type of fuel store for solid biomass fuel depends on space available and the physical characteristics of the biomass fuel.

Electrical Waste Collection Strategies in the UK

When disposing of small electrical items from the home, most householders only have the option of visiting their local recycling facility to drop them off. However, in order to meet recycling targets, local authorities in the UK are now considering kerbside (or curbside) collections of small domestic appliances. This is expected to help prevent small electrical items being placed into the general waste/refuse containers from households.

electrical-waste-uk

This waste stream has become a priority as figures show that the average amount of WEEE (waste electrical and electronic equipment) recycled per person is only 1.3kg. The original WEEE directive targeted 4kg per person, as a recycling rate, so there is a considerable shortfall. It is important that householders find it easy to recycle their items in order to increase the rates.

Initial trials have taken place to assess the viability of these kerbside collections and the following conclusions were made:

  • On collections, small electrical items were often damaged, so the reuse of items was less likely.
  • Levels of recycling were encouraging at 140 grams per household.
  • The monetary value of the separated materials of the small items showed that a positive net value could be achieved.

Whilst the potential reuse of small electrical items was reduced it was a positive that local authorities could generate revenues from the collections. Quarterly or bi-annual collection frequencies would ensure volumes of equipment on the collections were maximised. Due to the success of the trials, the UK is likely to see more and more local authorities adopt some form of collection schedule for small electrical waste items.

An old refrigerator uses almost four times the electricity of a new one

Larger electrical items such as washing machines and fridge freezers pose a different collection issue. Some local authorities offer a collection service for bulky electrical items, however due to their size, weight and manpower requirements there is often a charge. As with smaller electrical items, you can deliver these to the local recycling facility, but you may not be able to fit these into your own vehicle. It is best to check with the local recycling facility on the options available and possibly even if they allow large, commercial sized vehicles onto site.

The collection of electrical wastes from households in the UK will ultimately increase the amount of electrical waste being recycled in the UK. It will also further promote the recycling of such items instead of placing them into general waste containers. Going forward it is hoped that more local authorities will adopt a collection schedule even if only bi-annually from their local householders.

4 Benefits of Studying Supply Chain and Logistics Management

The business world is quite dynamic. You need to have a comprehensive understanding of how it operates. It’s essential to learn the process within and between an organization. Its where supply chain and logistics management comes in. It’s an exciting course that you can take online. Here are the top fascinating benefits of studying supply chain and logistics management.

1. Improve the organization’s profitability

There’re numerous job opportunities within supply chain management. Supply chain management recruitment organizations are searching for individuals who can contribute to their financial success. They need someone who can analyze cost efficiencies, maintain proper inventory levels as well as decrease operating expenses

Working as a supply chain manager is beneficial as you get to do what you enjoy. You contribute to the company’s goal of increasing sales, infiltrating new markers as well as making a difference. It’s a chance to make the company gain a competitive advantage as well as increase shareholder value. Engaging in online management courses is the ideal way to prepare you for the responsibilities that lie ahead.

2. Logistics as well as decision making

Businesses continue to experience significant changes, and the global supply chain continues to become dated. Its causing businesses to keep struggling when they have to adapt to manufacturing location changes and using cost-effective techniques

Companies keep looking for individuals who have logistic management training. Its because these individuals can spot a complication. They then proceed to provide the best possible solution. It’s nice to study a course that is quite relevant to business dynamics.

3. Proper system implementation

Studying supply chain and logistics management is a suitable career investment. It enables you to work around the technology. You stand to benefit from implementing new technology into a company’s current operations. It is because these technological advancements minimize cost as well as streamline the processes.

Being a supply chain manager means you will be at the forefront of applying the best possible technology. You must undertake a course that will enable you to be part of the movers and shakers of the organization. That being said, if options are what you need, you can try the Kanban supply chain.

4. Keep up with challenges and trends

When you choose to study supply chain and logistics management, you get to know how to handle trends in the industry. It’s an excellent opportunity to deal with what clients want and calculating the company’s books.

It’s time to embrace new technology and spearhead it within an organization. You get to keep a close eye on each further advancement and offer excellent communication to clients, vendors, and the company. In the current world, you need to take a thrilling course that will enable you to stay relevant in the ever-changing business environment

The beauty of studying supply chain and logistics management is that there are plenty of job opportunities, especially in transporting goods. You get to possess an educational background to work as an enterprise process engineer, an analyst as well as a scheduling manager. You can take up various online management courses to further your career. It’s a convenient time to enhance a company’s responsiveness, offer value to clients, develop networking resilience, and so much more.

A Complete Guide to UK Freight Forwarding

Business owners are busy and don’t always have time to handle cargo transportation tasks. Meanwhile, supply chain optimisation can significantly impact your company’s profits and guarantee customer satisfaction.

If you’re wondering how to transport goods with maximum efficiency, consider hiring a freight forwarder UK. Logistics companies in the UK are some of the most experienced professionals in the industry and can be of great help to any entrepreneur. This guide will explain what freight forwarders do, why you need one, and how to pick the right company.

freight forwarding guide

Who is a Freight Forwarder and Why You Need One?

The term freight forwarding refers to the organisation of cargo shipment from one place to another. Consequently, a freight forwarder is an individual or company carrying out the task. Freight forwarders have a wider duty list than cargo carriers.

Firstly, freight forwarders research different cargo shipping options to determine the most time and cost-efficient method. One may think that anyone can handle this task with enough time and dedication. However, freight forwarders don’t simply use Google; they find the optimal option by utilising their own contacts and transportation management systems.

Secondly, freight forwarders are responsible for properly executing the transportation plan. This may include goods packing, labelling, and loading, communication with delivery partners, and paperwork. Freight forwarders must arrange customs clearance and ensure the shipment has all the necessary documentation.

Additionally, freight forwarders may offer other cargo services such as supply chain optimisation advice, consolidation and negotiation, warehousing, cargo insurance, and supply chain performance reports.

So, do you need a freight forwarder? The answer largely depends on your cargo type, business industry, country of origin and destination, among other factors. Freight forwarders can be helpful for all businesses, large and small, wishing to optimise their supply chain and ensure compliance with local legislation.

They have the necessary connections and experience to navigate the most complex triangular operations involving multiple parties – for instance, a manufacturer, intermediary, and final customer. Furthermore, freight forwarders can handle large, complex, and high-value cargo deliveries such as factory production equipment, oil or gas, and wind turbine blades.

The advantages of using a freight forwarder include:

  • Your communication is limited to one person who’s responsible for everything rather than multiple carrier companies.
  • Some freight forwarding projects are too complex and involve plenty of paperwork. A freight forwarder will ensure everything goes smoothly.
  • Freight forwarders can quickly find an optimal solution using their worldwide connections.
  • Freight forwarders save you time.
  • If anything goes wrong, you can fill in an insurance claim.

Types of Freight Forwarding

Freight forwarding is divided into two main categories: domestic and international. The shipment can be carried out using one or multiple carriers, depending on the destination region and cargo complexity. The three types of freight forwarding include air, sea, and land freight.

Freight Problems Companies Face While Transporting Goods To Other Country

Air cargo services are executed using passenger or cargo aircraft. The main advantages of air cargo services are the speed high security level. However, air cargo leaves a massive carbon footprint and is the most expensive of all options.

Sea cargo services are performed using container ships. Due to the low costs and small carbon footprint, sea cargo is the most popular freight forwarding method, accounting for nearly 90% of worldwide shipments. The only drawback of sea cargo services is the slow delivery speed.

Land cargo services are typically used to deliver goods within one country or to a neighbouring country. Cargo is delivered using trucks or trains depending on the load size and destination. Land cargo services are cost-efficient, but the delivery times are highly dependent on weather and traffic.

How to Find the Right Freight Forwarder UK

Now that you understand the importance of planning in cargo transportation, you may wonder how to find the right freight forwarder. UK businesses can benefit from hiring freight forwarders who are familiar with local legislation and can handle customs clearance, VAT, insurance, and other documentation.

For instance, GenX Freight is a London-based company with years of experience in arranging sea, air, and land shipments worldwide. Don’t hesitate to contact your local freight forwarding company for a consultation. By trusting your cargo to industry experts, you can gain peace of mind and free up more time to grow your business.