Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector in a particular country. The supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

Ways Businesses Can Become More Sustainable

green-economyYou’ve probably heard the word “sustainable” many times by now, but you may wonder what it has to do with your business. Sustainable business means that you’ll be you’ll be increasing the odds that you company can continue indefinitely by minimizing social and environmental impacts while ensuring financial stability.  Studies have shown that sustainable business perform better financially, including one report by nonprofit CDC, reported by The Guardian that found they secure an 18% greater return on investment (ROI) than organizations that aren’t, and 67% more than companies who refuse to. How can you help your business become more sustainable?

Think Greener in Procurement Sources

One of the best, and easiest, things you can do to make your business more sustainable is to practice environmentally-friendly procurement. Take a close look at your current suppliers and make changes as necessary by using suppliers that don’t use excessive packaging or sell products that contain substances that are harmful to the environment.

As often as possible, choose recycled items made from renewable material. Ask plenty of questions when researching various suppliers to find out where their goods are coming from, including whether the manufacturer is a sustainable business.

Whenever possible, use local suppliers, rather than purchasing online.

Seek Help from an Energy Broker

An increasing number of businesses are embracing renewable energy today. Your office can be powered with a variety of alternative sources like biomass, hydropower, geothermal, solar and wind power. There are hundreds of companies that supply energy in a myriad of different ways, affecting your bottom line and sustainability.

While there are usually a few suppliers dominating any given market, many other small suppliers are known for getting more creative in their offerings. Trying to figure out which one is best for your organization can be a very difficult task which is why using an energy broker who is knowledgeable about all the complexities that come with this sector, can best analyze the energy market to provide you with the greenest, most cost-effective options.

Reduce Water Usage

Water shortages are becoming an increasingly bigger problem in many places around the world, including North America. Whether your organization is located in a drought-stricken area or not, decreasing water use will help to conserve a valuable resource and help you save money at the same time.

Instead of using a sprinkler system to keep lush lawns around the building, switch to a drip system to significantly reduce water usage or consider changing the landscaping to something more drought tolerant. Fix plumbing leaks and dripping taps and install low-flow faucet aerators in your bathrooms.

Biomass Energy in China

biomass-chinaBiomass energy in China has been developing at a rapid pace. The installed biomass power generation capacity in China increased sharply from 1.4 GW in 2006 to 14.88 GW in 2017. While the energy share of biomass remains relatively low compared to other sources of renewable energy, China plans to increase the proportion of biomass energy up to 15 percent and total installed capacity of biomass power generation to 30 GW by 2030.

In terms of impact, the theoretical biomass energy resource in China is about 5 billion tons coal equivalent, which equals 4 times of all energy consumption. As per conservative estimates, currently China is only using 5 percent of its total biomass potential.

According to IRENA, the majority of biomass capacity is in Eastern China, with the coastal province of Shandong accounting for 14 percent of the total alone. While the direct burning of mass for heat remains the primary use of biomass in China, in 2009, composition of China’s biomass power generation consisted in 62 percent of straw direct-fired power generation and 29 percent of waste incineration, with a mix of other feedstock accounting for the remaining 9 percent.

Biomass Resources in China

Major biomass resources in China include waste from agriculture, forestry, industries, animal manure and sewage, and municipal solid waste. While the largest contributing sources are estimated to be residues from annual crop production like wheat straw, much of the straw and stalk are presently used for cooking and heating in rural households at low efficiencies. Therefore, agricultural residues, forestry residues, and garden waste were found to be the most cited resources with big potential for energy production in China.

Agricultural residues are derived from agriculture harvesting such as maize, rice and cotton stalks, wheat straw and husks, and are most available in Central and northeastern China where most of the large stalk and straw potential is located. Because straw and stalks are produced as by-products of food production systems, they are perceived to be sustainable sources of biomass for energy that do not threaten food security.

Furthermore, it is estimated that China produces around 700 Mt of straw per year, 37 percent of which is corn straw, 28 percent rice, 20 percent wheat and 15 percent from various other crops. Around 50 percent of this straw is used for fertilizers, for which 350 Mt of straw is available for energy production per year.

Biomass resources are underutilized across China

Biomass resources are underutilized across China

Forestry residues are mostly available in the southern and central parts of China. While a few projects that use forestry wastes like tree bark and wood processing wastes are under way, one of the most cited resources with analyzed potential is garden waste. According to research, energy production from garden waste biomass accounted for 20.7 percent of China’s urban residential electricity consumption, or 12.6 percent of China’s transport gasoline demand in 2008.

Future Perspectives

The Chinese government believes that biomass feedstock should neither compete with edible food crops nor cause carbon debt or negative environmental impacts. As biomass takes on an increasing significant role in the China’s national energy-mix, future research specific to technology assessment, in addition to data collection and supply chain management of potential resources is necessary to continue to understand how biomass can become a game-changer in China’s energy future.

References

IRENA, 2014. Renewable Energy Prospects: China, REmap 2030 analysis. IRENA, Abu Dhabi. www.irena.org/remap

National Academy of Engineering and NRC, 2007: Energy Futures and Urban Air Pollution: Challenges for China and the United States.

Xingang, Z., Zhongfu, T., Pingkuo, L, 2013. Development goal of 30 GW for China’s biomass power generation: Will it be achieved? Renewable and Sustainable Energy Reviews, Volume 25, September 2013, 310–317.

Xingang, Z., Jieyu, W., Xiaomeng, L., Tiantian, F., Pingkuo, L, 2012. Focus on situation and policies for biomass power generation in China. Renewable and Sustainable Energy Reviews, Volume 16, Issue 6, August 2012, 3722–3729.

Li, J., Jinming, B. MOA/DOE Project Expert Team, 1998. Assessment of Biomass Resource Availability in China. China Environmental Science Press, Beijing, China.

Klimowicz, G., 2014. “China’s big plans for biomass,” Eco-Business, Global Biomass Series, accessed on Apr 6, 2015.

Shi, Y., Ge, Y., Chang, J., Shao, H., and Tang, Y., 2013. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renewable and Sustainable Energy Reviews 22 (2013) 432–437

Xu, J. and Yuan, Z, 2015. “An overview of the biomass energy policy in China,” BESustainable, May 21, 2015.

Waste Minimisation – Role of Public, Private and Community Sector

waste-minisationWhen it comes to waste minimisation and moving material up the waste hierarchy you will find partisan advocates for the roles of the public, private and community sectors. Each will tell you the reasons why their sector’s approach is the best. The private sector will extol their virtues as the only ones capable of efficiently and effectively doing the job.  They rightly note that they are the providers on the front lines who actually recover the vast majority of material, that the private sector approach drives innovation and efficiency, and that if waste minimisation is to be sustainable this must include economic sustainability.

The community sector on the other hand will make a strong case to say that their model, because it commonly encompasses social, environmental, and economic outcomes, is able to leverage value from recovered materials to dig deeper into the waste stream, to optimise recovered material quality, and to maximise employment and local economic benefit.

Before recycling and composting were economically viable prospects, community sector organisations led the way, developing many of the techniques now widely used. They remain the leaders in marginal areas such as furniture reuse, running projects that deliver environmental outcomes while providing wider community benefits such as rehabilitation and training for marginalised groups.

Finally, in the public sector corner, advocates will point out that the profit-driven private sector will only ever recover those materials that are able to generate positive revenues, and so cannot maximise waste minimisation, while social outcomes are strictly a secondary consideration. The community sector, on the other hand, while encompassing non-monetary values and capable of effective action on a local scale, is not set up to deliver these benefits on a larger scale and can sometimes struggle to deliver consistent, professional levels of service.

The public sector can point to government’s role in legislating to promote consistent environmental and social outcomes, while councils are major providers and commissioners of recycling services and instrumental in shaping public perceptions around waste issues. The public sector often leads in directing activity towards non-monetary but otherwise valuable outcomes, and provides the framework and funding for equity of service levels.

So who is right? Each sector has good arguments in its favour, and each has its weaknesses. Does one approach carry the day?  Should we just mix and match according to our personal taste or based on what is convenient?

Perhaps we are asking the wrong question. Maybe the issue is not “which approach is better?” but instead “how might the different models help us get to where we ultimately want to go?”

Smells Like Waste Minimisation

So where do we want to go?  What is the waste minimisation end game?

If we think about things from a zero waste perspective, the ideal is that we should move from linear processes of extraction, processing, consumption and disposal, to cyclical processes that mimic nature and that re-integrate materials into economic and natural systems.  This is the nirvana – where nothing is ‘thrown away’ because everything has a further beneficial use.  In other words what we have is not waste but resources.  Or to put it another way – everything has value.

Assuming that we continue to operate in an essentially capitalist system, value has to be translated into economic terms.  Imagine if every single thing that we now discard was worth enough money to motivate its recovery.  We would throw nothing away: why would we if there was money to be made from it?

So in a zero waste nirvana the private sector and the community sector would take care of recovery almost automatically.  There might evolve a community and private sector mix, with each occupying different niches depending on desired local outcomes. There would be no need for the public sector to intervene to promote waste minimisation.  All it would need to do would be to set some ground rules and monitor the industry to ensure a level playing field and appropriate health and safety.

Sectoral Healing

Returning to reality, we are a long way from that zero waste nirvana.  As things stand, a bunch of materials do have economic value, and are widely recycled. Another layer of materials have marginal value, and the remainder have no value in practical terms (or even a negative value in the case of hazardous wastes).

The suggested shift in perspective is most obvious in terms of how we think about the role of the public sector. To bring us closer to our goal, the public sector needs to intervene in the market to support those materials of marginal value so that they join the group that has genuine value.

Kerbside (or curbside) collection of certain materials, such as glass and lower value plastics, is an example of an activity that is in effect subsidised by public money. These subsidies enable the private sector to achieve environmental outcomes that we deem sufficiently worthwhile to fund.

However, the public sector should not just be plugging a gap in the market (as it largely does now), but be working towards largely doing itself out of a job. If we are to progress towards a cyclical economy, the role of the public sector should not be to subsidise marginal materials in perpetuity, but to progressively move them from marginal to genuinely economic, so that they no longer require support.

At the same time new materials would be progressively targeted and brought through so that the range and quantity requiring disposal constantly shrinks.  This suggests a vital role for the public sector that encompasses research, funding for development of new technologies and processes, and setting appropriate policy and price structures (such as through taxes, levies, or product stewardship programmes).

Similarly, the community sector, because it is able to ‘dig deeper’ into the waste stream, has a unique and ongoing role to play in terms of being able to more effectively address those materials of marginal value as they begin to move up the hierarchy.  The community sector’s unique value is its ability to work at the frontiers.

Meanwhile, the private sector’s resources and creativity will be needed to enable efficient systems to be developed to manage collection, processing and recycling of materials that reach the threshold of economic viability – and to create new, more sustainable products that fit more readily into a waste minimising world.

In the end, then, perhaps the answer is to stop seeing the three models as being in competition. Instead, we should consciously be utilising the unique characteristics of each so that we can evolve our practices towards a future that is more functional and capable of delivering the circular economy that must eventuate if we are to sustain ourselves on this planet.

Note: The article is being republished with the kind permission of our collaborative partner Isonomia. The original article can be viewed at this link

Electrical Waste Collection Strategies in the UK

When disposing of small electrical items from the home, most householders only have the option of visiting their local recycling facility to drop them off. However, in order to meet recycling targets, local authorities in the UK are now considering kerbside (or curbside) collections of small domestic appliances.  This is expected to help prevent small electrical items being placed into the general waste/refuse containers from households.

This waste stream has become a priority as figures show that the average amount of WEEE (waste electrical and electronic equipment) recycled per person is only 1.3kg. The original WEEE directive targeted 4kg per person, as a recycling rate, so there is a considerable shortfall. It is important that householders find it easy to recycle their items in order to increase the rates.

Initial trials have taken place to assess the viability of these kerbside collections and the following conclusions were made:

  • On collections, small electrical items were often damaged, so the reuse of items was less likely.
  • Levels of recycling were encouraging at 140 grams per household.
  • The monetary value of the separated materials of the small items showed that a positive net value could be achieved.

Whilst the potential reuse of small electrical items was reduced it was a positive that local authorities could generate revenues from the collections. Quarterly or bi-annual collection frequencies would ensure volumes of equipment on the collections were maximised. Due to the success of the trials, the UK is likely to see more and more local authorities adopt some form of collection schedule for small electrical waste items.

An old refrigerator uses almost four times the electricity of a new one

Larger electrical items such as washing machines and fridge freezers pose a different collection issue. Some local authorities offer a collection service for bulky electrical items, however due to their size, weight and manpower requirements there is often a charge. As with smaller electrical items, you can deliver these to the local recycling facility, but you may not be able to fit these into your own vehicle. It is best to check with the local recycling facility on the options available and possibly even if they allow large, commercial sized vehicles onto site.

The collection of small electrical items from householders will ultimately increase the amount of electrical waste being recycled in the UK. It will also further promote the recycling of such items instead of placing them into general waste containers. Going forward it is hoped that more local authorities will adopt a collection schedule even if only bi-annually from their local householders.

Bioenergy in the Middle East

The Middle East region offers tremendous renewable energy potential in the form of solar, wind and bioenergy which has remained unexplored to a great extent. The major biomass producing Middle East countries are Egypt, Algeria, Yemen, Iraq, Syria and Jordan. Traditionally, biomass energy has been widely used in rural areas for domestic purposes in the Middle East. Since most of the region is arid/semi-arid, the biomass energy potential is mainly contributed by municipal solid wastes, agricultural residues and agro-industrial wastes.

Municipal solid wastes represent the best bioenergy resource in the Middle East. The high rate of population growth, urbanization and economic expansion in the region is not only accelerating consumption rates but also accelerating the generation of municipal waste. Bahrain, Saudi Arabia, UAE, Qatar and Kuwait rank in the top-ten worldwide in terms of per capita solid waste generation. The gross urban waste generation quantity from Middle East countries is estimated at more than 150 million tons annually.

In Middle East countries, huge quantity of sewage sludge is produced on daily basis which presents a serious problem due to its high treatment costs and risk to environment and human health. On an average, the rate of wastewater generation is 80-200 litres per person each day and sewage output is rising by 25 percent every year. According to estimates from the Drainage and Irrigation Department of Dubai Municipality, sewage generation in the Dubai increased from 50,000 m3 per day in 1981 to 400,000 m3 per day in 2006.

The food processing industry in Middle East produces a large number of organic residues and by-products that can be used as source of bioenergy. In recent decades, the fast-growing food and beverage processing industry has remarkably increased in importance in major countries of the Middle East.

Since the early 1990s, the increased agricultural output stimulated an increase in fruit and vegetable canning as well as juice, beverage, and oil processing in countries like Egypt, Syria, Lebanon and Saudi Arabia. There are many technologically-advanced dairy products, bakery and oil processing plants in the region.

date-wastes

Date palm biomass is found in large quantities across the Middle East

Agriculture plays an important role in the economies of most of the countries in the Middle East.  The contribution of the agricultural sector to the overall economy varies significantly among countries in the region, ranging, for example, from about 3.2 percent in Saudi Arabia to 13.4 percent in Egypt. Cotton, dates, olives, wheat are some of the prominent crops in the Middle East

Large quantities of crop residues are produced annually in the region, and are vastly underutilised. Current farming practice is usually to plough these residues back into the soil, or they are burnt, left to decompose, or grazed by cattle. These residues could be processed into liquid fuels or thermochemically processed to produce electricity and heat in rural areas.

Energy crops, such as Jatropha, can be successfully grown in arid regions for biodiesel production. Infact, Jatropha is already grown at limited scale in some Middle East countries and tremendous potential exists for its commercial exploitation.

The Middle Eastern countries have strong animal population. The livestock sector, in particular sheep, goats and camels, plays an important role in the national economy of the Middle East countries. Many millions of live ruminants are imported into the Middle Eastern countries each year from around the world. In addition, the region has witnessed very rapid growth in the poultry sector. The biogas potential of animal manure can be harnessed both at small- and community-scale.

Energy Potential of Empty Fruit Bunches

EFBA palm oil plantation yields huge amount of biomass wastes in the form of empty fruit bunches (EFB), palm oil mill effluent (POME) and palm kernel shell (PKS). In a typical palm oil mill, empty fruit bunches are available in abundance as fibrous material of purely biological origin. Energy potential of empty fruit bunches is attractive as it contains neither chemical nor mineral additives, and depending on proper handling operations at the mill, it is free from foreign elements such as gravel, nails, wood residues, waste etc.

However, EFB is saturated with water due to the biological growth combined with the steam sterilization at the mill. Since the moisture content in EFB is around 67%, pre-processing is necessary before EFB can be considered as a good fuel.

Unprocessed EFB is available as very wet whole empty fruit bunches each weighing several kilograms while processed EFB is a fibrous material with fiber length of 10-20 cm and reduced moisture content of 30-50%. Additional processing steps can reduce fiber length to around 5 cm and the material can also be processed into bales, pellets or pulverized form after drying.

There is a large potential of transforming EFB into renewable energy resource that could meet the existing energy demand of palm oil mills or other industries as well as to promote sustainability in the palm oil industry. Pre-treatment steps such as shredding/chipping and dewatering (screw pressing or drying) are necessary in order to improve the fuel property of EFB.

Pre-processing of EFB will greatly improve its handling properties and reduce the transportation cost to the end user i.e. power plant. Under such scenario, kernel shells and mesocarp fibres which are currently utilized for providing heat for mills can be relieved for other uses off-site with higher economic returns for palm oil millers.

The fuel could either be prepared by the mills before sell to the power plants, or handled by the end users based on their own requirements.  Besides, centralized EFB collection and pre-processing system could be considered as a component in EFB supply chain. It is evident that the mapping of available EFB resources would be useful for EFB resource supply chain improvement. This is particular important as there are many different competitive usages. With proper mapping, assessment of better logistics and EFB resource planning can lead to better cost effectiveness for both supplier and user of the EFB.

A covered yard is necessary to store and supply a constant amount of this biomass resource to the energy sector. Storage time should however be short, e.g. 5 days, as the product; even with 45% moisture is vulnerable to natural decay through fungi or bacterial processes. This gives handling and health problems due to fungi spores, but it also contributes through a loss of dry matter trough biological degradation. Transportation of EFB is recommended in open trucks with high sides which can be capable of carrying an acceptable tonnage of this low-density biomass waste.

For EFB utilization in power stations, the supply chain is characterized by size reduction, drying and pressing into bales. This may result in significantly higher processing costs but transport costs are reduced. For use in co-firing in power plants this would be the best solution, as equipment for fuel handling in the power plant could operate with very high reliability having eliminated all problems associated with the handling of a moist, fibrous fuel in bulk.

Major Considerations in Biopower Projects

In recent years, biopower (or biomass power) projects are getting increasing traction worldwide, however there are major issues to be tackled before setting up a biopower project. There are three important steps involved in the conversion of biomass wastes into useful energy. In the first step, the biomass must be prepared for the energy conversion process. While this step is highly dependent on the waste stream and approach, drying, grinding, separating, and similar operations are common.

In addition, the host facility will need material handling systems, storage, metering, and prep-yard systems and biomass handling equipment. In the second step, the biomass waste stream must be converted into a useful fuel or steam. Finally, the fuel or steam is fed into a prime mover to generate useful electricity and heat.

One of the most important factors in the efficient utilization of biomass resource is its availability in close proximity to a biomass power project. An in-depth evaluation of the available quantity of a given agricultural resource should be conducted to determine initial feasibility of a project, as well as subsequent fuel availability issues. The primary reasons for failure of biomass power projects are changes in biomass fuel supply or demand and changes in fuel quality.

Fuel considerations that should be analyzed before embarking on a biomass power project include:

  • Typical moisture content (including the effects of storage options)
  • Typical yield
  • Seasonality of the resource
  • Proximity to the power generation site
  • Alternative uses of the resource that could affect future availability or price
  • Range of fuel quality
  • Weather-related issues
  • Percentage of farmers contracted to sell residues

Accuracy is of great importance in making fuel availability assumptions because miscalculations can greatly impact the successful operation of biomass power projects. If biomass resource is identifies as a bottle-neck in the planning stage, a power generation technology that can handle varying degrees of moisture content and particle size can be selected.

Technologies that can handle several fuels in a broad category, such as agricultural residues, provide security in operation without adversely affecting combustion efficiency, operations and maintenance costs, emissions levels, and reliability.

Consistent and reliable supply of biomass is crucial for any biomass project

Identification of potential sources of biomass fuel can be one of the more challenging aspects of a new biomass energy project. There are two important issues for potential biomass users:

  • Consistent and reliable biomass resource supply to the facility
  • Presence of harvesting, processing and supply infrastructure to provide biomass in a consistent and timely manner

Biomass as an energy source is a system of interdependent components. Economic and technical viability of this system relies on a guaranteed feedstock supply, effective and efficient conversion technologies, guaranteed markets for the energy products, and cost-effective distribution systems.

The biomass system is based on the following steps:

  • Biomass harvesting (or biomass collection of non-agricultural waste)
  • Preparation of biomass as feedstock
  • Conversion of biomass feedstock into intermediate products.
  • Transformation of intermediates into final energy and other bio-based products
  • Distribution and utilization of biofuels, biomass power and bio-based products.