Electrical Waste Collection Strategies in the UK

When disposing of small electrical items from the home, most householders only have the option of visiting their local recycling facility to drop them off. However, in order to meet recycling targets, local authorities in the UK are now considering kerbside (or curbside) collections of small domestic appliances. This is expected to help prevent small electrical items being placed into the general waste/refuse containers from households.

electrical-waste-uk

This waste stream has become a priority as figures show that the average amount of WEEE (waste electrical and electronic equipment) recycled per person is only 1.3kg. The original WEEE directive targeted 4kg per person, as a recycling rate, so there is a considerable shortfall. It is important that householders find it easy to recycle their items in order to increase the rates.

Initial trials have taken place to assess the viability of these kerbside collections and the following conclusions were made:

  • On collections, small electrical items were often damaged, so the reuse of items was less likely.
  • Levels of recycling were encouraging at 140 grams per household.
  • The monetary value of the separated materials of the small items showed that a positive net value could be achieved.

Whilst the potential reuse of small electrical items was reduced it was a positive that local authorities could generate revenues from the collections. Quarterly or bi-annual collection frequencies would ensure volumes of equipment on the collections were maximised. Due to the success of the trials, the UK is likely to see more and more local authorities adopt some form of collection schedule for small electrical waste items.

An old refrigerator uses almost four times the electricity of a new one

Larger electrical items such as washing machines and fridge freezers pose a different collection issue. Some local authorities offer a collection service for bulky electrical items, however due to their size, weight and manpower requirements there is often a charge. As with smaller electrical items, you can deliver these to the local recycling facility, but you may not be able to fit these into your own vehicle. It is best to check with the local recycling facility on the options available and possibly even if they allow large, commercial sized vehicles onto site.

The collection of electrical wastes from households in the UK will ultimately increase the amount of electrical waste being recycled in the UK. It will also further promote the recycling of such items instead of placing them into general waste containers. Going forward it is hoped that more local authorities will adopt a collection schedule even if only bi-annually from their local householders.

4 Benefits of Studying Supply Chain and Logistics Management

The business world is quite dynamic. You need to have a comprehensive understanding of how it operates. It’s essential to learn the process within and between an organization. Its where supply chain and logistics management comes in. It’s an exciting course that you can take online. Here are the top fascinating benefits of studying supply chain and logistics management.

1. Improve the organization’s profitability

There’re numerous job opportunities within supply chain management. Supply chain management recruitment organizations are searching for individuals who can contribute to their financial success. They need someone who can analyze cost efficiencies, maintain proper inventory levels as well as decrease operating expenses

Working as a supply chain manager is beneficial as you get to do what you enjoy. You contribute to the company’s goal of increasing sales, infiltrating new markers as well as making a difference. It’s a chance to make the company gain a competitive advantage as well as increase shareholder value. Engaging in online management courses is the ideal way to prepare you for the responsibilities that lie ahead.

2. Logistics as well as decision making

Businesses continue to experience significant changes, and the global supply chain continues to become dated. Its causing businesses to keep struggling when they have to adapt to manufacturing location changes and using cost-effective techniques

Companies keep looking for individuals who have logistic management training. Its because these individuals can spot a complication. They then proceed to provide the best possible solution. It’s nice to study a course that is quite relevant to business dynamics.

3. Proper system implementation

Studying supply chain and logistics management is a suitable career investment. It enables you to work around the technology. You stand to benefit from implementing new technology into a company’s current operations. It is because these technological advancements minimize cost as well as streamline the processes.

Being a supply chain manager means you will be at the forefront of applying the best possible technology. You must undertake a course that will enable you to be part of the movers and shakers of the organization. That being said, if options are what you need, you can try the Kanban supply chain.

4. Keep up with challenges and trends

When you choose to study supply chain and logistics management, you get to know how to handle trends in the industry. It’s an excellent opportunity to deal with what clients want and calculating the company’s books.

It’s time to embrace new technology and spearhead it within an organization. You get to keep a close eye on each further advancement and offer excellent communication to clients, vendors, and the company. In the current world, you need to take a thrilling course that will enable you to stay relevant in the ever-changing business environment

The beauty of studying supply chain and logistics management is that there are plenty of job opportunities, especially in transporting goods. You get to possess an educational background to work as an enterprise process engineer, an analyst as well as a scheduling manager. You can take up various online management courses to further your career. It’s a convenient time to enhance a company’s responsiveness, offer value to clients, develop networking resilience, and so much more.

A Complete Guide to UK Freight Forwarding

Business owners are busy and don’t always have time to handle cargo transportation tasks. Meanwhile, supply chain optimisation can significantly impact your company’s profits and guarantee customer satisfaction.

If you’re wondering how to transport goods with maximum efficiency, consider hiring a freight forwarder UK. Logistics companies in the UK are some of the most experienced professionals in the industry and can be of great help to any entrepreneur. This guide will explain what freight forwarders do, why you need one, and how to pick the right company.

freight forwarding guide

Who is a Freight Forwarder and Why You Need One?

The term freight forwarding refers to the organisation of cargo shipment from one place to another. Consequently, a freight forwarder is an individual or company carrying out the task. Freight forwarders have a wider duty list than cargo carriers.

Firstly, freight forwarders research different cargo shipping options to determine the most time and cost-efficient method. One may think that anyone can handle this task with enough time and dedication. However, freight forwarders don’t simply use Google; they find the optimal option by utilising their own contacts and transportation management systems.

Secondly, freight forwarders are responsible for properly executing the transportation plan. This may include goods packing, labelling, and loading, communication with delivery partners, and paperwork. Freight forwarders must arrange customs clearance and ensure the shipment has all the necessary documentation.

Additionally, freight forwarders may offer other cargo services such as supply chain optimisation advice, consolidation and negotiation, warehousing, cargo insurance, and supply chain performance reports.

So, do you need a freight forwarder? The answer largely depends on your cargo type, business industry, country of origin and destination, among other factors. Freight forwarders can be helpful for all businesses, large and small, wishing to optimise their supply chain and ensure compliance with local legislation.

They have the necessary connections and experience to navigate the most complex triangular operations involving multiple parties – for instance, a manufacturer, intermediary, and final customer. Furthermore, freight forwarders can handle large, complex, and high-value cargo deliveries such as factory production equipment, oil or gas, and wind turbine blades.

The advantages of using a freight forwarder include:

  • Your communication is limited to one person who’s responsible for everything rather than multiple carrier companies.
  • Some freight forwarding projects are too complex and involve plenty of paperwork. A freight forwarder will ensure everything goes smoothly.
  • Freight forwarders can quickly find an optimal solution using their worldwide connections.
  • Freight forwarders save you time.
  • If anything goes wrong, you can fill in an insurance claim.

Types of Freight Forwarding

Freight forwarding is divided into two main categories: domestic and international. The shipment can be carried out using one or multiple carriers, depending on the destination region and cargo complexity. The three types of freight forwarding include air, sea, and land freight.

Freight Problems Companies Face While Transporting Goods To Other Country

Air cargo services are executed using passenger or cargo aircraft. The main advantages of air cargo services are the speed high security level. However, air cargo leaves a massive carbon footprint and is the most expensive of all options.

Sea cargo services are performed using container ships. Due to the low costs and small carbon footprint, sea cargo is the most popular freight forwarding method, accounting for nearly 90% of worldwide shipments. The only drawback of sea cargo services is the slow delivery speed.

Land cargo services are typically used to deliver goods within one country or to a neighbouring country. Cargo is delivered using trucks or trains depending on the load size and destination. Land cargo services are cost-efficient, but the delivery times are highly dependent on weather and traffic.

How to Find the Right Freight Forwarder UK

Now that you understand the importance of planning in cargo transportation, you may wonder how to find the right freight forwarder. UK businesses can benefit from hiring freight forwarders who are familiar with local legislation and can handle customs clearance, VAT, insurance, and other documentation.

For instance, GenX Freight is a London-based company with years of experience in arranging sea, air, and land shipments worldwide. Don’t hesitate to contact your local freight forwarding company for a consultation. By trusting your cargo to industry experts, you can gain peace of mind and free up more time to grow your business.

6 Freight Problems Companies Face While Transporting Goods To Other Country

Big businesses have routine activities and operations all over the world. But expanding a business overseas can be riskier if they are running out of cost and proper strategy. The foundational problem they face is transporting goods to other countries.

There are various risks businesses can face while transporting goods from one country to another. For example, many established businesses in China have difficulty in goods shipping from China to USA due to worrisome trade relations between both countries.

Organizations must consider every logistical aspect in international trade, especially the freight area. It does not revolve only around the cost factor, but also various other factors such as danger to life, etc. These challenges are common to every business. The following section will highlight these problems & challenges in detail.

Freight Problems Companies Face While Transporting Goods To Other Country

Key Freight Problems Found in International Trade

There are several problems in the logistics industry regarding international businesses. But the most impactful issues are shown as follows.

1. Major Inefficiencies Pertaining to Transportation

While transporting goods to neighboring countries, companies mainly rely on road or rail transport. There are various problems faced by them during transit through the road. For example, the tariff rates for rail transport are significantly high in most countries.

Besides, transporting goods through trucks can be prone to damage through accidents and harsh weather conditions. These moving trucks also face uncertain events like unnecessary inspection of goods. Apart from these goods may also witness congestion, damage due to poor roads and infrastructure, multiple checkpoints and many other unforeseen factors.

2. Trade and Economic Barriers

As stated earlier, laws and policies of different countries vary according to the legal * political relations between them. Countries with favorable trade policies will encourage more investment from other countries. Therefore, transportation to these countries will be smooth sailing.

But, the problem arises when the countries have strict terms on international trade. This makes the transportation and payment process challenging for both parties. This not only poses a challenge but also limits the companies to expand their operations.

3. Rise in Fuel Prices

One of the most common challenges faced during international transportation of goods is the increasing fuel prices. Transferring goods between gulf countries can be safe and pocket-friendly considering this factor. But usually transporting goods to other countries depends on the prices of fuel.

It might affect the overall profitability of the logistics department. Increment in fuel costs indirectly affects the choice of trucks. The mode of transportation also varies on this basis. Companies shift to sea transport due to petrol and diesel prices. If a business has difficulties selecting the best freight mode, service providers like Shipo.com are the right choice for solving such logistical problems.

4. Receiving and Transportation of Bulk Orders

It is difficult for companies to stay updated and loaded with bulk orders. Timely transportation of bulk orders has been a troublesome problem for many years. It has increased more due to paced up competition and traffic level.

This keeping up with the supply-chain timeline is a challenge even in interstate transportation. You can imagine how gruesome this challenge becomes when it comes to international transportation.

Due to the significant time gap in some countries, managing the timelines and transport cycle becomes more difficult. Festivals can also delay the payment cycle and transportation of bulk orders. The situation turns more challenging when the company is not financially sound and possesses limited resources.

5. Unknown and Unpredictable Delays in Transit

It is common to find variations in terrain in different countries. This problem minimizes when you transport goods within the national boundaries. These changes in weather and geographical conditions lead to postponement of delivery.

There are two phases of transportation. The first one occurs to carry goods from manufacturing plants to warehouses, and the second occurs to carry goods from warehouses to the final destination (retailer or customer). At both stages, rough and rugged terrain delays the reaching of trucks.

biomass-train

Sometimes, these delays occur due to accidents and calamities like landslides, vulnerable avalanches, etc. Traffic also results in these delays. These delays are minimal when an organization opts for air transportation.

6. Lack of Skilled Human Resources

Many global companies lack a proper system of recruitment, selection, and training of the workforce in the logistics department, especially in the transportation sector. They hire people on the basis of low recruitment costs.

As a result, they cannot handle many things while transporting goods. In case of hazardous goods like chemicals, a driver must be aware of do’s and don’ts. They should not light up a cigarette or flammable things. Due to a lack of knowledge and skills, they damage the goods.

Such problems indirectly lead to high labor turnover. SO, this problem acts as twin challenges for companies. There is a high need for companies to train the personnel to make the process smoother & more efficient.

Circular Economy: Past, Present and Future

For a society accustomed to the achievements of a linear economy, the transition to a circular economic system is a hard task even to contemplate. Although the changes needed may seem daunting, it is important to remember that we have already come a long way. However, the history of the waste hierarchy has taught that political perseverance and unity of approach are essential to achieving long term visions in supply chain management.

Looking back, it is helpful to view the significance of the Lansink’s Ladder in the light of the sustainability gains it has already instigated. From the outset, the Ladder encountered criticism, in part because the intuitive preference order it expresses is not (and has never been put forward as) scientifically rigorous. Opposition came from those who feared the hierarchy would impede economic growth and clash with an increasingly consumerist society. The business community expressed concerns about regulatory burdens and the cost of implementing change.

Circular-Economy

However, such criticism was not able to shake political support, either in Holland where the Ladder was adopted in the Dutch Environmental Protection Act of 1979, or subsequently across Europe, as the Waste Hierarchy was transposed into national legislation as a result of the revised Waste Framework Directive.

Prevention, reuse and recycling have become widely used words as awareness has increased that our industrial societies will eventually suffer a shortage of raw materials and energy. So, should we see the waste hierarchy as laying the first slabs of the long road to a circular economy? Or is the circular economy a radical new departure?

Positive and negative thinking

There have been two major transitionary periods in waste management: public health was the primary driver for the first, from roughly 1900 to 1960, in which waste removal was formalised as a means to avoid disease. The second gained momentum in the 1980s, when prevention, reuse and recovery came on the agenda. However, consolidation of the second transition has in turn revealed new drivers for a third. Although analysing drivers is always tricky – requiring a thorough study of causes and effects – a general indication is helpful for further discussion. Positive (+) and negative (-) drivers for a third transition may be:

(+) The development of material supply chain management through the combination of waste hierarchy thinking with cradle to cradle eco design;

(+) The need for sustainable energy solutions;

(+) Scarcity of raw materials necessary for technological innovation; and

(+) Progressive development of circular economy models, with increasing awareness of social, financial and economic barriers.

(-) Growth of the global economy, especially in China and India, and later in Africa;

(-) Continued growth in global travel;

(-) Rising energy demand, exceeding what can be produced from renewable energy sources and threatening further global warming;

(-) Biodiversity loss, causing a further ecological impoverishment; and

(-) Conservation of the principle of ownership, which hinders the development of the so-called ‘lease society’. 

A clear steer

As the direction, scale and weight of these drivers are difficult to assess, it’s necessary to steer developments at all levels to a sustainable solution. The second transition taught that governmental control appears indispensable, and that regulation stimulates innovation so long as adequate space is left for industry and producers to develop their own means of satisfying their legislated responsibilities.

The European Waste Framework Directive has been one such stimulatory piece of legislation. Unfortunately, the EC has decided to withdraw its Circular Economy package, which would otherwise now be on track to deliver the additional innovation needed to achieve its goals – including higher recycling targets. Messrs. Juncker and Timmermans must now either bring forward the more ambitious legislation they have hinted at, or explain why they have abandoned the serious proposals of their predecessors.

Perhaps the major differences between Member States and other countries may require a preliminary two-speed policy, but any differences in timetable between Western Europe and other countries should not stand in the way of innovation, and differences of opinion between the European Parliament and the Commission must be removed for Europe to remain credible.

Governmental control requires clear rules and definitions, and for legislative terminology to be commensurate with policy objectives. One failing in this area is the use of the generic term ‘recovery’ to cover product reuse, recycling and incineration with energy recovery, which confuses the hierarchy’s preference order. The granting of R1 status to waste incineration plants, although understandable in terms of energy diversification, turns waste processors into energy producers benefiting from full ovens. Feeding these plants reduces the scope for recycling (e.g. plastics) and increases COemissions. When relatively inefficient incinerators still appear to qualify for R1 status, it offers confusing policy signals for governments, investors and waste services providers alike.

The key role for government also is to set clear targets and create the space for producers and consumers to generate workable solutions. The waste hierarchy’s preference order is best served by transparent minimum standards, grouped around product reuse, material recycling or disposal by combustion. For designated product or material categories, multiple minimum standards are possible following preparation of the initial waste streams, which can be tightened as technological developments allow.

Where the rubber meets the road

As waste markets increase in scale, are liberalised, and come under international regulation, individual governmental control is diminished. These factors are currently playing out in the erratic prices of secondary commodities and the development of excess incinerator capacity in some nations that has brought about a rise in RDF exports from the UK and Italy. Governments, however, may make a virtue of the necessity of avoiding the minutiae: ecological policy is by definition long-term and requires a stable line; day to day control is an impossible and undesirable task.

The road to the third transition – towards a circular economy – requires a new mind-set from government that acknowledges and empowers individuals. Not only must we approach the issue from the bottom-up, but also from the side and above. Consumer behaviour must be steered by both ‘soft’ and ‘hard’ controls: through information and communication, because of the importance of psychological factors; but also through financial instruments, because both consumers and industry are clearly responsive to such stimuli.

Where we see opposition to deposit return schemes, it comes not from consumers but from industry, which fears the administrative and logistical burden. The business community must be convinced of the economic opportunities of innovation. Material supply chain management is a challenge for designers and producers, who nevertheless appreciate the benefits of product lifetime extensions and reuse. When attention to environmental risks seems to lapse – for example due to financial pressures or market failures – then politics must intervene.

Government and industry should therefore get a better grip on the under-developed positive drivers of the third transition, such as eco design, secondary materials policy, sustainable energy policy, and research and development in the areas of bio, info, and nanotechnologies. 

Third time’s the charm

Good supply chain management stands or falls with the way in which producers and consumers contribute to the policies supported by government and society. In order that producers and consumers make good on this responsibility, government must first support their environmental awareness.

The interpretation of municipal duty of care determines options for waste collection, disposal and processing. Also essential is the way in which producer responsibility takes shape, and the government must provide a clear separation of private and public duties. Businesses may be liable for the negative aspects of unbridled growth and irresponsible actions. It is also important for optimal interaction with the European legislators: a worthy entry in Brussels is valuable because of the international aspects of the third transition. Finally, supply chain management involves the use of various policy tools, including:

  • Rewarding good behaviour
  • Sharpening minimum standards
  • Development and certification of CO2 tools
  • Formulation and implementation of end-of-waste criteria
  • Remediation of waste incineration with low energy efficiency
  • Restoration or maintenance of a fair landfill tax
  • Application of the combustion load set at zero

‘Seeing is believing’ is the motto of followers of the Apostle Thomas, who is chiefly remembered for his propensity for doubt. The call for visible examples is heard ever louder as more questions are raised around the feasibility of product renewal and the possibilities of a circular economy.

Ultimately, the third transition is inevitable as we face a future of scarcity of raw materials and energy. However, while the direction is clear, the tools to be employed and the speed of change remain uncertain. Disasters are unnecessary to allow the realisation of vital changes; huge leaps forward are possible so long as government – both national and international – and society rigorously follow the preference order of the waste hierarchy. Climbing Lansink’s Ladder remains vital to attaining a perspective from which we might judge the ways in which to make a circle of our linear economy.

Note: The article is being republished with the permission of our collaborative partner Isonomia. The original article can be found at this link.

Biomass Exchange – Key to Success in Biomass Projects

Biomass exchange is emerging as a key factor in the progress of biomass energy sector. It is well-known that the supply chain management in any biomass project is a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from biomass resource harvesting and goes on to include biomass collection, processing, storage and eventually its transportation to the point of ultimate utilization.

biomass-exchange

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of biomass logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these problems call for a mechanism to strengthen the biomass value chain. This can be done by considering the following:

  • Assuring a readily available market for the resource providers or the producers
  • Assuring the project developers of a reliable chain and consistent feedstock availability
  • Awareness to the project developer of the resources in closest proximity to the plant site
  • Assurance to the project developer of the resource quality
  • Timely pick-up and drop of resource
  • Proper fuel preparation as per technology requirements
  • Removal of intermediaries involved in the process – to increase value for both, the producers as well as the buyers
  • No need for long term contracts (Not an obligation)
  • Competitive fuel prices
  • Assistance to producers in crop management

Biomass Exchange Model

The figure below gives a general understanding of how such a model could work, especially in the context of developing nations where the size of land holdings is usually small and the location of resources is scattered, making their procurement a highly uneconomic affair. This model is commonly known as Biomass Exchange

In such a model, the seed, fertilizer shops and other local village level commercial enterprises could be utilized as an outreach or marketing platform for such a service.  Once the producer approves off the initial price estimate, as provided by these agencies, he could send a sample of the feedstock to the pre-deputed warehouses for a quality check.

These warehouses need to be organized at different levels according to the village hierarchy and depending on the size, cultivated area and local logistic options available in that region. On assessing the feedstock sample’s quality, these centers would release a plausible quote to the farmer after approving which, he would be asked to supply the feedstock.

On the other hand, an entity in need of the feedstock would approach the biomass exchange, where it would be appraised of the feedstock available in the region near its utilization point and made aware of the quantity and quality of the feedstock. The entity would then quote a price according to its suitability which would be relayed to the primary producer.

An agreement from both the sides would entail the placement of order and the feedstock’s subsequent processing and transportation to the buyer’s gate. The pricing mechanisms could be numerous ranging from, fixed (according to quality), bid-based or even market-driven.

Roadblocks

The hurdles could be in the form of the initial resource assessment which could in itself be a tedious and time consuming exercise. Another roadblock could be in the form of engaging the resource producers with such a mechanism. Since these would usually involve rural landscapes, things could prove to be a little difficult in terms of implementation of initial capacity building measures and concept marketing.

Benefits

The benefits of  a biomass exchange are enumerated below:

  • Support to the ever increasing power needs of the country
  • Promotion of biomass energy technologies
  • Development of rural infrastructure
  • Increased opportunities for social and micro-entrepreneurship
  • Creation of direct and indirect job opportunities
  • Efficient utilization of biomass wastes
  • Potential of averting millions of tonnes of GHGs emissions

Conclusions

In India alone, there has been several cases where biomass power projects of the scale greater than 5 MW are on sale already, even with their power purchase agreements still in place. Such events necessitate the need to have a mechanism in place which would further seek the promotion of such technologies.

Biomass Exchange is an attractive solution to different problems afflicting biomass projects, at the same time providing the investors and entrepreneurs with a multi-million dollar opportunity. Although such a concept has been in existence in the developed world for a long time now, it has not witnessed many entrepreneurial ventures in developing nations where the need to strengthen the biomass supply chain becomes even more necessary.

However, one needs to be really careful while initiating such a model since it cannot be blindly copied from Western countries owing to entirely different land-ownership patterns, regional socio-political conditions and economic framework. With a strong backup and government support, such an idea could go a long way in strengthening the biomass supply chain, promotion of associated clean energy technologies and in making a significant dent in the present power scenario in the developing world.

4 Ways Businesses Can Become More Sustainable

You’ve probably heard the word “sustainable” many times by now, but you may wonder what it has to do with your business. Sustainable business means that you’ll be you’ll be increasing the odds that you company can continue indefinitely by minimizing social and environmental impacts while ensuring financial stability. Studies have shown that sustainable business perform better financially, including one report by nonprofit CDC, reported by The Guardian that found they secure an 18% greater return on investment (ROI) than organizations that aren’t, and 67% more than companies who refuse to. How can you help your business become more sustainable?

green-economy

1. Think Greener in Procurement Sources

One of the best, and easiest, things you can do to make your business more sustainable is to practice environmentally-friendly procurement. Take a close look at your current suppliers and make changes as necessary by using suppliers that don’t use excessive packaging or sell products that contain substances that are harmful to the environment.

As often as possible, choose recycled items made from renewable material. Ask plenty of questions when researching various suppliers to find out where their goods are coming from, including whether the manufacturer is a sustainable business.

Whenever possible, use local suppliers, rather than purchasing online.

2. Seek Help from an Energy Broker

An increasing number of businesses are embracing renewable energy and energy management today. Your office can be powered with a variety of alternative sources like biomass, hydropower, geothermal, solar and wind power. There are hundreds of companies that supply energy in a myriad of different ways, affecting your bottom line and sustainability.

While there are usually a few suppliers dominating any given market, many other small suppliers are known for getting more creative in their offerings. Trying to figure out which one is best for your organization can be a very difficult task which is why using an energy broker who is knowledgeable about all the complexities that come with this sector, can best analyze the energy market to provide you with the greenest, most cost-effective options.

3. Reduce Water Usage

Water shortages are becoming an increasingly bigger problem in many places around the world, including North America. Whether your organization is located in a drought-stricken area or not, decreasing water use will help to conserve a valuable resource and help you save money at the same time.

Instead of using a sprinkler system to keep lush lawns around the building, switch to a drip irrigation system to significantly reduce water usage or consider changing the landscaping to something more drought tolerant. Fix plumbing leaks and dripping taps and install low-flow faucet aerators in your bathrooms.

4. Switch From Gas To Electricity

Electricity is much easier to source sustainably than gas and oil, especially if you use solar panels to collect energy from the sun. So by switching over some of your gas-powered company owned equipment to their electric counterparts you can ultimately help your business become more sustainable.

Some equipment to consider switching could include: switching from gas powered to electric vehicles (especially for companies that rely heavily on transportation), switching from gas-powered to electric-powered riding mowers (especially for landscaping businesses).

As there are so many different types of lawn mowers available, sites like home gear expert show us interesting comparisons which will help you find the one which best matches your needs.

A good electric riding mower with good user ratings will cost you a couple thousand dollars but could save you money in the long term plus make your business more sustainable.

Rationale for Biomass Supply Chain

Biomass resources have been in use for a variety of purposes since ages. The multiple uses of biomass includes usage as a livestock or for meeting domestic and industrial thermal requirements or for the generation of power to fulfill any electrical or mechanical needs. One of the major issues, however, associated with the use of any biomass resources is its supply chain management.

The resource being bulky, voluminous and only seasonally available creates serious hurdles in the reliable supply of the feedstock, regardless of its application. The idea is thus to have something which plugs in this gap between the biomass resource availability and its demand.

The Problem

The supply chain management in any biomass-based project is nothing less than a big management conundrum. The complexity deepens owing to the large number of stages which encompass the entire biomass value chain. It starts right from the resource harvesting and goes on to include the resource collection, processing, storage and eventually its transportation to the point of ultimate utilization.

Owing to the voluminous nature of the resource, its handling becomes a major issue since it requires bigger modes of logistics, employment of a larger number of work-force and a better storage infrastructure, as compared to any other fuel or feedstock. Not only this their lower energy density characteristic, makes it inevitable for the resource to be first processed and then utilized for power generation to make for better economics.

All these hassles associated with such resources, magnify the issue of their utilization when it comes to their supply chain. The seasonal availability of most of the biomass resources, alternative application options, weather considerations, geographical conditions and numerous other parameters make it difficult for the resource to be made consistently available throughout the year. This results in poor feedstock inputs at the utilization point which ends up generating energy in a highly erratic and unreliable manner.

The Solution

Although most of the problems discussed above, are issues inherently associated with the usage of biomass resources, they can be curtailed to a larger extent by strengthening the most important loophole in such projects – The Biomass Resource Supply Chain.

World over, major emphasis has been laid in researching upon the means to improve the efficiencies of such technologies. However, no significant due diligence has been carried out in fortifying the entire resource chain to assure such plants for a continuous resource supply.

The usual solution to encounter such a problem is to have long term contracts with the resource providers to not only have an assured supply but also guard the project against unrealistic escalations in the fuel costs. Although, this solution has been found to be viable, it becomes difficult to sustain such contracts for longer duration since these resources are also susceptible to numerous externalities which could be in the form of any natural disaster, infection from pests or any other socio-political or geographical disturbances, which eventually lead to an increased burden on the producers.

PKS From Africa Can Fuel Biomass Power Plants in Japan

Japan’s biomass fuel requirement is estimated to be tens of millions of tons each year on account of its projected biomass energy capacity of 6,000MW by the year 2030. To achieve this capacity, more than 20 million tons of biomass fuel will be needed every year which will be mainly met by wood pellets and palm kernel shell (PKS). The similarity of the properties of wood pellets with PKS makes PKS the main competitor of wood pellets in the international biomass fuel market.

PKS-biomass

PKS has emerged as an attractive biomass commodity in Japan

Canada and USA are the biggest suppliers of wood pellets to the Japanese biomass market while PKS mainly comes from Indonesia and Malaysia. With the size of the material almost the same as wood pellets, but at a cheaper price (almost half the wood pellets) and also available in abundance, PKS is the preferred biomass fuel for the Japanese market. PKS can be used 100% in power plants that use fluidized bed combustion technology, while wood pellets are used in pulverized combustion.

Although there is abundant PKS in CPO (crude palm oil) producing countries, but fluctuations in CPO production and increase in domestic demand has led to reduction in PKS exports in Southeast Asia. In palm oil plantations, it is known as the low crop season and peak crop season. When the low crop season usually occurs in the summer or dry season, the supply of fruit to the palm oil mills decreases so that the CPO production decreases and also the supply of PKS automatically reduces, and vice versa in the peak crop season. When demand is high or even stable but supply decreases, the price of PKS tends to rise.

In addition, a wide range of industries in Indonesia and Malaysia have also began to use PKS as an alternative fuel triggering increased domestic demand. In recent years, PKS is also being processed into solid biomass commodities such as torrified PKS, PKS charcoal and PKS activated carbon. Thus, there is very limited scope of increasing PKS supply from Southeast Asia to large-scale biomass consumers like Japan and South Korea.

Palm oil mills process palm oil fruit from palm oil plantations, so the more fruit is processed the greater the PKS produced and also more processors or mills are needed. At present it is estimated that there are more than 1500 palm oil mills in Indonesia and Malaysia. Palm kernel shells from Indonesia and Malaysia is either being exported or used domestically by various industries. On the other hand, in other parts of the world PKS is still considered a waste which tends to pollute the environment and has no economic value.

Palm Oil Producers

Top palm oil producers around the world

West African countries, such Nigeria, Ghana and Togo, are still struggling to find a sustainable business model for utilization of PKS. Keeping in view the tremendous PKS requirements in the Asia-Pacific region, major PKS producers in Africa have an attractive business opportunity to export this much-sought after biomass commodity to the Japan, South Korea and even Europe.

Simply speaking, PKS collected from palm oil mills is dried, cleaned and shipped to the destination country. PKS users have special specifications related to the quality of the biomass fuel used, so PKS needs to be processed before exporting.

PKS-export

PKS exports from Indonesia and Malaysia to Japan are usually  with volume 10 thousand tons / shipment by bulk ship. The greater the volume of the ship or the more cargo the PKS are exported, the transportation costs will generally be cheaper. African countries are located quite far from the Asia-Pacific region may use larger vessels such as the Panamax vessel to export their PKS.

An Introduction to Biomass Harvesting

Biomass harvesting and collection is an important step involving gathering and removal of the biomass from field which is dependent on the state of biomass, i.e. grass, woody, or crop residue. The moisture content and the end use of biomass also affect the way biomass is collected. For crop residues, the operations should be organized in sync with the grain harvest as it occupies the centrestage in farming process.

biomass-harvesting

All of other operations such as residue management and collection take place after so-called grain is in the bin. On the other hand, the harvest and collection dedicated crops (grass and woody) can be staged for recovery of the biomass only. In agricultural processing, straw is the stems and leaves of small cereals while chaff is husks and glumes of seed removed during threshing.

Modern combine-harvesters generally deliver straw and chaff together; other threshing equipment separates them. Stover is the field residues of large cereals, such as maize and sorghum. Stubble is the stumps of the reaped crop, left in the field after harvest. Agro-industrial wastes are by-products of the primary processing of crops, including bran, milling offal, press-cakes and molasses. Bran from on-farm husking of cereals and pulses are fed to livestock or foraged directly by backyard fowls.

The proportion of straw, or stover, to grain varies from crop to crop and according to yield level (very low grain yields have a higher proportion of straw) but is usually slightly over half the harvestable biomass. The height of cutting will also affect how much stubble is left in the field: many combine-harvested crops are cut high; crops on small-scale farms where straw is scarce may be cut at ground level by sickle or uprooted by hand.

Modern combine-harvesters generally deliver straw and chaff together

Collection involves operations pertaining to gathering, packaging, and transporting biomass to a nearby site for temporary storage. The amount of a biomass resource that can be collected at a given time depends on a variety of factors. In case of agricultural residues, these considerations include the type and sequence of collection operations, the efficiency of collection equipment, tillage and crop management practices, and environmental restrictions, such as the need to control erosion, maintain soil productivity, and maintain soil carbon levels.